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Abstract—Intelligent transportation systems have become increasingly important for the public transportation in Shanghai.

In response, ShanghaiGrid (SG) project aims to provide abundant intelligent transportation services to improve the traffic condition.

A challenging service in SG is to accurately locate the positions of moving vehicles in real time. In this paper, we present an innovative

scheme, Hierarchical Exponential Region Organization (HERO), to tackle this problem. In SG, the location information of individual

vehicles is actively logged in local nodes which are distributed throughout the city. For each vehicle, HERO dynamically maintains an

advantageous hierarchy on the overlay network of local nodes to conservatively update the location information only in nearby nodes.

By bounding the maximum number of hops the query is routed, HERO guarantees to meet the real-time constraint associated with

each vehicle. A small-scale prototype system implementation and extensive simulations based on the real road network and trace data

of vehicle movements from Shanghai demonstrate the efficacy of HERO.

Index Terms—Distributed applications, real-time system, RFID system, peer-to-peer network, vehicle tracking.
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1 INTRODUCTION

INTELLIGENT transportation systems (ITSs) [1], [2], [3] have
been evolving rapidly in the past two decades, leveraging

advanced computing and communication technologies. ITSs
help coordinate traffic condition, improve safety, reduce
environmental impact, and make efficient use of available
resources. Shanghai, the largest metropolis in China, covers
an area of 5,800 km2 and has a large population of 18.7 million.
The economy of Shanghai is soaring today, and the growing
traffic has become a serious challenge. In response to the
challenge and the needs of the public, the Shanghai
government has established the ShanghaiGrid (SG) project
since 2005, with the ambitious goal of building a metropoli-
tan-scale traffic information system. This project will con-
struct the basic infrastructure, composed of a great number of
traffic information collectors and information processing
nodes connected through the Internet, for building diverse
applications to facilitate the public’s transportation. Accord-
ing to the blue paper of the project, wireless access points
(APs) and RFID readers will be deployed throughout
Shanghai. Exploiting the pervasive deployment of these
devices, location and status information of vehicles can be
actively captured and logged in a large number of distributed
local nodes. The goals of the project are twofold. First, it tries
to make the available transportation infrastructure to be used

more efficiently. Second, it aims to provide the public with a
wide spectrum of ITS applications [13], [14], ranging from
real-time traffic information, trip planning and optimal route
selection, to congestion avoidance and bus arrival prediction.

Among the others, online real-time vehicle tracking is a
fundamental service in SG, which refers to tracking the
current position of a certain vehicle in real time. A wide
spectrum of compelling applications can be implemented
on top of this basic service. For example, authorized users
will be able to track individual vehicles that they are
concerned with, such as their own or friends’ cars, public
buses, and taxies. In particular, there exist several critical
types of vehicles in the city, which need to be located
urgently, such as stolen cars, speeding cars, ambulances,
and police cars. Besides these application scenarios, it is also
an indispensable building block underpinning many other
high-level applications. For example, in the bus arrival
prediction application, the tracking service is used to locate
the nearest feasible bus.

However, real-time vehicle tracking in the metropolitan-
scale system is very challenging because of several rigorous
requirements. First, users (or high-level applications) often
pose a real-time requirement on tracking a certain vehicle.
That is, any query for the vehicle must be answered within
a certain bounded time. Otherwise, the returned answer
may become invalid or useless. For example, a query tries
to locate the current location of a stolen car. If the query
fails to be answered within a short time, the car could
actually be far away from the returned location because it
may be moving at a high speed. Second, the system should
be scalable to support hundreds of thousands of vehicles.
In addition, SG aims to serve millions of users every day.
The huge number of simultaneous queries is a serious
issue. In addition, as the Shanghai City is continuously
expanding, the system is required to be highly extensible to
such expansion. Third, the system should be robust to node
failures. In such a large-scale distributed system consisting
of thousands of local nodes, system maintenance is not a
trivial issue.
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To realize this service, a centralized scheme is straight-
forward, where location information of all vehicles is sent
back to a centralized database and constantly maintained. A
user, who wants to track a vehicle, can send a query to the
central server. The server then processes the query and
returns the location information of that vehicle to the user.
However, it is infeasible for the metropolitan-scale system
due to the huge amount of vehicle data streams. For
example, there are 22,413 crossroads in Shanghai. Even in
2001, the average number of vehicles running across a
crossroad per minute in daytime was up to 33 [4]. This
produces, in total, about 12,000 events per second. Such a
large volume of location updating data can easily over-
whelm the centralized server. Therefore, it necessitates
efficient designs of distributed solutions. As an alternative
scheme, captured vehicle information can be stored locally
at distributed nodes. As a result, there is little updating
data as in the centralized scheme. Nevertheless, by this
means, there is no hint about the inquired vehicle for a
query. To track the vehicle, an intuitive scheme is to flood
the query across the network which can always locate the
desired vehicle. However, flooding search incurs a large
amount of network traffic and, hence, is subject to poor
scalability. To reduce query traffic, there is another search
scheme based on random walks, which introduces modest
network traffic. But, this scheme is limited by the problem
of unbounded response latency of the query. As a result,
there is no existing successful solution, to the best of our
knowledge, to tracking vehicles in real time in a large-scale
distributed system.

In this paper, we propose a novel scheme, Hierarchical
Exponential Region Organization (HERO), which satisfies
the unique requirements of real-time vehicle tracking in a
metropolitan-scale distributed system. In essence, HERO
connects local nodes into an overlay network matching the
underlying road network. A hierarchical structure over the
overlay network is constructed and dynamically main-
tained while the vehicle is moving along. Exploiting the
inherent spatiotemporal locality of vehicle movements, this
hierarchy enables the system to conservatively update
location information of a moving vehicle only in nearby
nodes. The distinctive features of HERO are twofold. First,
it guarantees that any query, which can be injected
anywhere in the city, can meet the real-time constraint
associated with each vehicle, by bounding the maximum
number of hops that the query is routed. Second, it
significantly reduces the communication overhead of both
location updating and query routing, and therefore is truly
scalable to support hundreds of thousands of vehicles and
millions of system users. Moreover, HERO is a fully
distributed lightweight protocol extensible to the increasing
scale of the system. In addition, it is robust to node failures
and able to tolerate inaccurate location readings.

The original contributions that we have made in this
paper are highlighted as follows:

. We propose a novel protocol HERO for real-time
vehicle tracking in a metropolitan-scale ITS. HERO
employs a distributed technique to store the large
volume of vehicle information. It guarantees to meet
the real-time constraint, in terms of the number of

hops that a message has to traverse, associated with a
vehicle for answering any query about the vehicle,
and is truly scalable with respect to the number of
vehicles, the number of queries, and the system scale.

. We conduct in-depth theoretical analysis, identify
the tradeoff relationship between the communica-
tion overhead and the query response time, and
draw an optimal configuration of system parameters
of HERO, minimizing network traffic under real-
time constraints.

. We have built a small-scale prototype system to
track experimental vehicles in the campus which
covers an area of 322 acres. This experiment system
validates our design of HERO and demonstrates its
practical implementation.

. We evaluate the performance of the HERO approach
through precise trace-driven simulations. We base our
simulations on the real road network and trace data of
vehicle movements in Shanghai, and compare the
performance of HERO with other alternative schemes.

The rest of this paper is structured as follows: Section 2
compares HERO with related work. In Section 3, we
introduce the infrastructure that will be deployed in the
SG project. Section 4 elaborates the design of HERO and
presents theoretical analysis for the optimal configuration of
the protocol parameters. Several design issues that may be
encountered in practice are discussed in Section 5. Section 6
describes our prototype implementation of the vehicle
tracking system realizing the HERO protocol. In Section 7,
we introduce the trace-driven methodology that we use to
evaluate the performance of HERO and present simulation
results. Finally, we present concluding remarks and outline
the directions for future work in Section 8.

2 RELATED WORK

The Globe system [15] has constructed a static worldwide
search tree for mapping object identifiers to the locations of
moving objects. It is not flexible to expand or adjust the
structure and may have the bottleneck problem near the
root of the directory tree structure. In [16], the authors have
introduced a distributed approach for load balance but they
have not taken the number of system users into considera-
tion. In contrast, HERO needs no dedicated directory
servers and achieves good scalability and flexibility.

In database community, indexing techniques have been
proposed for tracking moving objects but they are based on
the assumption of the existence of centralized databases [17],
[18], [19], [20]. Despite the large number of existing methods,
there is no applicable one for update-intensive applications,
where it is infeasible to continuously update the index and
process queries at the same time [21]. HERO does not need
any centralize routing information is distributed to every
node in the system.

In structured peer-to-peer (P2P) networks, various DHT
schemes have been proposed to map objects to peers in a
decentralized way, thus enabling the system to satisfy
queries efficiently [22], [23], [24], [25]. However, DHTs may
cause large computation and traffic overhead for a large
number of rapid updates of moving objects. In unstructured
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P2P networks, the most typical query methods are based on
flooding [12]. Using flooding is not scalable. Several
randomized approaches, such as random walks [26], [27]
and randomized gossip-based methods [28], [29] have been
introduced to distribute and locate objects. Random walks
are resilient to node failures but need sufficiently long
walks before finding the results in a stable network.
Random gossip-based methods can retrieve global informa-
tion with high probability after approximately logarithmic
rounds but introduce large traffic. Furthermore, none of
these schemes provides real-time guarantees for queries.
HERO introduces minimal updating cost to guarantee the
real-time constraints desired by the applications.

3 SYSTEM DESCRIPTION

As RFID technology continuously evolves, it has been
widely used in tracking various mobile objects such as
vehicles [5], [6]. The US government also enacts the TREAD
Act [7] which demands RFID tags to be planted in every
new tire before September 2007. The SG project exploits the
promising RFID and local-area wireless communication
technologies. The infrastructure of SG, which is still under-
way, is illustrated in Fig. 1. RFID readers and wireless APs
will be deployed throughout the urban area of Shanghai,
typically installed at crossroads. A local node is responsible
for collecting data from several close RFID readers and
wireless APs within its own domain, and accepts queries
from nearby users or applications. A local node is basically
a server which connects to a dedicated underlying network
for communication.

In SG, the vehicles’ information is gathered both actively
and passively. In the initial prototype of SG, a vehicle is
captured passively using active RFID technology. An active
RFID tag emits its ID at a fixed interval and has an effective
communication range of about 2 to 80 m. The battery can
sustain the operation of an active RFID tag for about 6 years
[10]. A moving vehicle attached with an active RFID tag can
be captured if the emitted signal reaches some reader. Besides
active RFIDs, a vehicle can actively communicate with
wireless APs as it passes by them. A Cisco Aironet 1240AG
AP working under IEEE 802.11g has an effective outdoor
communication range of about 280 m at the transmission rate

of 2 Mbps [8]. The vehicle can actively push important vehicle
status information, such as vacancy status, to local nodes.

Precisely speaking, we aim at providing real-time guar-
antee of tracking a vehicle by bounding the maximum
number of hops that a query could traverse in the system.
Since the provision of such a real-time service depends on the
underlying network for communication, a dedicated net-
work such as an ATM can be used which provides a reliable
and predictable data transmission between any two end-
points. With the bounded maximum number of transmis-
sion, such a system for the purpose of tracking vehicles can
guarantee rigid real-time requirements. In the initial proto-
type of SG, we connect local nodes to the wide-area ATM
network provided by Shanghai Telecom [9] through a
dedicated connection or a cheap ADSL connection.

As another initial pilot effort in Shanghai, certain
vehicles (around 6,850 taxies and 3,620 buses) are equipped
with Global Positioning System (GPS) receivers, which can
provide coarse-grained location information. A vehicle
actively reports its location information back to a centra-
lized database through a wireless cell-phone data channel
(i.e., GPRS). Several crucial reasons prohibit this initial
effort from being extended for vehicle tracking in Shanghai.
First, with crowded high buildings squeezed along most of
the narrow streets in the city, it is very difficult for the GPS
system to work accurately without any other assistant
devices. It is often the case that the reported GPS position of
a vehicle can be more than 100 m deviated from its actual
location. To make things worse, a large number of major
roads are covered by viaducts that prevent satellites from
seeing the vehicles running under them. Second, the
intervals of location information reports can be notably
long. Due to the GPRS communication cost for transmitting
the GPS location information back to the data center, drivers
prefer to choose relatively large intervals. The typical value
would be from 1 to 3 minutes. Third, the expense of a GPS
receiver as well as data communication cost is quite high,
which limits the wide deployment of this technology.
However, the trace data of vehicle movements in the urban
area of Shanghai obtained from this prototype using GPS
technology is very valuable for study of traffic conditions.
We evaluate HERO using the real trace data.

4 DESIGN OF HERO

In this section, we first give an overview of the HERO
protocol, introducing its basic rational. Next, we delve into
the conservative location updating based on the assistance of
a dynamically maintained hierarchy. Finally, we discuss the
optimal configuration of the protocol parameters of HERO.

4.1 Overview

To meet the rigid requirements in vehicle tracking in real
time, we need to solve two critical issues. First, the system
should limit the maximum query response time to guarantee
the real-time constrains from applications. Second, the
system should minimize network traffic to support a large
number of vehicles and queries as well as the continuous
extension of the network.

However, there is an intrinsic tradeoff between network
traffic and query response time in vehicle tracking. As
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Fig. 1. The infrastructure of SG; a small part of the Pudong District of
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mentioned earlier, by aggressively updating location in-
formation of a vehicle to all the other nodes, the system
provides minimal query response time whereas introducing
high updating network traffic overhead. In contrast, the
system suffers from long query response time if the system
does not perform any location updating. In general, more
rigid real-time requirement on tracking a vehicle implies
higher network traffic overhead.

HERO elegantly manages to solve the two critical issues in
an integrated way. The core idea of HERO is to dynamically
update location information of a moving vehicle to all the
nodes in the system in a controlled way. Generally, the nodes
closer to the vehicle are updated more frequently than those
further from it and, therefore, have more accurate informa-
tion about the current location of the vehicle. By this means,
HERO effectively exploits the inherent spatiotemporal
locality of vehicle movements in an urban setting, and
consequently reduces location updating cost. Upon receiving
a query, the node unlikely has the exact information.
However, it knows some other node which has more accurate
information about the vehicle. Thus, it forwards the query to
that node. Following an elaborately organized routing path,
the query can eventually reach the destination node, which
keeps the most updated information of the vehicle. The
typical latency between two nodes can be easily measured.
Thus, by bounding the maximum number of hops that the
query is routed, HERO can also meet the real-time constraint
for the vehicle.

The key to the design of HERO is how to realize the
controlled location updating while bounding the maximum
number of hops a query is routed. To accomplish this,
HERO integrates four effective components:

Overlay construction. To exploit the locality of vehicles’
movements, HERO organizes local nodes into an overlay
network that matches the real underlying road network in
Shanghai (as depicted in Fig. 1, dashed lines present the
overlay connections of local nodes). There is a connection
between two geographically adjacent local nodes in the
overlay network if there is a road between the two
corresponding regions. This overlay is easy to build and
maintain, with each node having to know its neighbors.
Additional overlay connection may also be added for two
nodes that are geographically close to each other even if they
are not connected by a real road. Such connections enhance
the reliability of the overlay network when a local node has
only one road connecting itself to other local nodes.

Hierarchy organization. For every vehicle, HERO
divides local nodes into different regions which constitute
the hierarchy on the overlay network. The regions are
organized in the following way, as illustrated in Fig. 2. The
first region ðR1Þ has the smallest size and covers the vehicle.
For the example, in Fig. 2,R1 covers node e, which is closest
to the vehicle and has the latest information about it. The
second region ðR2Þ has a larger size and covers R1. More
generally, a region ðRiÞ has a larger size than the immediate
inner region ðRi�1Þ and covers it.

Restricted location updating. When the vehicle is
moving within R1, the location updating involves only
the small set of nodes inR1. When the vehicle is moving out
of R1, the location updating is extended to more regions. In
this case, part of the hierarchy needs to be reorganized. This
reorganization aims to restrict location updating in R1 as

much as possible, thereby minimizing network traffic cost
for location updating.

Query routing. With the hierarchy and restricted location
updating, a region always has more up-to-date location
information of the vehicle than its outer regions. In HERO,
each node has a pointer pointing to a boundary node of its
immediate inner region. A query can be injected from any
node in the system. For example, in Fig. 2, node a receives a
query. Node a will forward the query to b. The query will
further be forwarded by nodes c and d, and eventually
arrives at e. Node e will return the location information
directly back to node a. To restrict the maximum number of
hops that the query is routed, we limit the number of
regions that the hierarchy for the vehicle contains.

In the following sections, we first describe the process of
hierarchy initialization when a new vehicle is joining the
system. Next, we describe the detailed mechanism for
restricted location updating while the vehicle is moving
based on the established hierarchy. Finally, the optimal
configuration of design parameters is discussed.

4.2 Hierarchy Initialization

The first node that captures a new vehicle triggers an
initialization procedure to establish the hierarchy for the
vehicle. As the vehicle may move toward any direction, a
region is initially designed as a disk in the overlay network.
Note that, the deployment of local nodes is not necessary to
be uniform in the city. They can be more densely deployed
where more refined tracking accuracy is required. We will
discuss more on this in Section 5. In the rest part of this
paper, without explicit specification, distance is measured
in terms of hops in the overlay network. Each region Ri has
a radius ri (in hops). A node, which has a distance d from
the first node, belongs to region Rk if this region is the
smallest one that covers the node. The radius rk of Rk is

rk ¼ min
h

i¼1
fri; ri � dg; ð1Þ

where h is the maximum number of regions in the system. If
d equals to certain ri, 1 � i � h, the node is on the boundary
of ri. Moreover, for query routing, every node maintains a
pointer that points to a node which is on the boundary of
the immediate inner region. Let next-insider denote this
pointer.
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To establish next-insider pointers in the nodes, the
first node initiates an initialization packet which contains a
router field for setting up these pointers and a journey

field for maintaining the distance that the packet has
traversed. The first node initializes router and journey

to its own IP address and one, respectively. Then, the first
node floods the initialization packet throughout the net-
work. Upon receiving the packet, a node first sets its next-
insider to router contained in the packet. Then, it
checks journey in the packet. If journey equals to the
radius of certain region ri, the node marks itself as a
boundary node of region Ri. It also modifies router in the
packet to its own IP. Otherwise, it leaves that field
unchanged. Next, it increases journey in the packet by
one and rebroadcasts the packet to its neighbors. In
addition, duplicated initialization packets with larger
journey are silently dropped. After the initialization
procedure terminates, the regions are centered at the first
node and the hierarchy is established (as illustrated in
Fig. 2). Note that the structure of the hierarchy is distributed
in all local nodes (the data structure for a node is shown in
Table 1). Therefore, the storage overhead for tracking the
vehicle at a local node is very small.

4.3 Restricted Location Updating

When a vehicle is moving in the city, its information is
captured by the local nodes that it passes by. When a node
captures the vehicle (we call this node chaser), it performs
location updating, and maintains the hierarchy for the
vehicle if necessary. There are three cases. For presentation
clarity, we define a node as a boundary node of Ri if it is a
most outer node within Ri. The nodes in Ri except
boundary nodes are interior nodes of Ri.

Case 1: The chaser is an interior node within R1. In this
case, the hierarchy for the vehicle remains unchanged. The
chaser floods the location information of the vehicle to all
the other nodes in R1.

Case 2: The chaser is a boundary node of R1. In this
case, it is possible that the vehicle will move out of R1

shortly. For example, in Fig. 3, node a is the current chaser
which is a boundary node of R1 (the dashed circle). When
the vehicle moves along the depicted direction, R1 will not
cover the vehicle any more. Two consequences follow. First,
a future query cannot be routed to the chaser properly
because the information on the boundary nodes of R1 is
out-of-date. Second, to enable the proper routing of a future
query, the chaser has to flood the location information of the
vehicle to R2 every time, which will incur larger network
traffic overhead. Therefore, HERO needs to reorganize R1.

To this end, the chaser initiates an update packet in which
its router and journey is initialized to its own IP address
and one, respectively, as in an initialization packet. The

update packet includes an additional scale filed that is
used to indicate the area that the update packet should be
propagated to. In this case, the chaser floods the packet
within R2 by letting the boundary nodes of R2 stop the
flooding. On the one hand, the new R1 is rebuilt from the
current chaser within R2. At the same time, location
information is also updated in the new R1. On the other
hand, it updates nodes in R2 about the current position of
the new R1.

There is a special situation during the reconstruction of
R1, where the new R1 is truncated by the boundary of R2.
This happens when the chaser is close to the boundary of
R2 (e.g., node a in Fig. 3). In this situation, a boundary node
of R2 receives an update packet whose journey is less
than or equals to r1 (e.g., node b in Fig. 3). As a result, this
node sets itself as a boundary node of both R1 and R2. We
call such a node a common boundary node ofR1 and R2. In
this case,R1 is no longer a disk because it is restricted inR2.
But, this does not affect the operation of our protocol.

Case 3: The chaser is a common boundary node of
several regions R1;R2; . . . ;Rj ðj > 1Þ. This is actually a
more general situation of Case 2. This situation results from
constant reconstructions of regions as the vehicle is moving.
In this case, it is possible for the vehicle to move out of all
the regions from R1 to Rj. The system needs to reorganize
regions from R1 to Rj. For example, in Fig. 4, the situation
occurs if node b is the current chaser, where b is also a
common boundary node of R1 and R2 (the dashed circles).

To rebuild regions from R1 to Rj, the chaser floods an
update packet within Rjþ1. As a result, all regions from R1

to Rj are reconstructed within Rjþ1. In addition, the
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TABLE 1
Data Structures Used in the Algorithm

Fig. 3. Reconstruction of R1, node a is the chaser and is a boundary

node of the first region ðR01Þ.

Fig. 4. Reconstruction of R1 and R2, node b is the chaser and also is a

common boundary node of the first and second region (R01 and R02).



location information of the vehicle within Rjþ1 is updated.
Similar to Case 2, there is also a special situation during the
reconstruction of regions from R1 to Rj, where several
regions, say from Ri to Rj, might be truncated by some
boundary nodes ofRjþ1. Such a boundary node of Rjþ1 sets
itself as the common boundary node of regions
Ri;Riþ1; . . . ;Rjþ1, ð1 � i � jÞ. For example, in Fig. 4, node
c is a resulting common boundary node of R2 and R3.

Note that the hierarchy needs to be established only once
at the time when the vehicle is first introduced in the
system. Afterward, it is dynamically maintained in a fully
decentralized manner. Therefore, the storage overhead for
tracking the vehicle at each local node is small. HERO
automatically reorganizes the hierarchy to control the
flooding for location updating to happen mostly in the first
few smallest regions. Using flooding for the controlled
location updating and hierarchy maintenance is robust and
effective when the flooding scale is small [30]. In addition,
duplicated useless packets during the flooding are silently
dropped which also mitigates the network traffic for
location updating. The efficacy of HERO design can be
examined more intensively by our prototype system
implementation and extensive simulations.

4.4 Protocol Analysis and Parameter Optimization

By far, a key question remaining unestablished is the
configuration of the radii ri ð1 � i � hÞ in (1). To conve-
niently control the maximum number of regions in the
hierarchy and to restrain the location updating in small
regions close to the vehicle, HERO organizes the hierarch-
ical regions with exponentially increasing sizes.

More specifically, we introduce two protocol parameters:
first radius r and amplification factor k. The radius of the
first region is r (i.e., r1 ¼ r), and the radius ofRi is ki�1r (if k
is an integer). Fig. 2 shows an example with r and k both
equal to 2. More generally, k can take any real number
greater than one. Since the radius of a region must be an
integer in hops, we take the ceiling of ki�1r as the radius of
Ri and further make sure that a region is larger than its
immediate inner region. Then, the radius of Ri is defined as

r1 ¼ r;

ri ¼
dr � ki�1e; if ri�1 < dr � ki�1

ri�1 þ 2; otherwise:

�
; ð2Þ

We are interested in the maximum number of hops that a
query is routed, and we have the following theorem.

Theorem 1. Given a network with the network diameter (i.e., the
maximum hop distance between any pair of nodes) D hops, it
takes at most dlogkðD=rÞe hops for a query to be answered.

Proof. The worst case of a query, where it traverses the
maximum number of hops, occurs when the hierarchy
is constructed from one end of the network diameter
and the query is injected at the other end of the
diameter. In this case, according to the definition of the
exponential hierarchy, the maximum number of regions
contained in the network is dlogkðD=rÞe. Since nodes in
R1 always have the latest location information, a query
only needs to be routed to a boundary node of R1.
Thereby, a query takes at most dlogkðD=rÞe � 1 hops to
reach that boundary node. It takes the boundary node

one more forwarding hop to finally return the result
back to the node that initiates the query. This concludes
the proof. tu
We study the location updating overhead caused by the

movements of a vehicle. Since the patterns of the vehicles’
movements could be very different, we analyze the
updating overhead in the worst case where a vehicle moves
straight. In this case, the movement continuously breaks the
maximum number of regions, and therefore arouses the
most significant updating overhead. We have the following
theorem.

Theorem 2. Suppose that the topology of a network is a disk,
the maximum network traffic overhead of location updating
for a vehicle moving a distance of D is �ðDÞ ¼ cðkD2 þ
2rðr� k� 1ÞD� 6r2Þ, where D is the network diameter and
c is a constant coefficient.

Proof. Fig. 5 depicts the worst case of location updating
among all possible movements with a distance of D,
where all constructed regions in the network need to be
reconstructed during the movement from node a to
node b. For analysis simplicity, we assume that k is an
integer. With uniform deployment of local nodes, the
network traffic for flooding in Ri (denoted as Si) can be
approximately evaluated by the area of Ri. Let �i denote
the updating overhead incurred as a vehicle moves
from the boundary of Ri�1 to the node immediately
next to the boundary of Ri, ði � 2Þ. For example, in
Fig. 6, the updating overhead introduced when the
vehicle moves from node a to node b is denoted as �1,
and that from node c to node d is denoted as �2.
We have

�1 ¼ ðr� 1ÞS1 ¼ c0�ðr� 1Þr2;

�i ¼ ðk� 1Þ � Si þ
Pi�1

j¼1

�j

 !
;

8><
>: ð3Þ

where c0 is a constant coefficient. Let !m denote the
updating overhead incurred as the vehicle traverses the
diameter of Rm from node a, as shown in Fig. 5.

To formulate !m, we need to go through the whole
process of the restricted location updating when the
vehicle moves from one end of Rm to the other.
Obviously, we can recursively express !m in terms of
!m�1 and �i�1:

!m ¼ !m�1 þ 2ðk� 1ÞðSm þ �m�1Þ: ð4Þ
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Fig. 5. Worst case of location updating, when the vehicle traverses the

whole network from nodes a to b.



For example, in Fig. 5, where k is 2, !2 (i.e., the
updating overhead incurred when the vehicle moves
from node a to node g) consists of !1 (from node a to
node c), S2 (from node c to node d), �1 (from node d to
node e), S2 (from node e to node f), and �1 (from node f
to node g).

Thus, with (3) and (4), !m can be formulated as
follows:

!m ¼ð2r� 1Þ � S1 þ 2ðk� 1Þ
Xm
i¼2

Si þ
Xm�1

i¼1

Xi
j¼1

�j

 !

¼ c0� 2k � r2
m þ 2rðr� k� 1Þrm � 3r2

� �
:

ð5Þ

Denote �ðDÞ as the total updating traffic caused while
the vehicle traverses the network, and then �ðDÞ ¼ !h.
Let c ¼ c0�=2. This concludes the proof. tu

We aim to meet the real-time constraint of a vehicle and

meanwhile minimize network traffic overhead. The typical

latency between a pair of local nodes connected using ADSL

connections can be measured. Let td denote the maximum

delay of a query between two adjacent nodes, and t0 denote

the application real-time constraint. We try to minimize the

average updating overhead per hop, �ðDÞ=D, under the

constraint dlogkðD=rÞe � t0=td. The average is a function of r

and k, and let gðr; kÞ denote it. Then, we have

gðr; kÞ ¼ �ðDÞ=D
¼ c k �Dþ 2rðr� k� 1Þ � 6r2=D
� �

:
ð6Þ

To minimize the traffic overhead, let logkðD=rÞ þ 1 ¼ t0=td,
and gðr; kÞ can be reduced to

gðr; kÞ ¼ c D
td

t0�td � r�
td

t0�tdðD� 2rÞ þ 2 1� 3

D

� �
r2 � 2r

� �
: ð7Þ

Further, let the differentiation of gðrÞ equal to zero,

dgðrÞ=dr ¼ 0. Since it is difficult to derive the exact r and k

that produce the smallest network traffic overhead, we

develop numerical procedures to compute the approxi-

mately optimal value of r and k. Figs. 7 and 8 show the

optimal values of r and k using numerical computation,

respectively, where td is set to 48 ms in the example. It can

be seen that the first radius of R1, where HERO tries to

restrain the locating updating, increases very slowly with

the network scale.

5 DESIGN ISSUES

This section discusses some design issues that HERO may
encounter in practice.

Scalability. HERO is designed to track hundreds of
thousands of vehicles in a metropolitan-scale system with a
large number of users. Therefore, the system scalability
concern in terms of the number of vehicles, the number of
users, and the number of local nodes is critical. With HERO,
the system needs to maintain a hierarchy for each vehicle. If
every movement of a vehicle will introduce a lot of location
updating traffic into the system, the cost can be prohibi-
tively expensive. However, this is where HERO comes to
help. HERO leverages the inherent locality of vehicle
movements and only updates a small number of nodes
nearby the vehicle. Therefore, the location updating cost
should be small. We can also notice that the query cost is
modestly low, which is a logarithmic scale to the size of the
network. Moreover, each node in the system only needs to
maintain the information of several neighboring nodes. It is
a lightweight protocol to join and leave the system. We will
further investigate the scalability of HERO by extensive
trace-driven simulations in Section 7.

Resilience to unreliable data. It is possible that
occasionally a vehicle is not captured by an RFID reader
(e.g., when the vehicle is moving too fast). In addition, a
local node may also fail from time to time. It is critical to the
operations of HERO if a boundary node misses a vehicle
passing by. This inaccuracy can be easily detected in the
system. At any time, a node in region Ri ði � 2Þ should
have received an update packet from a boundary node of
Ri�1 before the node itself captures the vehicle. Otherwise,
it is aware that the vehicle has escaped from Ri�1 and the
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Fig. 6. Example of continuous reconstruction ofR1 during the movement

from nodes a to d.

Fig. 7. First radius r as a function of D.

Fig. 8. Amplification factor k as a function of D.



corresponding updating process fails. To solve the problem,
we let the node which discovers this inaccuracy take the
responsibility over as if it were a boundary node of Ri�1

and triggers updating for the reorganization of regions from
R1 to Ri�1. Unless the node itself happens to be a boundary
node of Ri, it performs updating for the reorganization of
regions from R1 to Ri instead.

Tracking accuracy. As a vehicle keeps moving, it may
run out of the reading range of an RFID reader while still
has not entered the territories of others. This causes the
system to have inaccurate vision about the current position
of the vehicle before the vehicle reenters into the system. It
also defines the resolution of tracking accuracy of the
system to be the uncovered distance between two adjacent
RFID readers. In more practical environments, this inaccu-
racy can be enlarged when RFID readers fail to capture the
vehicle as the vehicle passes. To refine the tracking
resolution, more RFID readers can be deployed in the
system. In order to reduce the cost, readers can be deployed
more densely at those places where more accurate location
information of individual vehicles is required and less
densely at other places.

Node join and maintenance. In HERO, a single node
failure can be discovered in a short time. A local node can
periodically check with its neighbors while performing
HERO protocol. An unavailable node is then reported to the
system administrator. To join the system for tracking
vehicles, a new node (or a recovered node) only needs to
contact its adjacent nodes. Then, for each vehicle, the node
configures its status the same as that of the neighbor which
resides in the smallest region among all neighbors in the
hierarchy. Thereby, it knows its position in the hierarchy for
each vehicle and can perform location updating and query
processing properly.

Data replication. The tracking data of vehicles can be of
great importance for many applications. It is an important
issue for the system to protect these data from node failures
and disasters, such as fires or earthquakes. HERO actually
has the implicit advantage of protecting important tracking
data. Recall that tracking data are replicated in the first
region. It implies that the system is still able to track the
vehicle even when the chaser node becomes unavailable. If
some vehicles are particularly important and need addi-
tional protection of tracking data, we can make r relatively

large associated with the vehicle. By this means, more data
can be replicated in the first region organized for the
vehicle.

6 PROTOTYPE IMPLEMENTATION

To validate the HERO design and prove its practical
implementation, we have built a prototype system in the
campus to track experimental vehicles. This prototype
system contains 45 local nodes distributed in our campus.
As shown in Fig. 9, local nodes (denoted by red spots) are
deployed at crossroads of main roads. Every local node has
an IEEE 802.11g wireless network interface connecting the
local node to the campus Internet. Furthermore, the overlay
network formed by the local nodes is illustrated by the
dashed lines in Fig. 9. An overlay connection is established
between two nodes if there is a road that immediately
connects them.

In the prototype system, we employ an active RFID
system using “Tag Talk First” technology. Fig. 10 shows a
typical local node, which is associated with a SP-D300 RFID
reader [10] as well as an IEEE 802.11g wireless AP. The inset
in Fig. 10 shows an active RFID tag (in highlighted area)
attached to a vehicle. The reader’s operating frequency is
2.4 GHz. It connects to the local node via an RS-485 interface
and has a data transfer rate of 1 Mbps. The reader has a
configurable operation range from 2 to 80 m. Each reader can
simultaneously detect up to 200 tags in 800 ms. Each tag has a
unique 64-bit ID. Its battery has a life of 6 to 8 years. Tags send
their unique ID signal in random with an average of 300 ms
and can be detected at a high speed up to 125 mi/hour.
Besides the RFID system, wireless communication technol-
ogy is also investigated in our prototype implementation.
The HERO protocol runs on Red Hat Fedora 5 and uses
POSIX.1 socket API to communicate with each other. UDP
packets are adopted for location updating and query routing.
The size of all packets is 40 bytes, which includes 20 bytes of
the IP packet header, 8 bytes of the UDP packet header, and
12 bytes of data.

With this prototype implementation, we conduct a variety
of experiments. Since we use the campus Internet as the
underlying network, real-time guarantee seems to be non-
trivial because the jitter (end-to-end round-trip time) can vary
largely. To demonstrate this, we randomly choose two local
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Fig. 9. The layout of the prototype implementation consisting of 45 nodes

denoted by red spots.

Fig. 10. A local node with a RFID reader and a wireless AP; the highlight

area in the inset shows an active RFID tag attached to a vehicle.



nodes to measure the round-trip time by ping. Fig. 11 shows
the measured round-trip time from 27 June 27 to 30 June in
2008. It can be seen that the round-trip time increases sharply
from 7 p.m. to 11 p.m. Moreover, the peak value can be almost
four times larger than that at daytime. Nevertheless, the
round-trip time is much more stable during the daytime.
Thus, we choose to perform experiments with our prototype
system from 10 a.m. to 12 a.m. on 30 June in 2008. We set the
real-time constraint to 100 ms and take the maximum
transmission delay between two online nodes which is
18.05 ms. Therefore, the resulting r and k are therefore
configured to 3 and 1.278, respectively. We let a van carrying
an active RFID tag travel at 30 mi/hour along the route as
depicted by the dark arrows in Fig. 9. As the van enters an
RFID reader’s field and is captured by the reader, the
associated node performs location updating accordingly.
During the journey which lasts about 4 minutes, we let each
node randomly generate a hundred of queries.

Among all the 4.500 queries, the maximum query latency
is 90.45 ms, which is strictly shorter than the required real-
time constraint. We also notice that the average query
latency is about 47.93 ms. The network traffic for location
updating among all nodes adds up to 13.2 Kbytes. In
contrast, the network traffic for location updating using
broadcast on a spanning tree is about 28.8 Kbytes. Since the
maximum routing hops of a query is bounded (i.e., 5 hops
in this experiment), the network traffic for query routing
linearly increases with the number of queries in the system.

The lesson from our prototype implementation is that,
with appropriate configuration of the protocol parameters,
the query latency can be guaranteed to satisfy the real-time
constraint requirement in terms of the number of hops that
a message has to traverse. In addition, the overall network
traffic overhead, introduced by location updating and
query routing, can well accommodate a large number of
queries. To further investigate the performance of HERO in
a large-scale setting, we conduct trace-driven simulations,
which are detailed in the following section.

7 PERFORMANCE EVALUATION

7.1 Methodology

In the simulations, the HERO protocol is implemented
using ns2 [11]. Since we connect local nodes to the

metropolitan-scale ATM network provided by Shanghai
Telecom through cheap ADSL connections, the transmis-
sion delay between any two local nodes is reliable. There-
fore, we can construct the overlay network topology by
simply mapping the real complex road network of Shanghai
where local nodes are deployed on every crossroad. The
typical link transmission delay between two neighbor nodes
in the overlay network is 48 ms, measured by ping between
two desktop PCs with 1-Mbyte bandwidth ADSL connec-
tions. One of the overlay topologies employed in our
simulations is depicted in Fig. 12. The topology containing
1,000 nodes (denoted by small hollow dots) covers the
geographical downtown area of Shanghai. The dark line
shows the network diameter in the topology, which is
55 hops. Upon the ATM network, we use UDP protocol for
communicate with the packet size being 40 bytes.

To investigate the impact of the vehicle moving patterns to
the HERO design, we use real GPS trace data of taxies which
were obtained with GPS technology from August 2006 to
October 2006. Taxies can move more randomly and exten-
sively in the whole city and, therefore, have more sense to be
considered. A typical trace of a taxi in the downtown area of
Shanghai through daytime (on 13 August 2006) is shown by
solid dots in Fig. 12. It can be seen that, when the taxi is
vacant, it cruises around within an area most the time
seeking for passengers, as shown by these solid dots in the
circle areas in Fig. 12. This benefits our HERO design best
because most of the location updating can be perfectly
restricted within small regions. It can also be seen that, when
the taxi has a delivery, it runs very fast along the straightest
path for its destination, as illustrated by those solid dots in
the ellipse areas in Fig. 12. HERO leverages restricted
location updating strategy to reduce network traffic while
still keeping the whole system up-to-date.

We compare HERO with several alternative schemes:

. ST-Updating. In this scheme, whenever a node
captures a vehicle, it updates this information to all
other nodes. To reduce the network traffic overhead
of this update, the system maintains a global
spanning tree. Therefore, only N � 1 update packets
are introduced across the whole network for each
update when there are N nodes in the network. The
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Fig. 11. The round-trip time pinged from two nodes randomly chosen

from 45 nodes. The measurement is taken from 27 June (Friday) to

30 June in 2008 (Monday).

Fig. 12. The topology of the downtown area of Shanghai with

1,000 nodes deployed at crossroads of this area.



strength of this scheme is that each node can
answer any query locally, providing minimal query
response time.

. ST-Flooding. This scheme does not perform vehicle
information update in the network, and hence, no
overhead is introduced for location updating. To
search for a vehicle, a query is flooded throughout the
network. A global spanning tree is used to broadcast
the query to reduce the network traffic overhead.

. Ex-Flooding. This scheme does not perform vehicle
information update either. Without relying on a
global spanning tree, it employs expanding flooding.
The query is flooded in the overlay network. At the
beginning, the TTL of the query is small. If this try is
not successful, the query will be flooded again with
an increased TTL (plus 4 hops). This process is
repeated until the vehicle is found.

. Random walks. Similar to ST-Flooding and Ex-
Flooding, this scheme does not perform information
update. To search for a vehicle, the query is carried
out by five simultaneous random walkers. A walker
checks with the querying node every 50 steps and
terminates either if the querying node has already
retrieved the result or if the maximum number of
steps 2,000 is reached.

. Chord. In this scheme, each local node joins an
overlay network of a logical ring [23]. With a series
of indexing pointers maintained in each local node,
each local node can update and retrieve the location
information of a vehicle within log2 M on average,
where M is the size of the logical ring. In our
implementation, M is set to 232 which is moderate to
support a large number of nodes and vehicles in the
system.

We propose two important metrics to evaluate the

performance of HERO and the above schemes:

1. Maximum query latency ðMQLÞ. It refers to the
maximum query response time of a successful query.
The intention of this metric is to check whether a
scheme can guarantee certain real-time requirements.

2. Network traffic per query ðMNT Þ. It can be seen that
if there were no query then no location updating
would need to be carried out at all. Therefore, to
answer a query, the system cost should involve two
parts of network traffic, i.e., for location updating
and for routing query packets. We investigate the
communication cost per query by any location
updating as well as query processing.

7.2 Effects of Protocol Parameters

We first examine the effects of protocol parameters on the
system performance and validate the theoretical analysis.
We employ 1-hour extensive trace data of 100 taxies,
randomly generate 105 queries for different vehicles during
this hour and demand any query to be answered within
500 ms. We vary r from 1 hop to 30 hops with an increment
of 1 hop, and vary k from 1.2 to 3 with an increment of 0.05.
For each pair of r and k, we repeat the experiment 10 times
and present the average.

Figs. 13 and 14 plot MQL among all the generated queries
and MNT under different configurations of r and k,
respectively. It shows that MQL drops dramatically with
increasing r and k. It can be seen that MNT increases with
both increasing r and increasing k. This is reasonable
because either a greater r or a greater k leads to a more
aggressive updating strategy. At the extreme, if r equals to
D or r equals to one and k equals to D, HERO floods every
location updating throughout the whole network. In this
experiment setting, according to the numerical computa-
tions in Section 3, r and k should take 2 and 1.393,
respectively. The arrows in Figs. 12 and 13 show the
corresponding positions. It is clear to see that, with this
configuration of r and k, HERO can actually guarantee any
query to satisfy the real-time requirement and meanwhile
minimizing the network traffic overhead per query.

7.3 Impact of Query Quantity

In this experiment, we investigate the impact of the query
quantity on the system performance. We take the same
setting as the previous experiment. The protocol parameter
r and k are set to 2 and 1.393, respectively. We vary the total
number of queries from 103 to 105 with an increment of 400.

Among all queries, MQL of HERO is 480 ms which
is strictly shorter than the real-time constraint. In ST-
Updating, MQL is about 14 ms which is for local database
operations. The other schemes cannot guarantee to satisfy
the real-time requirement. MQL of Chord, ST-Flooding, and
Ex-Flooding is 1,536, 5,232, and 14,120 ms, respectively.
MQL of Random walk is about 105 ms due to the search step
limitation of 2,000. Fig. 15 plots MNT with different number
of queries per vehicle. MNT of HERO is much less than that
of other schemes. In addition, it declines as the number of
queries increases. It can be seen that, with this experiment
setting, HERO has less query overhead than ST-Updating
until the number of queries for the same vehicle exceeds
41,400. It is very interesting to find out that the number of
queries decides whether ST-Updating or HERO is prefer-
able. However, we argue that it is impractical that a single
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vehicle would be queried so tensely within 1 hour in a
region with 1,000 nodes.

To further compare HERO with Chord, we conduct
another experiment. We take the same setting as the
previous experiment except we distribute all the queries
in both uniform and nonuniform manners and collect the
total incurred network traffic. To nonuniformly distribute
queries, we divide the whole network into 10 areas and
assign each area a different probability for a local node to
generate a query. For each probability configuration, we
repeat the experiment 10 times. Fig. 16 shows the total
network traffic rate with different number of queries. It can
be seen the difference between the results of uniform
distribution of queries and nonuniform distribution of
queries is very slight. We notice Chord has incurred much
more network traffic than HERO. This is because Chord
takes on average 16 hops to forward a query when the size
of the logic ring is 232, while HERO guarantees to route a
query within a desired number of hops (i.e., 9 hops in this
experiment). HERO takes on average 5.28 hops to forward a
query in this setting.

7.4 Impact of Vehicle Quantity

In this experiment, we investigate the impact of the vehicle
quantity on the system performance. We use the same
network topology and protocol parameter configuration. To
gain enough trace data, we take trace data from different
dates and treat a taxi at two different dates as two separate
taxies. In this way, we gain 20,000 taxi traces of 1-hour
extensive GPS data of 1,000 taxies from 12 August to
12 September in 2006.

Fig. 17 shows the network traffic rate with 4,000 different
taxies. We can see that different taxies have introduced

different network traffic for location updating. This is
because different taxies have different moving patterns (for
example, a vacant taxi compared to an occupied one), and
therefore, the variance of location updating cost can be
large. Chord uses consistent hash to uniformly distribute
updating traffic among all local nodes, which is less
influenced by different moving patterns. Beyond all the
facts, we notice HERO has less average updating traffic
than Chord. This is because HERO fully leverages the
inherent locality of vehicle movements and tries to
constrain updating traffic only within nearby nodes. More-
over, we vary the total number of taxies from 500 to 3,000
with an increment of 500. Fig. 18 plots the network traffic
rate with different number of vehicles in the system which
further confirms our analysis. The average network traffic
for location updating of HERO is 47.4 bps, whereas that of
Chord is 57.38 bps. It can be seen that HERO has less
updating traffic than Chord and has good scalability with
the increasing number of vehicles.

7.5 Impact of Network Scale

To evaluate the impact of network scale, we conduct an
experiment on multiple topologies. We adopt 1-hour trace
data of 100 vehicles, randomly generate 105 queries and set
the real-time constraint to 500 ms. For each topology, we set r
and k according to particular numerical computation results.

In Fig. 19, we plot MQL over different number of nodes in
the system. HERO meets the real-time constraint under
different network scales. MQL of ST-Flooding increases
from 5,232 ms in the 1,000-node topology up to 11,088 ms in
the 3,000-node topology. MQL of Ex-Flooding also increases
from 14,120 to 31,056 ms. Random walks can always reach
the maximum number of search steps. Fig. 20 plots MNT
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Fig. 15. Network traffic per query versus number of queries.

Fig. 16. Network traffic rate versus number of queries.

Fig. 17. Network traffic rate versus individual vehicles.

Fig. 18. Network traffic rate versus number of vehicles.



over different number of nodes. As the network scale
increases, the network traffic of HERO increases very
slowly. The reason is that HERO can constrain the updating
traffic within a small region and has little influence on other
nodes which are far away from the vehicle in the network.

7.6 Effect of Real-Time Constraint

We conduct an experiment to study the relationship
between the network traffic overhead per query and the
real-time constraint in HERO. We use the same trace data
and randomly generated queries as the experiment de-
scribed in Section 7.2. We vary the real-time constraint from
50 to 500 ms. Fig. 21 plots MNT over different real-time
constraints. MNT first drops rapidly in the beginning and
tends to increase slowly with the real-time constraint. This
is because the network traffic for routing queries takes more
account into the overall network traffic as the real-time
constraint increases. This result is valuable for applications
to select appropriate real-time constraints to satisfy their
requirements while reducing the system overhead.

8 CONCLUSION and FUTURE WORK

In this paper, we have presented the real-time tracking
protocol HERO for the metropolitan-scale ITS. Exploiting the
locality of vehicle movements in the urban area, HERO
adaptively updates the locations of a vehicle according to the
innovative hierarchical structure. HERO significantly re-
duces network traffic while still satisfying the real-time
requirement. As a fully distributed protocol, this protocol is
highly scalable to the number of users, the number of vehicles,
and the system scale as well. Prototype implementation and

comprehensive simulations based on the real road network

and trace data of vehicle movements demonstrate the efficacy

of HERO.
This is an on-going research and system effort in tracking

various vehicles in the metropolitan-scale system. Following
the current work, we have a lot of more exciting yet
challenging topics ahead. One of these topics is the privacy
implication of tracking personal vehicles all the time. The
government will guarantee to protect individual privacy by
authorizing legal individuals and corporations with different
privileges to access appropriate vehicles. Next, we will delve
into designing better location updating schemes such that
update overhead can be reduced as much as possible. Based
on our realistic prototype test-bed, we will validate our design
and study its performance under real complex environments.
Improvements will be made based on the realistic studies
before it comes to be deployed in the large-scale SG system.
Moreover, it is important to ensure the security of chasers. If a
malicious chaser does exist, the system may behave abnor-
mally and the system performance would be degraded.
However, this paper focuses on the system design for real-
time tracking. We will gradually incorporate security mea-
sures into the system implementation in the future.
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