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distribution of probe vehicles in both spati
dimensions since they move at their own wills
poses a new approach based on compressive
scale traffic sensing in urban areas. We mine 
trace datasets of taxies in an urban environme
component analysis and reveal the existence
tures with sensory traffic data that underpin
sensing approach. By exploiting the hidden st
cient algorithm is proposed for finding the be
condition matrix by minimizing the rank of 
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I.  INTRODUCTION 
Traffic sensing aims to detect the traff

different roads. It is crucial to a number o
traffic management, road engineering an
planning. Shanghai, for example, the large
China, is undergoing rapid economic growth
suffers constant traffic congestion. To mitig
the underlying road networks, efficient tra
based on metropolitan scale traffic sensing i
fic sensing, however, is a great challenge 
metropolis like Shanghai, China.  

Traditionally, vehicle loop detectors a
cameras are deployed at roadside to detect 
[3, 6]. Unfortunately, the coverage of thes
premely limited due to the high deployment 
costs. For example, a loop sensor costs $9
dent on its type. More importantly, deploy
indirect maintenance costs are significant.
infeasible to install traffic monitoring 
enough to cover the entire road networks. 
engineers are trying to overcome the limita
tectors and cameras by using new technolog
RFID. Some studies try to locate vehicles b
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sition can be highly accurate, but when the probe vehicle 
passes through many obstructions including so-called urban 
canyons and underpasses that degrade or impede operation. 
Multipath propagation of radio signals also creates problems. 
Some study [9] focuses on how to detect a GPS error of a 
probe vehicle. In addition, unreliable wireless communica-
tion may introduce noises and errors. 

Some existing work has already started to look into de-
tails at how we can process traffic data based on these sys-
tems. In [8], the authors discuss the architecture of probe 
vehicle system and develop a simple analytical/statistical 
model. They figure out that 3% penetration is required on 
highways and over 5% penetrate is required on surface 
roads. Some work [14] focuses on figuring out the street 
traffic state on a given road segment based on trace data of 
probe vehicles. Abundant data are required in their measure 
and each road segment is analyzed independently. Virtual 
Trip Lines are approached in [10] to protect the privacy of 
individual trace. The existing studies do not solve the prob-
lem of vacancies in sensory traffic data. In [16], the authors 
try to reconstruct missing values by using Multiple Singular 
Spectrum Analysis (MSSA). However, it can only exploit 
the internal periodicities in the sensory data and there is still 
much space for improvement.  

In this paper, we propose a new approach based on com-
pressive sensing to large-scale traffic sensing. Compressive 
sensing [2] is a powerful theoretical tool for dealing with 
missing values in real-world datasets that usually contain 
certain structures. It has recently attracted considerable atten-
tion in statistics, signal processing and approximation theory. 
According to compressive sensing, a real-world dataset ma-
trix can well be approximated by a low-rank matrix. For lo-
cations and times of interest, we define a traffic condition 
matrix. We mine the large traces of more than 4000 taxies 
over duration of more than two years in Shanghai, China by 
using Principal Component Analysis (PCA). We find that 
there evidently exist hidden structures with traffic condition 
matrices. By applying singular value decomposition, the 
major energy concentrates on just a few principle compo-
nents. This shows that the datasets contain hidden structures 
or redundancy which underpins the applicability of compres-
sive sensing to traffic sensing. 

Based on the observations, we propose a compressive 
sensing based algorithm to exploit hidden structures for traf-
fic sensing. The algorithm tries to find the optimal estimate 
matrix for the original matrix. According to the principle of 
compressive sensing, the objective for finding the optimal 
estimate is achieved by minimizing the rank of the estimate 
matrix. Meanwhile, the estimate matrix should be as close as 
possible to the measurement matrix. We propose an efficient 
genetic algorithm for solving the optimization problem and 
find the best estimate. Experiments based on large real trace 
datasets demonstrate that our algorithm produces the best 
performance, outperforming alternative algorithms, such as 
K-Nearest Neighbors (KNN) and Multi-channel Singular 
Spectrum Analysis (MSSA). Surprisingly, we show that our 
algorithm can achieve an estimation error of as low as 20% 
even when more than 80% of sensory data are not present. 

In this paper, we have made the following contributions. 

• We mine the large traces of taxies in Shanghai with 
principle component analysis and reveal the hidden 
structures in traffic condition matrices.  

• We propose a compressive sensing based approach 
to finding the best estimate for original traffic condi-
tion matrices. Design optimizations of the algorithm 
are accomplished by a genetic-based optimization 
algorithm.  

• We conduct real trace driven experiments. Perfor-
mance results demonstrate that our algorithm 
achieves significantly lower estimation error than al-
ternative algorithms.  

The rest of this paper is organized as follows. In Section 
II, we formally formulate the problem. In Section III, we 
mine the trace datasets and reveal the existence of hidden 
structures in the datasets. The compressive sensing based 
algorithm is detailed in Section IV. In Section V, we present 
our experiment results. We introduce related work in Section 
VI. We conclude the paper in Section VII. 

II. PROBLEM FORMULATION 
We give the system model and formally formulate the 

problem in this section. 

A. System Model 
Probe mobile vehicles are deployed for sensing traffic in-

formation of roads. There are ܰ vehicles in the system, de-
noted by a set of ሼ0, 1, … , ܰ െ 1ሽ. For a probe vehicle, ݅, it 
moves along the roads and reports its states from time to 
time. The reported states at time ݐ are a three-tuple, ݏ௜(ݐ) : ൏ݒ, ܽ, ݌ ൐, representing its instant velocity, direction of head 
way, position (longitude & latitude). A sensory report is de-
livered back to a central server by a wireless data channel. 
Note that the sensory data itself may contain error and a sen-
sor report is not guaranteed to be delivered to the server. 
Importantly, a vehicle travels at its own will and there is no 
central scheduling for movement of vehicles.  

Let ௜ܶ  denote the set of timestamps at which vehicle ݅ re-
ports its states, ௜ܶ ൌ ሼݐଵ௜ , ଶ௜ݐ , … , ௞௜ݐ , ሽ, in which ݐଵ௜  and ݐ௞௜  are 
the first timestamp and the last timestamp, respectively. 
Thus, vehicle ݅ forms a report set, ௜ܵ ൌ ሼݏ௜(ݐ) | ݐ ג ௜ܶሽ. Note 
that for different vehicles, the set of timestamps may be dif-
ferent. For a vehicle, the intervals between timestamps are 
not necessarily the same. 

B. Problem Statement 
It is not straightforward to devise a single metric for 

quantifying the traffic condition of a given location at a giv-
en time. In general, a good traffic condition allows higher 
driving speed and larger throughput. This paper adopts the 
driving speed as the metric for quantifying traffic condition. 

Definition 1 (traffic condition): Given a target location 
on a road, ݌଴ (ݔ݌଴,  ଴), the traffic condition of this locationݕ݌
at time ݐ଴  is defined as the driving speed of ݌଴  at time ݐ଴ , 
denoted by ݌)ݔ଴,  .(଴ݐ

Since it is impossible to get ݌)ݔ଴, -଴) directly, we can onݐ
ly estimate this value by using the driving speeds of vehicles 
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passing by this location. A good estimate is the mean of 
these driving speeds. 

It is challenging, however, to obtain the average of the 
driving speeds. The number of available reports whose loca-
tions and timestamps exactly match (݌଴, t଴) is negligible. A 
reasonable way to circumvent this obstacle is to use reports 
which reside in the neighborhood of (݌଴, ,଴݌)ܴ ଴). Letݐ  (଴ݐ
denotes the set of reports in the neighborhood 

( ) ( ) ( ){ }0 0 0 0
, | , &&

i
p t S t d p p p t tR t= ≤Δ − <Δ

 
(1) 

Then, the estimate is computed as 

( ) ( )( ) ( )0 0
0 0 ,

1
ˆ , .

i
iS t R p t

x p t S t v
K ∈

= ∑  (2) 

where ܭ ൌ ,଴݌)ܴ|  .|(଴ݐ
It is obvious that the quality of this estimate depends on 

the three factors, i.e., ݌∆ ,ܭ and ∆ݐ. Usually the two values, ∆݌ and ∆ݐ  are selected by the users and remain fixed for a 
given application scenario. This paper relaxes the spatial 
granularity ∆݌. We consider the traffic condition on a road 
segment, which refers to the part between two neighboring 
intersections of a road in one direction. 

The number of reports, ܭ , is usually a random value, 
influenced by the total number of probe vehicles, the location 
and the traffic condition. As a result, ܭ impacts the quality of 
estimatimation. Under a good condition, ܭ is large and the 
estimate would be close to the real value according the 
central limit theory. Under the worst case, ܭ  is zero, i.e., 
there are no reports in the neighborhood. In this case, there is 
no way to get an estimate. 

We are interested in the traffic conditions of a given set 
of locations ߗ at a given set of time slots ܼ, 

{ }0 1 2 1
, , ,...

n
p p p p

−
Ω = . (3) 

{ }0 1 2 1
, , ,...

m
t t t t

−
Ζ = . (4) 

The traffic condtions of ߗ at ܼ form a traffic condition 
matrix (TCM), denoted by ்ܺ஼ெ, 

( )TCM ij m n
X x

×
= . (5) 

where ݔ௜௝  is the average driving speed of ܴ(݌௝, -௜). Thereݐ
fore, a row gives traffic conditions of different locations at ݐ௜ 
and a column specifies a time series of traffic condition at 
the location ݌௝. 

It is difficult to obtain an integral traffic condition matrix 
as there may be a lot of vacancies with no reports. Probe 
vehicles move on roads according with their own prefe-
rences, and there is no guarantee for a location that a number 
of reports are generated for every given time period. This 
creates the problem of report holes that there are no suffi-
cient reports for computing traffic conditions. This will fur-
ther be demonstrated in the following section.  

In fact, we are given a measurement matrix (்ܯ஼ெ): 

0 0

.

0,   if | ( , ) | 0
[ ]

1,    otherwise

TCM TCM

ij

M X

p
B

R

B

t
b

= ×
⎧⎪ =⎪⎪= = ⎨⎪⎪⎪⎩

. (6) 

where matrix ܤ is an indication matrix. The objective is to 
estimate ்ܺ஼ெ when given ்ܯ஼ெ. Formally, our traffic sens-
ing problem is defined as follows: 

Definition 2 (Traffic sensing problem). Given the probe 
sensors and their reports, the traffic sensing problem is to 
find an estimate, ෠்ܺ஼ெ, such that it approximates the original 
traffic matrix, ்ܺ஼ெ, as closely as possible. 

Note that when the time set of interest includes future 
times, by solving the traffic sensing problem we are able to 
predict future traffic conditions. 

III. REAL-WORLD DATA ANALYSIS 
We have deployed more than 4000 taxies as probe ve-

hicles in Shanghai, China, for large scale traffic sensing. 
Each vehicle reports its sensory data periodically. The period 
varies from vehicle to vehicle between ten seconds and three 
minutes. We have collected a large amount of traces of the 
taxies. The trace datasets span duration of more than two 
years. We first demonstrate the serious issue of report holes 
by studying the distribution of sensory reports over both 
space and time. Next, we reveal that there exist certain struc-
tures in the sensory data by applying principal component 
analysis. 

A. Distribution over Time and Space 
We study the distributions of sensory reports over space 

and time, by which we show the issue of report vacancies. 
We define a metric as follows. 

Definition 3: Let ܤ be the indication matrix for matrix ܯ. The integrity of ܯ, denoted by ԅ(ܯ), is defined as the 
ratio of available elements to the total elements. 

( ) sum( ) / size( )M B Bϖ = . (7) 
We analyze the traces of 500, 1000, 2000 taxies over a 

duration of 24 hours on Feb 18, 2007, respectively. All the 
taxies were running in the inner region of Shanghai, in which 
there are 5812 road segments. We set the time granularity to 
15 minutes in the analysis. 

First, we study the integrity of measurements at a given 
road, by which we can learn the issue of report holes of sen-
sory data over time. Fig. 2 shows the CDFs of integrity of all 
roads under different numbers of vehicles, i.e., 500, 1000 and 
2000. We can see that when there are 500 probe vehicles, 
nearly 95% of roads have an integrity of less than 60%. This 
means that these roads have no reports for more than 40% of 
time. Generally, when we deploy more probe vehicles, the 
integrity can be improved. However, even when 2000 probe 
vehicles are employed, there are still nearly 80% of roads 
whose integrity is less than 60%. More importantly, we find 
that nearly 50% of the roads have an integrity close to zero. 
This suggests that not a single vehicle passes by these roads. 

Next, we consider the integrity of measurements at a giv-
en time snapshot. In this way, we can learn the issue of re-
port holes of sensory data over space. In Fig. 3, we plot the 
CDFs of integrity of all time slots under different numbers of 
probe vehicles, i.e., 500, 1000 and 2000. We can see that 
when there are 500 probe vehicles, nearly 100% of time slots 
have an integrity of less than 18%. This indicates that almost 
for all times, more than 82% of roads have no reports. 

891



Finally, we study the integrity for different time granular-
ities. Table I shows the integrities under different time granu-
larities when there are 500, 1000 and 2000 probe vehicles. 

We can find that even when there are 2000 probe vehicles, 
the integrity is as low as 24.8% when time granularity is 15 
minutes and 37.64% when time granularity is 60 minutes. 

In summary, the issue of report holes is serious. The 
possible solution to improving integrity is by deploying more 
probe vehicles. However, this may increase cost, and it may 
be impractical in some situations, e.g., there is no way to 
employ more probe vehicles. 

B. Structure Discovery in Sensory Data 
The traffic conditions of different locations over different 

times are not independent. There exist structures. We reveal 
such hidden structures by using principal component analysis 
(PCA), which is an effective non-parametric technique for 
revealing sometimes hidden, simplified structure that 
often underlie a dataset [11]. 

Any matrix ܺ can be decomposed into three matrices ac-
cording to singular value decomposition (SVD): 

min( , )

1

n mT T
i i ii

X USV u vσ
=

= = ∑  (8) 
where ்ܸ  is the transpose of ܸ, ܷ is a ݊ × ݊ unitary matrix 
(i.e., ்ܷܷ = ்ܷܷ =ܫ௡×௡), ܸ is a ݉ × ݉ unitary matrix (i.e., ்ܸܸ = ்ܸܸ =ܫ௠×௠), and ܵ is a ݊ × ݉ diagonal matrix con-
straining the singular values ߪ௜  of ܺ. Let ߪ௜  be larger than ߪ௜ାଵ, ݅ ൌ  1, 2, . . , ݈, where ݈ is the rank of ܺ. The rank of a 
matrix equals the number of its non-zero singular values. 
Here ݒ௜ is the unit eigenvector of ்ܺܺ corresponding to the ݅-th principal component. We call ݑ௜ an eigenflow of ܺ [11].  

( ) , i=1,2,..,min( , )
i i i
u Xv m nσ= . (9) 

According to (8), ߪ௜  is a coefficient of the ݅-th principal 
component which we may explain as the energy of the ݅-th 
principal component. 

In Fig. 4, we present the magnitude (ratio to the maxi-
mum) of singular values. This figure suggests that most of 
the energy is contributed by the first few principal compo-
nents. The existence of the sharp knee is a result of some 
common structures among different interested locations, 
which will lead the traffic condition matrix to a low rank.  

The information of a dataset is mainly contained by the 
first few components. We reconstruct the traffic matrix using 
the only first five principal components. Fig. 5 shows the 
reconstructed traffic condition over times of a given location 
in which the time granularity is 30 minutes. It can be ob-
served that the reconstructed traffic conditions well sketches 
the variation of the original ones. 

Then we look into the characteristics of eigenflow ݑ௜. A 
time series ௜ܺ can be presented as a line combination of ݑ௜ 
with associated weight (்ܸ)௜. 

( ) ,     1,2,..,min( , )T
i i i
X U V i m nσ= =  (10) 

where (்ܸ)௜ is the ݅-th row of ܸ. 
All the eigenflows can be divided into three types. Let ܥ(ݑ௜) א ሼ1,2,3ሽ denote the type of an eigenflow, ݒ௜, 0 ൑ ݅ ൏min(݉, ݊). Its type is determined as follows, 

1,  if | ( ) |  contains a spike

( ) 2,  if  contains a spike

3,  otherwise

i

i i

FFT u

C u u

⎧⎪⎪⎪⎪= ⎨⎪⎪⎪⎪⎩

. (11) 

 
Figure 2.  CDF of integrity of roads. 

 
Figure 3.  CDF of integrity of time slots. 

 
Figure 4.  Magnitude of singular values. 

TABLE I.  INTEGRITY SUMMARY (FEB 18, 2007) 

Time gran. 2000=ࡺ 1000=ࡺ 500=ࡺ 
15 min 12.22% 18.28% 24.80% 
30 min 18.57% 25.18% 31.61% 
60 min 25.53% 31.98% 37.64% 
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If the difference of the value and the average is larger 
than four times the standard deviation, the value is a spike. 

When the signal of an eigenflow is periodic (i.e., its FFT 
energy contains an evident spike), this eigenflow belongs to 
the first type. An eigenflow of the first type is considered as 
deterministic, i.e., this type of eigenflows contains the major-
ity of information in the datasets. If an eigenflow does not 
belong to the first type and its signal contains a spike, it be-
longs to the second type. The spike in the eigenflow of the 

second type indicates that the original datasets also have a 
corresponding spike. The rest of the eigenflows belong to the 
third type. An eigenflow of the third type contains little in-
formation and can be considered as containing only noises. 
This explanation is illustrated in Fig. 8.  

Fig. 6 shows the occurrences of eigenflow type in the or-
der of singular values. The most important information often 
comes from the eigenflows of first type, which correspond to 
singular values. In Fig. 7, we reconstruct the traffic condi-
tions over time at a given location by using different types of 
eigenflows. We find that the first type contains most infor-
mation and well sketches the variation of the original series 
of traffic conditions. The second and the third types contain 
little information with a mean value close to zero. 

In summary, the results based on principal component 
analysis demonstrate that there are hidden structures with 
traffic condition matrices. This lays the foundation for our 
compressive sensing based approach for traffic sensing. 

IV. COMPRESSIVE SENSING BASED ALGORITHM 
The objective of traffic sensing is to compute an estimate 

of traffic condition matrix that approximates the real traffic 
condition matrix as closely as possible. There are many ways 
to compute an estimate, but no obvious way can compute the 
best estimate. We propose a compressive sensing based ap-
proach which effectively exploits the hidden structures asso-
ciated with sensory data. 

A. Compressive Sensing 
We have revealed that there exist hidden structures in 

traffic condition matrices. Compressive sensing is an effec-
tive technique for a number of tasks, such as data compres-
sion and signal processing [5, 7]. The main idea of compres-
sive sensing is that signals or datasets in the real world often 
contain structures or redundancy (i.e., they are not pure ran-
dom noises). This nature can be used as prior knowledge for 
compression and reconstruction of signals or datasets.  

Mathematically, a vector with only a few non-zero ele-
ments is called a sparse vector. Structure or redundancy in 
datasets is synonymous with sparsity. A matrix of dataset 
may have only a few large elements and many small ele-
ments. Such a vector is considered as compressible, in the 
sense that most of its information is actually carried in the 
large elements. A sparse matrix can be well approximated by 
a low rank matrix.  

As shown in Section III, any matrix can be decomposed 
in such a way that it equals the multiplication of three com-
ponent matrices. When the rank is fixed and set to ݎ, to gen-
erate an estimate that approximates the original matrix, we 
keep the ݎ  largest components in (8) and drop the others. 
Thus, 

1 1

ˆ .
r r

i i i i i
i i

X u v Aσ σ
= =

= =∑ ∑  (12) 

This ෠ܺ is known as the best rank- ݎ approximation with 
respect to the Frobenius norm || · ||ி  of approximation er-

rors, ԡܺԡி ؜ ට∑ ௜ܺ௝ଶ௜,௝  for any matrix. Then, ෠ܺ  is the solu-

tion to the following optimization problem, 

 
Figure 5.  Original and reconstructed traffic conditions of a given location 

using first 5 principal components (gran. is 30 minutes). 

 
Figure 6.  Occurrence of eigenflow types in the corresponding order of 

singular values. 

 
Figure 7.  Reconstructed traffic conditions of a given location by using 

different types of eigenflow. 
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ˆmin || - ||
ˆ. . rank( ) .

F
X X

s t X r≤
 (13) 

B. Algorithm Design 
To solve the traffic sensing problem, we are given the 

measurement matrix and required to compute the estimate 
for the original matrix. It is impossible to directly applying 
(13) for solving this problem as we do not have the know-
ledge of the original matrix and the proper rank. 

As a good estimate, it is reasonable to be as close as to 
the measurement matrix. In addition, the estimate matrix 

should have a low rank as we have revealed in the real data-
sets that they contain certain structures or redundancy. Thus, 
we try to find the low rank estimate as follows,  

ˆmin  rank( )
ˆ. . . .

X

s t B X M× =
 (14) 

It is difficult to solve this minimization problem because 
it is non-convex.  

To circumvent the difficulty, we make use of the SVD-
like factorization, which re-write (2) as follows, 

ˆ T TX U V LR= Σ =  (15) 
where ܮ ൌ ଵ/ଶߑܷ  and ܴ ൌ ଵ/ଶߑܸ . According to the com-
pressive sensing literature [4, 12-13], we can solve a simpler 
problem and obtain an equivalent result under a certain con-
dition. Specifically, if the restricted isometry property holds 
[12], minimizing the nuclear form can perform rank minimi-
zation exactly for a matrix of low rank. That is, we just find 
matrix ܮ and ܴ that minimize the summation of their Frobe-
nius norms: 

2 2min || || || ||

. . . ( ) .

T
F F
T

L R

s t B LR M

+

× =
 (16) 

In practice, ܮ and ܴ that strictly satisfy the constraint are 
likely to fail for two reasons. First, there are noises in the 
sensory data, and therefore strict satisfaction may lead to the 
over-fit problem. Second, a traffic condition matrix can well 
be approximated by a low rank matrix while its real rank 
may not necessarily be low.  

Thus, we use the Lagrange multiplier method to solve 
(16), 

2

2 2

min  ( ),where

|| . ( ) - ||

|| || || || .

T
F

F F

x y

x B LR M

y L R

λ+

= ×

= +

 (17) 

The Lagrange multiplier ߣ controls the tradeoff between 
rank minimization and measurement fitness. 

Many methods can solve the above optimization prob-
lem. We propose an algorithm that is similar to the one in 
[15]. We show the detail Pseudo code of this algorithm in 
Fig. 9.  

It is an efficient heuristic algorithm. With a random in-
itialization, the algorithm solves this optimization by first 
fixing matrix ܮ, and then computes the other matrix, ܴ. Next, ܴ is fixed and ܮ is computed. This process repeats until the 
optimal value is reached. From (17), we find that reaching 
the objective is equivalent to making both ݔ and ݕ equal zero 
simultaneously. Thus, we have the following when ܮ is giv-
en, 

. ( )

0     

T MB LR

R

⎡ ⎤ ⎡ ⎤×⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ .

 (18) 

This is a contradictory equation since the number of con-
straints is larger than that of unknown variables. By compu-
ting the best approximate solution to this contradictory equa-
tion, we can compute the best matrix ܴ for satisfying (17).  

We analyze the complexity of the algorithm as follows. 
The key operation of Algorithm 1 is the procedure for com-
puting an inverse matrix, which gives the best approximate 

 
(a) 

 
(b) 

 
(c) 

Figure 8.  Time series represented by three types of eigenflows, (a): the 
first type; (b): the second type; (c): the third type 
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solution to the contradictory equation. The procedure is es-
sentially completed by a matrix multiplication. Therefore, its 
complexity is ࣩ(݊݉ݎ)  where ݎ, ݉, ݊  denote the column 
number of ܮ, the row number of ܺ, the column number of ܺ, 
respectively. The algorithm repeats the procedure for ऄ  
times. Therefore, the total complexity of the algorithm is ࣩ(݊݉ݎऄ). 

C. Design Optimization 
Two important parameters must be determined in Algo-

rithms 1, i.e., rank bound ݎ and tradeoff coefficient ߣ. The two parameters greatly influence the final estimate quali-ty. According to the principle of compressive sensing, the 
rank of the approximated matrix should be minimized. In 
Algorithm 1, ݎ is the number of columns in matrix ܮ and ܴ, 
which is smaller than ݉ and ݊. Thus, we have  

ˆrank( ) min(rank( ),  rank( ))X L R r≤ = . (19) 
Thus, ݎ is an upper bound of rank( ෠ܺ), and impacts the al-

gorithm performance.  
We should determine the optimal parameters in order to 

obtain the best estimate. However, it is not trivial to deter-
mine the optimal parameters. The quality of estimation is a 
function of the two parameters, denoted by, ℓ ൌ ,ݎ)݂ (ߣ . 
Then, to obtain the optimal parameters, the objective is the 
following, 

( )max max ,f r λ= . (20) 
We use estimation error to indicate the quality of estima-

tion. The definition of estimation error will be given in the 
next subsection. The key issue is that function ݂(൉) characte-
rizing the relationship between error and the parameters is 
invisible. 

We propose a genetic algorithm for deriving the optimal 
rank bound and tradeoff coefficient. The strength of this al-
gorithm is that the analytical form of the objective is not re-
quired to be explicitly given. In this algorithm, estimation 
errors are used as fitness. We encode the two parameters as a 
vector which contains two real numbers.  

We randomly initialize the population that will evolve 
over generations. The best individuals encoding the optimal 
parameters will be selected in the end. In every generation 
the population consists of three groups of individuals. The 
first group includes the kids selected from the last generation 
according to their fitness. We employ the roulette model. 
The second group consists of the kids produced by taking the 
crossover of any two individuals. The final group of kids is 
produced by the mutation operation. Specifically, we assign 
a random value to one of parameters within its domain to 
achieve the mutation. Algorithm 2 iterates until the fitness of 
the best individual stall. The detail pseudo code of this algo-
rithm is shown in Fig. 10 

V. PERFORMANCE EVALUATION 
We have performed extensive experiments for evaluating 

the performance of the proposed algorithm for traffic sens-
ing. In the following, we first present the methodology and 
setting. The compared algorithms are then introduced. Final-
ly, performance results are presented and discussed. 

A. Methodology and Setting 
We adopt a competitive study, comparing our algorithm 

with other alternative algorithms that will be introduced in 
the following subsection.  

Estimation error is the performance metric for evaluation 
and comparison. It is defined as the normalized mean abso-
lute error, 

Algorithm 1.  
Input: ܯ௠×௡: measurement matrix ܤ௠×௡: indication matrix ݎ: rank bound ߣ: tradeoff coefficient ऄ: iteration times  
Output: ෠ܺ௠×௡: estimate matrix 

1. ࣦ←random_matrix(݉,   ;(ݎ
2. for ݇←1 to ऄ do 
3.   ࣬←inverse([ࣦ; √λܫ], [ܯ; 0]); 
4.   ࣦ←inverse([࣬T;√λܫ], [்ܯ; 0]); 
 ;F2+λ(||ࣦ||F2+|| ࣬T||F2)||ܯ -(Tࣦ࣬ )×.ܤ||←ݒ   .5
6.   if ݒ > ݒො then 
7.     መࣦ ← ࣦ;  ෠࣬ ← ොݒ ;࣬ ←  ;ݒ
8.   end if; 
9. end for 
10. ෠ܺ← መࣦ × ෠࣬T; 
11. return ෠ܺ; 

 
// return solution to contradictory equation 
procedure inverse(ࡼ,  (ࡽ
ܥ .1 ← ܲTܲ \ ܲTܳ; 
2. return ܥ;  

Figure 9.  Pseudo code of Algorithm 1. 

Algorithm 2. 
Input: ℓ௥,࣯௥: lower bound and upper bound of ݎ  ℓఒ,࣯ఒ: lower bound and upper bound of ܤ ߣ: measurement matrix 

Algorithm 1 
Output: 

Optimal  ݎ and  ߣ 

1. ࣨ(population) ← initialize with random numbers un-
iformly distributed within [ℓ௥,࣯௥] and [ℓఒ,࣯ఒ] 

2. while (!stall(fitness)) do 
3.   ࣢ ← select(ࣨ) 
4.    ࣝ ← crossover( ࣨ) 
5.   ࣧ ← mutate(ࣨ) 
6.    ࣨ ← [ ࣢, ࣝ, ࣧ] 
7. end while [ݎ,  decode (the best kid in ࣨ) ← [ߣ

Figure 10.  Pseudo code of Algorithm 2. 
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, : 0 , : 0
ˆ| | | |,

ij ij
ij ij iji j M i j M
X X Xξ

= =
= −∑ ∑  (21) 

where ܺ is original matrix and ෠ܺ is the estimated matrix.  
Experiments are conducted using the real trace datasets 

of more than 4000 taxies in Shanghai, China. The trace data-
sets span a duration of one week. Three time granularities, 
i.e., 15 minutes, 30 minutes and 60 minutes, are used. 

We choose a downtown region for experiments. The ma-
jor reason for choosing a downtown region is that we need to 
know the original traffic condition matrix. In reality, it is 
very difficult to find a fully integral matrix without vacan-
cies. For this reason, it is better to find a matrix that is as 

integral as possible. When performing experiments, we ran-
domly discard some elements to form measurement matrices. 
Then, these estimates are compared with the original matric-
es and estimation errors can be computed since the original 
matrices have only a few unavailable elements. Note that the 
calculation of estimation error does not include those ele-
ments that are unavailable in the original matrices. 

B. Compared Algorithms 
We compare our algorithm with three other algorithms. 

1) Naïve KNN 
K-Nearest Neighbors (KNN) is a simple algorithm but 

often used to solve many machine learning problems includ-
ing recovery of missing values. The naïve KNN interpolates 
missing values by taking the average of its nearest ܭ neigh-
bors in the measurement matrix. 

2) Correlation-based KNN 
The correlation-based KNN is more sophisticated com-

pared with the naïve one. It calculates the average by using 
the ܭ neighbors from its immediate rows. The key idea is 
that for average computation, the candidate value is weighed 
by the coefficient of the current row and the candidate row.  

1, 2
| | / | |.

ik ik ikt i i
w C C

= ± ±
= ∑  (22) 

Thus, the estimate for a missing element is computed by, 

1, 2
.

ij kj ikk i i
x x w

= ± ±
= ∑  (23) 

where ܥ௜௞ is the correlation coefficient of row ݅ and ݇. 
3) Multi-channel Singular Spectrum Analysis (MSSA) 

MSSA is often used to solve missing data problems, e.g., 
geographic data and meteorological data. It is a data adaptive 
and nonparametric method based on the embedded lag-
covariance matrix. We adopt an iterative procedure proposed 
in [16] that utilizes the internal periodicity of traffic condi-
tions. 

C. Comparisons 
The four algorithms are compared in terms of estimation 

error. In Naïve KNN, ܭ is set to 4, in the correlative KNN, ܭ 
is also set to 4, and in MSSA, the parameter, ܯ, is set to 24 
as suggested by [16]. According to the result of Algorithm 2, 
we set ݎ and ߣ in Algorithm 1 to 2 and 100, respectively.  

In Fig. 11, the performance of the four algorithms in 
terms of estimation error is shown. Three time granularities 
are used, i.e., 15 min, 30 min and 60 min. We can see that 
our algorithm performs the best among all the algorithms 
under every time granularity. Naïve KNN performs the 
worst. Correlation-based KNN and MSSA are better than 
naïve KNN, but worse than our algorithm. The two algo-
rithms, correlation-based KNN and MSSA, produce almost 
similar performance with respective to estimation error.  

We can also find that when the integrity of the traffic 
condition matrix decreases, our algorithm steadily produces 
low estimation errors. That is, the performance of our algo-
rithm is relatively insensitive to the integrity of measurement 
matrices. Even when the integrity is as low as 20%, the esti-
mation error is no more than 20% when the time granularity 
is 60 minutes. This shows that our algorithm can reliably 
recover the missing elements when just a few elements are 

 
(a) Time gran. = 15 min 

 
(b) Time gran. = 30 min 

 
(c) Time gran. = 60 min 

Figure 11.  Performance comparisons of different algorithms (estimation 
error against integrity) 
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available. In contrast, the rest algorithms including naïve 
KNN, correlation-based KNN and MSSA have worse per-
formance when the integrity becomes poorer. The reason is 
that our compressive sensing based algorithm can effectively 
capture the internal structures that exist in the dataset even 
just a few data points are used, while the rest algorithms fail 
to achieve this.  

From Fig. 11, we can also see that the estimation error 
becomes higher when the time granularity is smaller for all 
algorithms. The main reason is that the traffic condition ma-

trix contains more details when the time granularity is small-
er. Hence, it is more difficult for algorithms to estimate the 
original values without losing the details.  

We further show the distribution of individual errors. 
Since absolute errors may differ dramatically, we instead 
study relative errors. A relative error of an estimated element 
is defined as |ݔො௜௝ െ ௜௝ݔ/|௜௝ݔ . The experiments are conducted 
with integrity of 20%. We can find that 80% of estimated 
elements have a relative error of smaller than 0.25 when the 
time granularity is 60 minutes. Even when the time granu-
larity is 15 minutes, the relative error for nearly 80% of esti-
mated elements is less than 0.38. 

D. Impact of Parameters 
As mentioned before, Algorithm 1 has two important pa-

rameters, i.e., rank bound and tradeoff coefficient. The pa-
rameters impact the algorithm’s performance. We have pro-
posed the genetic-based algorithm for finding the optimal 
parameters. In the following, we conduct experiments to 
study the impact of these parameters and show that it is im-
portant to design the algorithm for finding the optimal para-
meters. 

First, we study the impact of rank bound ݎ. Fig. 13 plots 
error rate against different rank bounds. In this experiment, 
the time granularity is 30 minutes and ߣ is set to one. We 
find that the estimation error is lowest when the rank bound 
is two. The main reason is that when the rank of ෠ܺ is low, the 
estimate matrix embodies the major trend of variation of the 
original matrix. When the rank of ෠ܺ grows, the estimate ma-
trix tries to describe more information but is often misled by 
measurement errors. This increases the estimation error. 

We also study the impact of tradeoff coefficient ߣ. For 
ease of studying its impact, we set rank bound ݎ to 32. In Fig. 
14, estimation errors against different tradeoff coefficients 
are shown. We find that the estimation error changes signifi-
cantly when the tradeoff coefficient changes from 0.001 to 
2000. The optimal coefficient is around 100 when the rank 
bound is 32. According to (17), a larger ߣ puts more weight 
to rank minimization and a smaller ߣ more emphasizes mea-
surement fitness. A good tradeoff coefficient should strike a 
balance between rank minimization and measurement fitness 

VI. RELATED WORK 
Close-circuit cameras and vehicle loop detectors are two 

traditional methods for estimating traffic conditions. By in-
stalling cameras in road intersections, we can analyze the 
video screen manually, or by image processing, to estimate 
traffic conditions at the locations where the cameras are in-
stalled. Obviously, it suffers the coverage problem and is 
limited by the complexity of image processing algorithms. A 
more common method is deploying inductive circuits under 
the road surface. When a vehicle passes above, it produces a 
signal. According to the time interval of two consecutive 
signals, we can calculate the speed of this vehicle and eva-
luate the number of vehicles on the road. It suffers the cover-
age and cost problem as well. 

As used in this paper, deploying probe vehicles is a more 
recent method for traffic sensing. Sensors are placed in ve-

 
Figure 12.  CDFs of relative errors with different time granularities. 

 
Figure 13.  Estimation error against rank bound r (1=ࣅ, gran.=30min). 

 
Figure 14.  Estimation error against tradeoff coefficient λ (࢘=32, 

gran.=30min). 
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hicles to collect traffic information. Since probe vehicles are 
driving throughout the city, they are able to collect traffic 
information over a vast area. This overcomes the coverage 
problem. Another advantage is that even if some probe ve-
hicles fail for some reasons, it can still work and therefore it 
is robust. Unlike other wireless mobile sensor networks, 
probe vehicles do not have strict energy constraints.  

In [8], the authors discuss the architecture of probe ve-
hicle systems and develop a simple analytical/statistical 
model. They figure out that 3% penetrate is needed on high-
way and over 5% penetrate is required on surface roads. J. 
Yoon et al [14] focus on how to figure out the street traffic 
states on a given road segment based on probe vehicle’s trace 
data. They drive a car with a GPS device in a given route in 
Ann Arbor and collect GPS information every 4 to10 
seconds. They classify traffic states according to vehicle’s 
spatial average speed and temporal average speed. Such a 
method, however, requires sufficient data and each road 
segment is analyzed independently. They also show that the 
driving speed of one road segment exhibits some regular 
patterns. Virtual Trip Lines [10] protect the privacy of indi-
vidual traces. SEER [16] studies the redundancy of traffic 
data and recover missing values using Multiple Singular 
Spectrum Analysis (MSSA).  

In summary, although some algorithms have been pro-
posed for solving the problem of missing values in datasets, 
few of them can effectively exploit the hidden structures in 
traffic condition datasets as the algorithm proposed by this 
paper. 

VII. CONCLUSION AND FUTURE WORK 
This paper has presented our new approach based on 

compressive sensing to large scale traffic sensing in an urban 
environment. With principal component analysis, we have 
mined a large amount of trace datasets collected in Shanghai, 
China, and discover that traffic condition datasets often em-
body hidden structures or redundancy. According to this 
finding, we have designed the efficient algorithm based on 
compressive sensing, which effectively exploits the internal 
structures of traffic condition matrices and makes accurate 
estimation. Trace-driven experiments have verified that the 
algorithm outperforms other algorithms, such as KNN and 
MSSA. More surprisingly, even when 80% of original data 
are not available, the algorithm can still achieve an estima-
tion error of as low as 20%. The results suggest that traffic 
sensing in a large scale metropolis like Shanghai can still be 
effective even when the number of probe vehicles is not 
large.  

There are three avenues for future study. First, the current 
work constructs the traffic condition matrix for given loca-
tions and given times. However, it is possible to construct 
different matrices for estimating traffic conditions at differ-
ent locations or/and times. It is an interesting and important 
problem to find the best way for constructing adaptive mea-
surement matrices. Second, the current work adopts a centra-
lized method of traffic sensing and future work will explore 
distributed algorithms for traffic sensing. Finally, the rela-
tionship between number of probe vehicles and quality of 
traffic sensing should also be studied. 
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