IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

1103

Footprint: Detecting Sybil Attacks
iIn Urban Vehicular Networks

Shan Chang, Yong Qi, Member, IEEE, Hongzi Zhu, Member, IEEE,
Jizhong Zhao, Member, IEEE, and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—In urban vehicular networks, where privacy, especially the location privacy of anonymous vehicles is highly concerned,
anonymous verification of vehicles is indispensable. Consequently, an attacker who succeeds in forging multiple hostile identifies can
easily launch a Sybil attack, gaining a disproportionately large influence. In this paper, we propose a novel Sybil attack detection
mechanism, Footprint, using the trajectories of vehicles for identification while still preserving their location privacy. More specifically,
when a vehicle approaches a road-side unit (RSU), it actively demands an authorized message from the RSU as the proof of the
appearance time at this RSU. We design a location-hidden authorized message generation scheme for two objectives: first, RSU
signatures on messages are signer ambiguous so that the RSU location information is concealed from the resulted authorized
message; second, two authorized messages signed by the same RSU within the same given period of time (temporarily linkable) are
recognizable so that they can be used for identification. With the temporal limitation on the linkability of two authorized messages,
authorized messages used for long-term identification are prohibited. With this scheme, vehicles can generate a location-hidden
trajectory for location-privacy-preserved identification by collecting a consecutive series of authorized messages. Utilizing social
relationship among trajectories according to the similarity definition of two trajectories, Footprint can recognize and therefore dismiss
“communities” of Sybil trajectories. Rigorous security analysis and extensive trace-driven simulations demonstrate the efficacy of

Footprint.

Index Terms—Sybil attack, location privacy, signer-ambiguous signature, urban vehicular networks, location-hidden trajectory.

1 INTRODUCTION

VER the past two decades, vehicular networks have

been emerging as a cornerstone of the next-generation
Intelligent Transportation Systems (ITSs), contributing to
safer and more efficient roads by providing timely
information to drivers and concerned authorities. In
vehicular networks, moving vehicles are enabled to com-
municate with each other via intervehicle communications
as well as with road-side units (RSUs) in vicinity via
roadside-to-vehicle communications. In urban vehicular
networks where the privacy, especially the location privacy
of vehicles should be guaranteed [1], [2], vehicles need to be
verified in an anonymous manner. A wide spectrum of
applications in such a network relies on collaboration and
information aggregation among participating vehicles.
Without identities of participants, such applications are

e S. Chang, Y. Qi, and]. Zhao are with the School of Computer Science and
Technology, Xi'an Jiaotong University, No.1 West Building, No. 28,
Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.

E-mail: changshan.07@stu.xjtu.edu.cn, {qiy, zjzi@mail xjtu.edu.cn.

e H. Zhu is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Room A-303, SEIEE No. 5 Building, 800
Dong Chuan Road, Min Hang, Shanghai 200240, P.R. China.

E-mail: hongzi@cs.sjtu.edu.cn.

o X. Shen is with the Department of Electrical and Computer Engineering,
University of Waterloo, Room-4155, EIT building, 200 University Avenue
West, Waterloo, ON N2L 3G1, Canada.

E-mail: xshen@bbcr.uwaterloo.ca.

Manuscript received 2 Apr. 2011; revised 24 Sept. 2011; accepted 26 Sept.
2011; published online 19 Oct. 2011.

Recommended for acceptance by X. Cheng.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-04-0199.
Digital Object Identifier no. 10.1109/TPDS.2011.263.

1045-9219/12/$31.00 © 2012 IEEE

vulnerable to the Sybil attack where a malicious vehicle
masquerades as multiple identities [3], overwhelmingly
influencing the result. The consequence of Sybil attack
happening in vehicular networks can be vital. For example,
in safety-related applications such as hazard warning,
collision avoidance, and passing assistance, biased results
caused by a Sybil attack can lead to severe car accidents.
Therefore, it is of great importance to detect Sybil attacks
from the very beginning of their happening.

Detecting Sybil attacks in urban vehicular networks,
however, is very challenging. First, vehicles are anonymous.
There are no chains of trust linking claimed identities to real
vehicles. Second, location privacy of vehicles is of great
concern. Location information of vehicles can be very
confidential. For example, it can be inferred that the driver
of a vehicle may be sick from knowing the vehicle is
parking at a hospital. It is inhibitive to enforce a one-to-one
correspondence between claimed identities to real vehicles
by verifying the physical presence of a vehicle at a
particular place and time. Third, conversations between
vehicles are very short. Due to high mobility of vehicles, a
moving vehicle can have only several seconds [4] to
communicate with another occasionally encountered vehi-
cle. It is difficult to establish certain trustworthiness among
communicating vehicles in such a short time. This makes it
easy for a malicious vehicle to generate a hostile identity but
very hard for others to validate. Furthermore, short
conversations among vehicles call for online Sybil attack
detection. The detection scheme fails if a Sybil attack is
detected after the attack has terminated.

To eliminate the threat of Sybil attacks, it is straightfor-
ward to explicitly bind a distinct authorized identity (e.g.,

Published by the IEEE Computer Society

1104

PKI-based signatures) [5], [6], [8] to each vehicle so that
each participating vehicle can represent itself only once
during all communications. Using explicit identities of
vehicles has the potential to completely avoid Sybil attacks
but violates the anonymity concern in urban vehicular
networks. As an alternative scheme, resource testing [9],
[10], [11] can be conducted to differentiate between
malicious and normal vehicles, where the judgment is
made whether a number of identities possess fewer
resources (e.g., computational and storage ability) than
would be expected if they were distinct. This scheme fails in
heterogeneous environments where malicious vehicles can
easily have more resources than normal ones. Considering
the fact that a vehicle can present itself at only one location
at a time, localization techniques or other schemes like the
Global Positioning System (GPS) aiming to provide location
information of vehicles can be exploited to detect hostile
identities. However, these schemes often fail in complicated
urban settings (e.g., bad GPS signals due to urban canyons,
inaccurate localizations due to highly dynamic wireless
signal quality). Recently, two group-signature-based
schemes [16], [17] have been proposed, where a message
received from multiple distinct vehicles is considered to be
trustworthy. Using group signatures can provide anonym-
ity of vehicles and suppress Sybil attacks by restraining
duplicated signatures signed by the same vehicles. One
practical issue of these schemes is that different messages
with similar semantics may be ignored from making the
decision, which leads to a biased or no final decision. As a
result, there is no existing successful solution, to the best of
our knowledge, to tackling the online Sybil attack detection
problem in urban vehicular networks.

In this paper, we propose a novel Sybil attack detection
scheme Footprint, using the trajectories of vehicles for
identification while still preserving the anonymity and
location privacy of vehicles. Specifically, in Footprint, when
a vehicle encounters an RSU, upon request, the RSU issues
an authorized message for this vehicle as the proof of its
presence at this RSU and time. Intuitively, authorized
messages can be utilized to identify vehicles since vehicles
located at different areas can get different authorized
messages. However, directly using authorized messages
will leak location privacy of vehicles because knowing an
authorized message of a vehicle signed by a particular RSU
is equivalent to knowing the fact that the vehicle has
showed up near that RSU at that time. In Footprint, we
design a location-hidden authorized message generation
scheme for two purposes. First, RSU signatures on
messages are signer-ambiguous which means an RSU is
anonymous when signing a message. In this way, the RSU
location information is concealed from the final authorized
message. Second, authorized messages are temporarily
linkable which means two authorized messages issued from
the same RSU are recognizable if and only if they are issued
within the same period of time. Thus, authorized messages
can be used for identification of vehicles even without
knowing the specific RSUs who signed these messages.
With the temporal limitation on the linkability of two
authorized messages, authorized messages used for long-
term identification are prohibited. Therefore, using author-
ized messages for identification of vehicles will not harm
anonymity of vehicles.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

To be uniquely identified, a vehicle collects a consecutive
series of authorized messages as it keeps traveling. Such a
sequence of authorized messages constitutes a trajectory of
this vehicle. In Footprint, a vehicle is free to start a new
trajectory by using a new temporary public key. Further-
more, a malicious vehicle can abuse this freedom to
elaborately generate multiple trajectories, trying to launch
a Sybil attack. Based on the observation that Sybil
trajectories generated by a malicious vehicle are very alike,
Footprint establishes the relationship between a pair of
trajectories according to our definition of similarity. With
this relationship, Sybil trajectories generated by the same
malicious vehicle form a “community.” By finding and
eliminating “communities” of Sybil trajectories, Footprint
can detect and defend against Sybil attacks.

The advantages of Footprint are fourfold. First, Footprint
does not need the identities of vehicles, which ensures the
anonymity of vehicles. Second, no geographical information
is leaked in Footprint, which guarantees the location
privacy of vehicles. Third, Footprint only needs each vehicle
to be equipped with a cheap commercial GPS receiver and
DSRC wireless communication module. Last, Sybil attack
detection can be online independently conducted by a
conversation holder (e.g., an individual vehicle or an RSU)
which initializes a conversation among vehicles. Besides the
advantages, the main limitation of Footprint is that
Footprint requires an infrastructure of RSUs and a trust
authority (TA) existing in the system in order to generate
trajectories and establish trust among entities, respectively.
We verify that Footprint can achieve all design objectives
through security, privacy, and performance analysis and
extensive trace-driven simulations which involve 2,100
taxies in Shanghai city. Footprint can largely restrict Sybil
attacks and enormously reduces the impact of Sybil attacks
in urban settings (above 98 percent detection rate).

The remainder of this paper is organized as follows.
Section 2 introduces previous work on the Sybil attack
detection problem. In Section 3, we describe the system and
attack models in vehicular networks, pointing out the
requirements for designing Sybil attack detection schemes
in urban vehicular networks. Section 4 elaborates the design
of Footprint. In Section 5, we present the security, privacy,
and performance analysis of Footprint. Several design
issues that may be encountered in practice are discussed
in Section 6. In Section 7, we conduct trace-driven
simulations to evaluate the performance of Footprint and
present the results. Finally, we give concluding remarks
and outline the directions for future work in Section 8.

2 RELATED WORK

While it was first described and formalized by Douceur [3],
the Sybil attack has been a severe and pervasive problem in
many forms. In a Sybil attack, an attacker can launch a Sybil
attack by forging multiple identifies, gaining a dispropor-
tionately large influence. In the literature, there have been
many different approaches proposed to detect or mitigate
the attack.

Many studies have followed Douceur’s approach, focus-
ing on how to establish trust between participating entities
based on trusted public key cryptographies or certificates in

CHANG ET AL.: FOOTPRINT: DETECTING SYBIL ATTACKS IN URBAN VEHICULAR NETWORKS

distributed systems, for example, P2P systems [3], [5], sensor
networks [6], [7] and mobile ad hoc networks [8]. Although
deploying trusted certificates is the only approach that has
the potential to completely eliminate Sybil attacks, it also
violates both anonymity and location privacy of entities. In
addition, most of these schemes rely on a centralized
authority that must ensure each entity is assigned exactly
one identity. Moreover, it is possible for an attacker to violate
the assumption, getting more than one identities. This
mechanism also has the problem of key revocation which is
challenging, particularly in wireless mobile networks.

Another category of Sybil attack detection schemes is
based on resource testing [9], [10], [11]. The goal of resource
testing is to determine if a number of identities possess fewer
resources than would be expected if they were independent.
The resources being tested can be computing ability, storage
ability, and network bandwidth, as well as IP addresses.
These schemes assume that entities have homogeneous
hardware configurations. In vehicular networks, this as-
sumption cannot hold since malicious vehicles can easily
have more powerful resources than the normal vehicles.

SybilGuard [12] is an interesting scheme studying the
social network among entities. In this scheme, human-
established real-world trust relationship among users is
used for detecting Sybil attacks. Since even the attacker can
generate as many as Sybil identities, building relationship
between honest users and Sybil identities is much harder.
Thus, there exists a small “cut” on the graph of trust
relationship between the forged identities and the real ones.
However, this scheme cannot be used in vehicular net-
works, since it is very challenging to establish such trust
relationship among vehicles. This is because vehicles are
highly mobile. Communications often happen among
temporarily met and unfamiliar vehicles.

To exploit the fact that one single vehicle cannot present
at multiple locations at the same time, Bouassida et al. [13]
have proposed a detection mechanism utilizing localization
technique based on Received Signal Strength Indication
(RSSI). In this scheme, by successively measuring the RSSI
variations, the relative locations among vehicles in vicinity
can be estimated. Identities with the same estimated
locations are considered as Sybil vehicles. In practice, the
complicated outdoor environments can dramatically affect
the wireless signal propagation so that RSSI measurements
are highly time variant even measured at the same location.
Xiao et al. [14] have proposed a Sybil attack detection
scheme where the location of a particular vehicle can be
determined by the RSSI measurements taken at other
participating vehicles. In addition to the inaccuracy of RSSI
measurements, this scheme also needs all neighboring
vehicles to collaborate which may suffer a Sybil attack
against the detection scheme itself. Zhou et al. [15] have
proposed a privacy-preserving Sybil attack detection
scheme using pseudonyms. In the scheme, the trust
authority distributes a number of pseudonyms for each
vehicle. Abused pseudonyms can be detected by RSUs.
Since RSUs are heavily involved in the detection process,
this scheme requires the full coverage of RSUs in the field. It
is infeasible in practice due to the prohibitive cost.
Furthermore, in such a scheme, vehicles should managed

1105

by a centralized trusted center. Each time RSU detects
suspicious pseudonyms, it should send all the pseudonyms
to the trust center for further decision, which makes the
trust center be the bottleneck of the detection.

Recently, two group-signature-based schemes [16], [17]
have been proposed, ensuring that a verifier vehicle can
identify those trustworthy messages from messages sent
from neighboring vehicles. A message sent from a neighbor-
ing vehicle is said to be trustworthy if the content of the
message is identical with at least a certain number of
messages sent from other neighboring vehicles. To suppress
duplicated messages from the same vehicle, particular group
signature schemes are adopted for vehicles to sign on
messages so that the anonymity of each vehicle can be
achieved. Meanwhile, if a vehicle generates two signatures
on the same message, these two signatures can be recognized
by the verifier vehicle. One practical issue of these schemes is
that they cannot handle similar but different messages. It is
often the case that multiple vehicles observing the same
driving environment will generate different messages with
very similar semantics. In this case, the resolved trustworthy
messages might be a minority of all observations which
results in a biased or no final decision.

The most relevant work to Footprint is the Sybil attack
detection schemes proposed in [18], [19]. In these schemes, a
number of location information reports about a vehicle are
required for identification. In [18], an RSU periodically
broadcasts an authorized time stamp to vehicles in its
vicinity as the proof of appearance at this location. Vehicles
collect these authorized time stamps which can be used for
future identity verification. In [19], trajectories made up of
consecutive time stamps and the corresponding public keys
of RSUs are used for identification. However, these schemes
did not take location privacy into consideration since RSUs
use long-term identities to generate signatures. As a result,
the location information of a vehicle can be inferred from
the RSU signatures it collects. In Footprint, authorized
messages issued from RSUs are signer-ambiguous which
means the information about the location where the
authorized message was issued is concealed, and tempora-
rily linkable which means using a single trajectory for long-
term identification of a vehicle is prohibited. Therefore, the
privacy of location information and identity of vehicles are
preserved in Footprint.

3 MobDELS AND DESIGN GOALS

3.1 System Model and Assumptions

In vehicular networks, a moving vehicle can communicate
with other neighboring vehicles or RSUs via intervehicle
communications and roadside-to-vehicle communications.
Fig. 1 illustrates the architecture of the system model, which
consists of three interactive components:

e RSUs: can be deployed at intersections or any area
of interest (e.g., bus stations and parking lot
entrances). A typical RSU also functions as a wireless
AP (e.g., IEEE 802.11x) which provides wireless
access to users within its coverage. RSUs are
interconnected (e.g., by a dedicated network or
through the Internet via cheap ADSL connections)
forming a RSU backbone network.

1106

Fig. 1. An illustration of the system model, where the dash line indicates
the travel route of a vehicle. As the vehicle traverses the area, it will
encounter multiple RSUs, typically deployed at intersections.

e On-board units (OBUs): are installed on vehicles. A
typical OBU can equip with a cheap GPS receiver
and a short-range wireless communication module
(e.g., DSRC IEEE 802.11p [20]). A vehicle equipped
with an OBU can communicate with an RSU or with
other vehicles in vicinity via wireless connections.
For simplicity, we simply refer to a vehicle as a
vehicle equipped with an OBU in the rest of this
paper. A vehicle can be malicious if it is an attacker
or compromised by an attacker.

e Trust authority: is responsible for the system
initialization and RSU management. The TA is also
connected to the RSU backbone network. Note that
the TA does not serve vehicles for any certification
purpose in Footprint. A vehicle can claim as many
arbitrary identities as it needs.

In this work, we make the following assumptions:
Assumption 1. The TA and all RSUs are fully trustworthy.
Assumption 2. The RSUs are synchronized.

Synchronization among RSUs is easy to achieve since all
RSUs are interconnected by the RSU backbone network.

Assumption 3. The mobility of vehicles is independent.

This means individual vehicles should move indepen-
dently and therefore would not travel along the same route
for all the time.

3.2 Attack Model

In order to launch a Sybil attack, a malicious vehicle must
try to present multiple distinct identities. This can be
achieved by either generating legal identities or by
impersonating other normal vehicles. With the following
capabilities, an attacker may succeed to launch a Sybil
attack in vehicular networks:

e Heterogeneous configuration: malicious vehicles can
have more communication and computation re-
sources than honest vehicles. For example, a
malicious vehicle can mount multiple wireless cards,
physically representing different communication
entities. Furthermore, having more powerful re-
sources can also fail those resource testing schemes
for detecting Sybil attacks.

o Message manipulation: due to the nature of open
wireless channels, the attacker can eavesdrop on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

nearby communications of other parties. Thus, it is
possible that the attacker gets and interpolates
critical information needed to impersonate others.
In any decision-making procedure based on reports sent
from a number of individual vehicles, if an attacker
succeeds in presenting multiple independent identities, it
can launch Sybil attacks against honest vehicles where the
attacker can inject multiple false reports via multiple
identities into the final decision. Upon Sybil attacks
happening, the final results may be biased due to the
influence of false reports sent from attackers.

3.3 Design Goals

The design of a Sybil attack detection scheme in urban
vehicular networks should achieve three goals:

1. Location privacy preservation: a particular vehicle
would not like to expose its location information to
other vehicles and RSUs as well since such informa-
tion can be confidential. The detection scheme
should prevent the location information of vehicles
from being leaked.

2. Online detection: when a Sybil attack is launched, the
detection scheme should react before the attack has
terminated. Otherwise, the attacker could already
achieve its purpose.

3. Independent detection: the essence of Sybil attack
happening is that the decision is made based on
group negotiations. To eliminate the possibility that
a Sybil attack is launched against the detection itself,
the detection should be conducted independently by
the verifier without collaboration with others.

4 SyYSTEM DESIGN
4.1 Overview

In general, Footprint integrates three elegant techniques
namely, infrastructure construction, location-hidden trajec-
tory generation, and Sybil attack detection.

More specifically, we adopt an incremental methodology
to deploy RSUs. In the end, a limited number of available
RSUs can achieve the maximum service coverage in terms
of served traffic amount as well as good fairness in terms of
geographical distribution. After the deployment of RSUs, a
vehicle can require authorized messages from each RSU it
passes by as a proof of its presence there. We adopt an
event-oriented linkable ring signature scheme [24] for RSUs to
issue authorized messages for vehicles. Such authorized
messages are location hidden which refers to that RSU
signatures are signer ambiguous and the authorized
messages are temporarily linkable. Furthermore, a set of
consecutive authorized messages issued for a vehicle are
tightly chained together to form a location-hidden trajectory
of the vehicle, which will be utilized for identifying this
vehicle in future conversations. During a conversation
which is initialized by a vehicle or an RSU, called a
conversation holder, a participating vehicle should provide its
trajectory for verification. With the trajectories sent from all
participating vehicles, the conversation holder can conduct
online Sybil attack detection according to the similarity
relationship between each pair of trajectories. Among all
trajectories, Sybil trajectories forged from the same attacker
are bound to gather within the same “community.” By

CHANG ET AL.: FOOTPRINT: DETECTING SYBIL ATTACKS IN URBAN VEHICULAR NETWORKS

treating each “community” as one single vehicle, Sybil
trajectories can be largely eliminated.

In the following sections, we describe each technique
in details.

4.2 Infrastructure Construction
4.2.1 RSU Deployment

In Footprint, vehicles require authorized messages issued
from RSUs to form trajectories, which should be statically
installed as the infrastructure. When considering the
deployment of RSUs, two practical questions are essential,
i.e., where to install RSUs in the city and how many of them
are sufficient?

A simple solution is to deploy RSUs at all intersections.
This can result fine trajectories with a sufficient number of
authorized messages which will facilitate the recognition of
a vehicle. However, deploying such a huge number of RSUs
in one time is prohibitive due to the high cost.

In contrast, we take an incremental deployment strategy
in Footprint, considering the tradeoff between minimizing
the number of RSUs and maximizing the coverage of traffic.
Specifically, in the early developing stage with a limited
number of RSUs, an intersection is chosen if it satisfies two
requirements: first, it is geographically at least certain
distance far away from all other RSU-equipped intersec-
tions; second, it has the maximum traffic volume among all
rest intersections without RSUs. The reason for requiring
two RSUs at least certain distance far away is to avoid
uneven deployment where RSUs are consecutively de-
ployed along a high-traffic-volume road. As more RSUs are
available to install, a smaller distance can be used to deploy
RSUs according to the above strategy. Given an RSU
deployment, two RSUs are said to be neighbors if there
exists a path in the underlying road networks along which
no other RSUs are installed (see Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2011.263, for
an RSU deployment example).

4.2.2 System Initialization

After completing RSU deployment, in order to function
properly, the system first needs to be initialized. The
initialization process includes three steps:

1. Setting up TA: the TA first chooses a set of public
parameters required for the ring signature scheme which is
used for RSUs to sign messages and establishes a pair of
public/private key pair (K2, K¥'}) as well. The public key
of the TA K" can be obtained by all RSUs and vehicles in the
system through a secure channel. It is used to verify whether
amessage is authorized by the TA (see Appendix C, available
in the online supplemental material, for the detailed
initialization process).

2. Setting up RSUs: when a new RSU Ry, is added to the
system, the TA issues a pair of public/private key pair
(Kg;b, K %7;) for Ry, and sends the public parameters to Ry, as
well. After all RSUs are registered in the system, the Public
Key List (PKL) of all RSUs is broadcasted to all RSUs from
the TA via the RSU backbone network. In addition, the IP
addresses of its neighboring RSUs of R, are also notified to
Ry.. Note that all messages sent from the TA are authorized
by the TA using its private key K7 ;.

1107

Complying with the incremental deployment of RSUs,
version control is taken by the TA in managing the PKL.
More specifically, when new RSUs enroll in the system, the
TA updates the PKL and increases its version number.
Then, the newest PKL can be broadcasted to all RSUs in the
system via the RSU backbone network.

3. Setting up vehicles: For a vehicle to join in the system, it
only needs to get the PKL of all RSUs and the public
parameters. It can get such information when encountering
any RSU or a vehicle with the information. After that, it can
construct its own trajectories in the system.

For a vehicle to be up-to-date with the latest PKL, each
time it communicates with an RSU, the vehicle can include
the version number of PKL it has. The RSU can verify
whether the vehicle has the latest version. If not, the RSU
will help the vehicle update the PKL.

4.3 Generating Location-Hidden Trajectory

4.3.1 Location-Hidden Authorized Message Generation
In order to be location hidden, authorized messages issued
for vehicles from an RSU should possess two properties,
ie., signer ambiguous and temporarily linkable. The signer-
ambiguous property means the RSU should not use a
dedicated identity to sign messages. The temporarily
linkable property requires two authorized messages are
recognizable if and only if they are generated by the same
RSU within the same given period of time. Otherwise, a
long-term linkability of authorized messages used for
identification eventually has the same effect as using a
dedicated identity for vehicles.

In this paper, we demonstrate one possible implementa-
tion of a location-hidden authorized message generation
scheme using linkable ring signature [21]. Linkable ring
signature is signer-ambiguous and signatures are linkable
(i.e., two signatures can be linked if and only if they are
issued by the same signer) as well. Particularly, we choose
the linkable ring signature scheme introduced by Dodis et al.
[22] and Tsang and Wei [23] for two reasons: first, it has been
proved to be secure; second, it has constant signature size.
To meet the requirement of temporarily linkable property,
we extend the scheme to support the event-orient linkability
property [24] which guarantees that any two signatures are
linkable if and only if they are signed based on the same
event by the same RSU.

In our signature scheme, we define an event as a period
of time within which two signatures issued from the same
RSU are linkable. Thus, an RSU signature consists of three
parts: proof of knowledge (pok), event id, and link tag. The pok is
a proof that the signature on the message M is legitimate.
The event id is a fixed-size bit string derived by a secure
cryptographic hash function on an event (i.e., a period of
time). The link tag is generated based on the event id and the
private key of an RSU. When an event expires, all RSUs in
the system simultaneously compute a new event id and link
tag for the next event (next period of time). With time
variant link tags, the RSU signatures can meet the
temporarily linkable requirement.

An intuitive way to generate authorized messages for
vehicles is that an RSU periodically broadcasts authorized
time stamps to the vehicles in its vicinity. This method is
simple but not secure. Since a time stamp is not specially

1108

generated for a particular vehicle, any other vehicle getting
such a time stamp by eavesdropping on the wireless channels
can claim its presence at this RSU even though it has never
been there at that time. Therefore, time stamps should be
generated for individual vehicles. In Footprint, when a
vehicle v; approaches an RSU Ry, it demands a time stamp
from Ry, using a jth temporarily generated key pair
(K"I“]b7 Kp”) (v; can generate a set of temporary key pairs in
advance). Upon reqbuest R). generates a message M for v;,
which includes K"/, and a time stamp indicating the time
when this message is generated. Then, R; signs on the
message M and sends M together with the signature,
denoted as M || S, (M), back to v; (see Appendix D,
available in the online supplemental material, for the details
of signature generation).

4.3.2 Message Verification

As the proof that a vehicle v; was present near certain RSU R,
at certain time, an authorized message issued for v; can be
verified by any entity (e.g., a vehicle or an RSU) in the system.

In the case that an entity needs to verify v;, v; will sign on
an authorized message M || Sg, (M) generated by RSU R,

uing Kf,’”l and then send

Lp, = M| Sr(M) || Sgri (M || Sr,(M))
to the entity. The message verification process consists of
two steps:

1. Ownership verification: The entity first takes K" from

Vi,j
M, checking whether Viu(S K (M, Sg,(M))) = M ||
other ‘than K*". will fail the test,

Sg,(M). Since any K", o
an authorized message cannot be misused by other vehicles

because only v; knows Kf’” which is pairwise with Kp“b
contained in M. Therefore, if the test stands, it means M is

exclusively generated for v; rather than for other vehicles.

2. Legitimacy verification: If the authorized message passes
the ownership verification, the entity further examines
whether the signature contained in the authorized message
is signed by a legitimate RSU in the system (see
Appendix E, available in the online supplemental material,
for the details of signature verification).

In the case that v; fails in either step, the entity will
consider v; as a malicious vehicle and ignore any further
actions of v;.

4.3.3 Trajectory-Encoded Message

Intuitively, an authorized message issued from an RSU can
be used to identify a vehicle. However, it is often the case
that two or more authorized messages may have the same
link tag. In this case, it is hard to tell whether these
messages belong to different vehicles.

With the independent mobility assumption, as two
vehicles move along, the probability for the pair of vehicles
having exactly the same trajectories is slim. Therefore, it is
feasible to use trajectories to exclusively represent corre-
sponding vehicles as long as those trajectories are suffi-
ciently long. With authorized messages, a straightforward
method for a vehicle to present its trajectory is to sort all its
authorized messages into a sequence according to time.
Thus, in future conversations, the vehicle can use this
sequence of authorized messages to identify itself. This
method is simple but inefficient because each time when the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

vehicle needs to be identified in a conversation, all
messages in the sequence should be sent to the conversation
holder for verification. This will cost tremendous wireless
bandwidth and computational resources. Furthermore, a
malicious vehicle can easily forge a huge number of fake
trajectories by arbitrarily picking a subset of authorized
messages as long as these messages are in the right order of
time. Since authorized messages are location hidden, the
conversation holder cannot tell whether a provided
trajectory is an actual one or a forged one.

In Footprint, we embed the trajectory of a vehicle into an
authorized message. Specifically, upon the starting of a new
event, besides computing the new event id and link tag for
the new event, an RSU also informs all its neighboring RSUs
with the new generated link tag. During the new event,
when a vehicle first meets an RSU Ry, it requests an
authorized message M || Sg,(M) from R; using temporary
key pair (K’ “;’, K" ”) following the procedure as described in
Section 4.3.1. As this vehicle moves on and encounters
another RSU R, it first chooses a new temporary key pair

(Kf)’lui’+1,Kffr;+1) Then, it signs on Kf“i’+1 | M || Sk, (M),
using K| ;. After that, it requests R; for a new trajectory-

embedded authorized message by sending K’ “;’ 1 M|
Sr, (M) || SKf“f+17M7 Sk, (M)) to R;. Upon request, R, first
verifies the authorized message following the procedure
described in the above section. If the verification succeeds,
R further checks whether the link tag in Sg, (M) belongs to
one of its neighbors. If yes, R; constitutes a new message
with the new temporary public key of the vehicle K f’“i’ 1
current time stamp, all (link tag, time stamp) pairs contained
in M if any. Then, R; signs on the new message and sends
the trajectory-embedded authorized message back to the
vehicle. If the link tag contained in Sy (M) does not belong
to any neighboring RSU of R;, R; will treat itself as the first
RSU in the trajectory of the vehicle and sign accordingly.
This procedure repeats as the vehicle moves. As a result, a
trajectory is embedded within a single authorized message
(see Appendix F, available in the online supplemental
material, for an example of trajectory generation).

Within an event, a vehicle can actively choose to
terminate the current trajectory and start a new trajectory
at any time by sending only a new temporary public key to
an RSU. When an event expires, all RSUs will simulta-
neously change their link tags. In this case, the system
forces all vehicles to start new trajectories.

With trajectory-encoded messages, each time when a
vehicle needs to be identified, the vehicle only needs to
send a single authorized message to a verifier which
extremely reduces the number of verifications from O(I)
to O(1), I is the length of the trajectory (i.e., the number of
involved RSUs). Moreover, the trajectory encoded in an
authorized message is verified and constructed by neigh-
boring RSUs, which largely limits the ability of a malicious
vehicle to arbitrarily forge fake trajectories.

4.4 Sybil Attack Detection

During a conversation, upon request from the conversation
holder, all participating vehicles provide their trajectory-
embedded authorized messages issued within specified

CHANG ET AL.: FOOTPRINT: DETECTING SYBIL ATTACKS IN URBAN VEHICULAR NETWORKS

R

’\\\: R
N

e

Fig. 2. RSU neighboring relationship and the freedom of trajectory
generation can facilitate Sybil trajectory generation. In the above figure,
neighboring RSUs (denoted by dots) are connected with dash line. The
solid arrows indicate the actual sequence of RSUs a malicious meet and
the dash arrow presents a possible forged trajectory.

event for identification. With submitted messages, the
conversation holder verifies each trajectory and refuses
those vehicles that fail the message verification. After that,
the conversation holder conducts online Sybil attack
detection before further proceeding with the conversation.

4.4.1 Problem Definition

Recall that, in Footprint, vehicles have wide freedom to
create their trajectories. For example, a vehicle is allowed to
request multiple authorized messages from an RSU using
different temporary key pairs. Thus, a vehicle can use
different authorized messages for different conversations.
This capability, however, can be leveraged by a malicious
vehicle that tries to launch a Sybil attack by using multiple
different messages in a single conversation. We define the
Sybil attack detection problem as: Given a set of trajectory-
embedded authorized messages within an event, how can the
conversation holder recognize real vehicles and Sybil ones?

The online Sybil attack problem is hard due to three
following factors:

First, authorized messages generated for different vehi-
cles are asynchronous. The rationale of using trajectories to
represent vehicles is based on the fact that a vehicle cannot
present itself at different locations at the same time. The
asynchrony of messages makes the judgment directly based
on this fact impractical.

Second, authorized messages are temporarily linkable,
which means there is no invariable mapping between an RSU
signature and the real RSU who signed this signature. Thus,
no distance information is available between two RSUs
enclosed in any two signatures. This makes the problem even
harder since one cannot utilize the time difference between
two authorized messages and the distance between the pair
of corresponding RSUs to infer whether two messages
belong to two distinct vehicles.

Last, a malicious vehicle can abuse the freedom of
trajectory generation and the neighbor relationship among
RSUs to generate elaborately designed trajectories. For
example, in Fig. 2, an attacker can legally generate multiple
trajectories which appear different from each other even
under a very simple RSU topology. Assume the real path of
the attacker is { R1, Ry, R3, R4} (indicated by solid arrows). It
can start a new trajectory at any RSU by using a different
temporary key pair. Therefore, besides the trajectory
{Rl, R27 Rg, R4}, trajectories like {Rl, R27 Rg}, {RQ, Rg, R4},
{Rl, 32}7 {R27R3}, {R37R4}, {R1}, {RQ}, {Rg} and {R4} are
all legitimate. In addition, knowing the neighboring relation-
ship of Ry and Ry, the attacker can generate forged trajectories
like {R1, Rz, R4}, {R1, R4}, and {Rs, R4} (indicated by the

1109

Actual 1

Actual 2

Actual 3

Fig. 3. Checking for distinct trajectories by using a check window
(denoted as the box of dotted line) and counting the total number of
different RSUs contained in a pair of trajectories.

dash arrow). Note that the attacker cannot generate a
trajectory like { R, R3} because R; is not a neighbor of Rj.
In the case of this example, R3 only expects signatures signed
by RQ and R4.

In the following sections, we present the social relation-
ship between two trajectories according to our definition of
similarity. Then, we introduce how to find and remove
Sybil trajectories.

4.4.2 Social Relationship among Trajectories

We first thoroughly examine the characteristics of forged
and actual trajectories.

Features of forged trajectories. Although a malicious
vehicle can submit multiple forged trajectories to a
conversation holder, these trajectories satisfy two facts.
First, a forged trajectory is a proper subset of the actual
trajectory. For example, in Fig. 2, all forged trajectories are
fully contained in the actual trajectory. Second, any two
forged trajectories cannot have two distinct RSUs at the
same time. It is true because otherwise the malicious vehicle
would appear at two locations at the same time.

Features of actual trajectories. Despite the asynchrony
and temporarily linkable properties of authorized mes-
sages, there are two basic facts that can be exploited to
judge whether two trajectories are from two actual vehicles.
First, it is very hard, if not impossible, for a single vehicle to
traverse between a pair of RSUs shorter than a time limit.
We define such a time limit as traverse time limit. Second,
within a limited time period, the total number of RSUs
traversed by a single vehicle is less than a limit. We define
such a limit as trajectory length limit. Given a specific RSU
deployment, the traverse time limit can be established as
the shortest time for a vehicle to travel between any pair of
RSUs in the system. The trajectory length limit can be
determined as the maximum number of RSUs involved in a
trajectory within an event (a trajectory is forced to terminate
at the end of an event). Both can be measured based on the
distance and speed limitations of each road segment and
the layout of RSU deployment.

Based on these features, we first conduct an exclusion test,
examining whether two trajectories are distinct. There are
two cases where a pair of trajectories can pass the test
(positive test). In the first case, there are two distinct RSUs
appearing within a sliding time window (called check
window) when checking two trajectories. We can set the
size of the check window equal to the traverse time limit.
For example, in Fig. 3, trajectories 7, and 7 are distinct
since there exists a pair of different RSUs within the check
window (denoted by the box of dash line), i.e., R; and R3. In
the second case, the number of RSUs contained in the
merged RSU sequence of two trajectories is larger than the
trajectory length limit. We merge a pair of trajectories into

1110

one RSU sequence by sorting all RSUs contained in the pair
of trajectories according to time. In particular, consecutive
identical RSUs in the sequence are counted only once. For
example, the merged RSU sequence of 7 and 7 in Fig. 3 is
{R1, R4, Ry, Rs, R3, Rs}. If the trajectory length limit is 5,
then 7 and 7, are distinguishable since the length of the
sequence is 6. In all other cases, the pair of trajectories fails
in the test (negative test). For trajectories which are negative
to the test, they are treated as suspicious or supplied with
insufficient information. For example in Fig. 3, 7, and 7
cannot prove that they are mutually exclusive via the
exclusion test.

According to the result to the exclusion test, we refine
similarity of a trajectory pair 77 and 75 as follows:

-1 positive test
|71 N Ty

(T17T2) =
Min{|Th|, | T2}

negative test,

where minus one represents that 7, and 7, are distinct,
T1N Ty denotes the set of common RSUs found when
checking 7; and 7, using the check window and |-|
represents the size of a set or the length of a trajectory. For
example, the similarity of 7, and 73 in Fig. 3 is minus one
and that of 75 and 73 is 0.5.

The reason that we define above similarity of a pair of
trajectories is twofold. First, any two forged trajectories
issued from a malicious vehicle are similar (i.e., a non-
negative similarity value). That is to say that all forged
trajectories from a malicious vehicle form a social “com-
munity” within which any two members have a connection.
Second, a trajectory provided by an honest vehicle may
have connections with several other trajectories but the
probability for this trajectory to form a large “community”
is small. This is because an actual trajectory is supposed to
contain a sufficient number of RSUs which increase the
probability to exclusively differ from others via the
exclusion test.

4.4.3 Eliminating Sybil Communities

With the observation in the above section, the Sybil attack
detection problem can be well solved by finding an efficient
algorithm to eliminate all possible “communities” of Sybil
trajectories. However, the problem of finding all Sybil
“communities” within a given set of trajectories is very
hard. We have the following Theorem.

Theorem 1. With the definition of relationship between two
trajectories in terms of similarity, the problem of finding all
“communities” of Sybil trajectories within a given set of
trajectories is NP-complete.

Proof. Assume each trajectory in the set is a vertex in an
undirected graph. We define an edge between two
vertices if the corresponding trajectories have a non-
negative similarity value. To find all “communities” in
the trajectory set is equal to find all complete
subgraphs (called cliques). Finding all cliques in a
graph is a well-known NP-complete problem. This
completes the proof. 0

In Footprint, we take an iterative procedure to get all Sybil
“communities.” Specifically, we first generate a correspond-
ing graph according to the procedure described in the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

Theorem proof. Then, iteratively, we pick a maximum clique
each time in the graph and delete all vertices in the clique and
all corresponding edges from the graph until there are no
more vertices left in the graph. The reason that we pick the
maximum clique each time is twofold: First, in order to
launch a Sybil attack, a malicious vehicle expects to achieve
multiple identifications, which requires the attacker to issue
a sufficient number of forged trajectories. This will form a
big-sized clique in contrast to those cliques made up of
honest vehicles; Second, because the order in which we
remove cliques from the graph does not change an original
clique from being a clique in the left graph, removing the max
clique each time helps shrink the size of the graph, which
improves the Sybil attack detection performance. If there are
multiple maximum cliques found, we choose the one with
the largest sum of similarity associated with all edges. The
reason is that a larger similarity means two trajectories are
more alike, which are more likely from a malicious vehicle.
With each picked maximum clique, we choose the trajectory
with the longest length as a legal trajectory and discard all
other trajectories in the clique. In this way, a malicious
vehicle is allowed to represent itself once no matter how
many forged trajectories it has generated.

To pick a maximum clique from the graph, we adopt a
heuristic branch-and-bound algorithm [25]. Each time the
vertices are first sorted by a greedy vertex coloring
algorithm. Then, the search starts from the first vertex.
Considering the vehicular application scenario where
conversations among vehicles are supposed to be short,
we set up a timer for searching the maximum clique. When
the timer expires, the currently found clique is returned.

5 ANALYSIS

5.1 Security Analysis

As described in Section 3, a malicious vehicle can easily
obtain messages between two other communicating entities
by eavesdropping on the wireless channels. In Footprint, all
messages are delivered via wireless communication. If a
malicious vehicle can succeed in using authorized messages
issued for other vehicles, it can masquerade as multiple
identities, launching a Sybil attack. The Footprint design is
secure in terms of defending:

1. Against the message replay attacks: In Footprint, any
attempt to misuse authorized messages overheard from
other vehicles fails. This is because an authorized message
needs first to be verified before it can be used for identifying
a vehicle. In the message verification procedure, in order to
pass the ownership verification, the attacker must know the
temporary private key of the original owner of this
message, which is impossible to achieve.

2. Against the integrity attack: In Footprint, the attacker
cannot interpolate the content of a trajectory either. This is
because the integrity of a trajectory is guaranteed by the
signature of neighboring RSUs which are fully trustworthy.
Verifiers conduct legitimacy verification described in
Section 4.3.2 to examine whether the signatures of trajec-
tories are signed by legitimate RSUs in the system. Hence,
any trajectory without being authorized by legitimate RSUs
will be rejected.

CHANG ET AL.: FOOTPRINT: DETECTING SYBIL ATTACKS IN URBAN VEHICULAR NETWORKS

We now analyze the secure level of Footprint with regard
to defending against Sybil attacks.

In Footprint, a malicious vehicle can collect as many
trajectories as it needs. Upon trying to launch a Sybil attack,
the malicious vehicle can also submit as many Sybil
trajectories as it needs to a conversation. In addition, the
malicious vehicle can also overhear authorized messages
sent from other participating vehicles. As a result, the
malicious vehicle knows all other trajectories provided to
the conversation holder.

Given the Sybil attack detection mechanism, for a Sybil
trajectory 7 to successfully present a Sybil identity, 7,
should be longer than the length of those actual trajectories
that are similar with 7';. On the other hand, in order to gain
a disproportionately large influence in the conversation, the
malicious vehicle should manage to attain enough number
of Sybil identities. These two conditions, however, are
contradictory because as the length of Sybil trajectories
increases, the number of Sybil trajectories decreases very
fast. Moreover, since honest vehicles tend to provide their
full trajectories so as to be exclusively distinguished, the
malicious vehicle has to provide longer Sybil trajectories in
order to outstand from possible “communities” of similar
trajectories. It is possible only when the malicious vehicle
can provide a set of not-so-similar Sybil trajectories which
are comparable with actual trajectories provided by honest
vehicles in terms of quantity and the trajectory length. This
requires the malicious vehicle has much higher mobility
than other vehicles, which is not feasible due to the urban
settings (e.g., traffic control, speed limitations, traffic
condition). In summary, although it cannot fully eliminate
the threat of Sybil attacks, Footprint can largely restrict Sybil
attacks from happening and enormously reduce the impact
even if a Sybil attack happens.

We will extensively evaluate the performance of Foot-
print in distinguishing honest vehicles from malicious ones
via trace-driven simulations in Section 7.

5.2 Privacy Analysis

In addition to security concerns, Footprint can meet the
requirement for location privacy preservation of vehicles.

Specifically, a trajectory-embedded authorized message
has signer-ambiguous and temporarily linkable properties.
With the signer-ambiguous property, the RSU signature
contained in the message is anonymous which makes an
attacker unable to determine which RSU actually signed the
message. Thus, no location information can be inferred by
knowing a RSU signature. With the temporarily linkable
property, RSUs change their link tags on every new event
which means remembering a previous link tag of a RSU
does not help an attacker identify this RSU in any other
event. Therefore, even if an attacker conducts a field testing
by recording the locations of RSUs and their corresponding
link tags, it can only log a small number of RSUs for a short
period of time.

In addition, as conversation holders randomly choose a
previous event and request all participating vehicles to
provide a trajectory during this event, a vehicle uses
different trajectories generated in different events for
identification. Thus, because of the temporarily linkable
property of authorized messages, an attacker cannot infer
the connection between two trajectories generated in
different events. Thus, an attacker cannot track a vehicle.

1111

5.3 Performance Analysis

We analyze the performance of Footprint in terms of
computational complexity of the signature generation and
verification algorithms and the Sybil attack detection
algorithm.

In the signature generation and verification schemes,
there are four kinds of operations, i.e., modular addition,
modular multiplication, modular exponentiation, and se-
cure cryptographic hash, denoted as Add, Mul, Exp, and
Hash, respectively. Since the Exp and Hash operations are far
more computationally expensive than the other two opera-
tions, we use the number of Exp and Hash operations to
analyze the computational complexity of these two schemes.

In generating or verifying a signature, most of the
operations can be conducted in advance. For signing a
message, an RSU only needs to compute a hash value (other
cheap operations are ignored) for online signing a message.
In the case of verifying a signature, a verifier (e.g., a vehicle
or an RSU) only needs to conduct 27 Exp and one Hash
operations (see Appendix G, available in the online
supplemental material, for the detailed analysis).

In the Sybil attack detection algorithm, a conversation
holder who conducts the detection will first verify all
provided trajectory-embedded messages. Then, it compares
each pair of legal trajectories and uses the heuristic branch-
and-bound algorithm to remove Sybil communities. Given
n trajectories, the complexity of pairwise trajectory compar-
ison is O(n?) and the worst case running time complexity of
removing Sybil communities is O(3"/2).

6 DESIGN ISSUES

This section discusses some design issues that Footprint
may encounter in practice.

Multiple authorized messages. When a vehicle requests
an authorized message from an RSU, it is possible that there
are multiple RSUs receiving the request and signing a
message simultaneously for this vehicle (e.g., in a dense
deployment). As a result, the vehicle may get multiple
messages signed from different RSUs (i.e., the vehicle can
get multiple legitimate trajectories) which can be leveraged
by a malicious vehicle to launch Sybil attacks. One simple
solution is that while deploying RSUs, the transmission
power of RSUs can be properly configured so that there is
no coverage overlap between two neighboring RSUs. Thus,
a vehicle can only communicate with at most one RSU at
one time. More sophisticated methods may need collabora-
tion among neighboring RSUs. For example, a small set of
neighboring RSUs can coordinate to localize a vehicle based
on their RSSI measurements and select a proper RSU to
communicate with the vehicle.

Scalability in terms of the number of verification. Due
to the high mobility of vehicles, the duration of interactions
between RSUs and vehicles and between vehicles are very
short. This may arouse the scalability concern, i.e., how
many vehicles a particular RSU or a vehicle is able to
interact in a short period of time like seconds. If the
generation or verification of signatures is not very efficient,
it is possible that a vehicle fails to obtain an authorized
message from an RSU before it runs out of the commu-
nication range of the RSU. In Footprint, for trajectory

1112

verification, only one signature should be verified, which
contains a computation of 27 modular exponentiations.
With a 512-bit security parameter, it takes roughly 52.38 ms
(i-e., 19 vehicles/second) for a 3 GHz processor to complete
the whole verification. The average contact time for two
vehicles in urban settings is about 10 seconds [4] which is
sufficiently long for verifying hundreds of signatures.
Therefore, our signature scheme is practical in urban
vehicular scenario.

Increasing length of messages. In Footprint, the current
trajectory information is required both for an RSU to sign a
new message and for other vehicles to verify. As the
trajectory continues to grow, the message size is also
linearly increasing which consumes more communication
bandwidth. Furthermore, in vehicular scenario, where the
wireless link quality is very dynamic, long messages may
suffer failures. In our scheme, a trajectory is composed of
consecutive pairs of RSU link tags and time stamps. The
typical length of a message is 68-n bytes, where n is the
length of the trajectory contained in the message. In
Footprint, in order to satisfy the temporary linkable
property, a short period of time should be chosen as an
event. In this case, the n is relatively small (e.g., several
tens). This also helps to limit the size of a message.

False alarm of Sybil trajectories. In the Sybil attack
detection scheme, it is possible that a trajectory of an honest
vehicle could be mixed with other trajectories (either
malicious Sybil trajectories or other honest ones) especially
when the length of the trajectory is short. This will cause false
alarm of Sybil trajectories. This issue can be largely mitigated
by comparing multiple sets of trajectories issued in different
events. If the probability for an honest trajectory in an event
of a vehicle being treated as Sybil is p, then the probability
that the vehicle being successfully identified is (1 —p)™
when using trajectories in m events. For example, when p =
0.2 and m = 3, the success probability is above 99 percent.

7 PERFORMANCE EVALUATION

7.1 Methodology

In this section, we examine the performance of Footprint in
recognizing forged trajectories (issued by malicious vehi-
cles) and actual ones (provided by honest vehicles) through
trace-driven simulations. We consider two key metrics:

1. False positive error: is the proportion of all actual
trajectories that are incorrectly identified as forged
trajectories.

2. False negative error: is the proportion of all forged
trajectories that are falsely identified as actual
trajectories.

In the following simulations, we use the digital map of
Yangpu District in Shanghai where there are 659 intersec-
tions and 1,004 road segments. We use the 300-RSU
deployment as described in Section 4.2 (see Fig. 1 in
Appendix A, available in the online supplemental material).
Then, we record the actual trajectories of 521 taxies
according to the RSU deployment and the GPS reports of
these taxies collected on 1 February 2007. We define an
event as a period of 1 hour and truncate each trajectory into
24 subtrajectories. Thus, according to 24 hours in a day, we

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

100%
=== False Positive
== False Negative
80%
3 poo—Safe |
15 ° A
= est 2
g o s
o 40% ¥
K
[
20%
M-
pe
0 -3 -
0 10 20 30 40 50

Check window size (seconds)

Fig. 4. Check window size versus false positive error and false negative
error.

have 24 sets of subtrajectories. Both honest vehicles and
malicious vehicles are randomly chosen from a subtrajec-
tory set of 1 hour. According to our strategies to eliminate
Sybil “communities” in Section 4.4.3 and the security
analysis in Section 5.1, a malicious vehicle tries to provide
as many Sybil trajectories that are longer than the average
length of all actual trajectories as possible. If the length of
the actual trajectory of the malicious vehicle |T| is less than
the average, it provides all Sybil trajectories that are [7| — 1
long. For each subset and each simulation configuration, we
run the simulation 20 times and get the average.

7.2 Effect of the Check Window Size

In this simulation, we examine the effect of the check
window size to the system performance. We randomly
choose 60 actual trajectories representing honest vehicles
and 40 actual trajectories representing malicious vehicles.
The trajectory length limit is set to 20 RSUs. We vary the
check window size from 2 to 50 seconds with an interval of
4 seconds.

Fig. 4 plots the false positive error and false negative
error as functions of the check window size. It can be seen
that the false positive error decreases as the size of check
window increases whereas the false negative error in-
creases. This is because, with a larger check window, two
actual trajectories have more opportunities to distinguish
each other by having a negative similarity. Due to the same
reason, two forged trajectories can also be falsely identified
as two distinct trajectories as long as the check window is
larger than the time period for a malicious vehicle to
traverse any pair of RSUs contained in its actual trajectory.

Notice that if the check window is set no larger than the
traverse time limit (i.e., the shortest time to travel between
any pair of RSUs, 10 seconds in this RSU deployment)
marked as “safe” in Fig. 4, the false negative error can reach
the minimum level. Nevertheless, if a properly larger check
window is adopted, the system can achieve the best
performance in terms of minimizing the sum of the false
positive error and the false negative error (denoted as
“best” in Fig. 4).

7.3 Effect of the Trajectory Length Limit

In this simulation, we examine the effect of the trajectory
length limit. We choose vehicles and generate forged
trajectories in the same way as described in the above
simulation. We set the check window equal to 14 seconds
(“best” check window size) and vary trajectory length limit
from 2 to 40 with an interval of four.

CHANG ET AL.: FOOTPRINT: DETECTING SYBIL ATTACKS IN URBAN VEHICULAR NETWORKS

70%
=== False Positive

60% | =+ False Negative

50%
Q
g 40% }
€ \ best
5 30%— 4 /
& \ /

\
20% ‘i /
10% . {/ safe | |
0 - fl . ad —--l—
0 10 20 30 40

Trajectory length limit (# of RSUs)

Fig. 5. Trajectory length limit versus false positive error and false
negative error.

Fig. 5 plots the false positive error and false negative
error as functions of the trajectory length limit. It can be
seen that the false positive error increases as the trajectory
length limit increases whereas the false negative error
drops. The reason is obvious that a larger limit will treat
two actual trajectories as two suspicious with an insufficient
number of authorized messages. Because of the same
reason, two forged trajectories can hardly be directly
regarded as two actual trajectories during the exclusion
test as the condition is more difficult to reach.

We can also notice from the figure that setting a properly
smaller limit can achieve best performance rather than
using the safe limit 40 RSUs (the maximum number of
signatures a vehicle can obtained). Using the best check
window size together with the best trajectory length limit,
we can achieve minimum false positive error and minimum
false negative error of 3 and 1 percent, respectively.

7.4 Impact of Infrastructure Deployment

In this simulation, we examine the impact of the RSU
deployment. We choose vehicles and generate forged
trajectories in the same way as described in the first
simulation. We vary the number of RSUs deployed in the
area from 100 to 500 with an interval of 100. The check
window size and the trajectory length limit are set to the
corresponding safe values in each deployment. The results
are shown in Fig. 6.

Since we take safe trajectory length and safe check
window size for each RSU deployment, the false negative
error is small for all RSU deployments whereas the false
positive error is relatively large. This indicates that
Footprint can guarantee only a very small number of forged
trajectories (less than 2 percent) can succeed at the cost of
sacrificing a relatively number of honest vehicles (about
10 percent when the RSU deployment is dense).

From Fig. 6, we find that, in the early developing stage,
deploying more RSUs can rapidly improve the system
performance. As the distribution of RSUs is dense enough,
putting more RSUs in the system will help but not that
much. In this simulation setting, install RSUs at half
intersections is most cost efficient.

8 CoNcLUSION AND FUTURE WORK

In this paper, we have developed a Sybil attack detection
scheme Footprint for urban vehicular networks. Consecu-
tive authorized messages obtained by an anonymous
vehicle from RSUs form a trajectory to identify the
corresponding vehicle. Location privacy of vehicles is

1113

50%

=== False Positive
False Negative

W% 1T

w
S
2

Percentage

N
o
2

0% | |

7100 200 300 400 500
Number of RSUs

Fig. 6. RSU deployment versus false positive error and false negative
error.

preserved by realizing a location-hidden signature scheme.
Utilizing social relationship among trajectories, Footprint
can find and eliminate Sybil trajectories. The Footprint
design can be incrementally implemented in a large city. It
is also demonstrated by both analysis and extensive trace-
driven simulations that Footprint can largely restrict Sybil
attacks and can enormously reduce the impact of Sybil
attacks in urban settings (above 98 percent detection rate).
With the proposed detection mechanism having much
space to extend, we will continue to work on several
directions. First, in Footprint, we assume that all RSUs are
trustworthy. However, if an RSU is compromised, it can
help a malicious vehicle generate fake legal trajectories (e.g.,
by inserting link tags of other RSUs into a forged trajectory).
In that case, Footprint cannot detect such trajectories.
However, the corrupted RSU cannot deny a link tag
generated by itself nor forge link tags generated by other
RSUs, which can be utilized to detect a compromised RSU
in the system. In future work, we will consider the scenario
where a small fraction of RSUs are compromised. We will
develop cost-efficient techniques to fast detect the corrup-
tion of an RSU. Second, we will delve into designing better
linkable signer-ambiguous signature schemes such that the
computation overhead for signature verification and the
communication overhead can be reduced. Last, we will
validate our design and study its performance under real-
complex environments based on our ongoing realistic
prototype testbed built at Xi’an Jiao Tong University.
Improvements will be made based on the realistic studies
before it comes to be deployed in large-scale systems.

ACKNOWLEDGMENTS

This research was supported in part by National Natural
Science Foundation of China under Grant No.60933003, and
IBM Joint Project.

REFERENCES

[1] Y. Sun, R. Lu, X. Lin, X. Shen, and J. Su, “An Efficient
Pseudonymous Authentication Scheme with Strong Privacy
Preservation for Vehicular Communications,” IEEE Trans. Vehi-
cular Technology, vol. 59, no. 7, pp. 3589-3603, Sept. 2010.

[2] R. Lu, X. Lin, H. Zhu, and X. Shen, “An Intelligent Secure and
Privacy-Preserving Parking Scheme through Vehicular Commu-
nications,” IEEE Trans. Vehicular Technology, vol. 59, no. 6,
pp. 2772-2785, July 2010.

[3] J.R. Douceur, “The Sybil Attack,” Proc. First Int'l Workshop Peer-to-
Peer Systems (IPTPS '02), pp. 251-260, Mar. 2002.

1114

(4

(5]

(o]

[

(8]

B

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

[22]

(23]

(24]

(23]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO.6, JUNE 2012

J. Eriksson, H. Balakrishnan, and S. Madden, “Cabernet: Vehicular
Content Delivery Using WiFi,” Proc. MOBICOM 08, pp. 199-210,
Sept. 2008.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.S.
Wallach, “Secure Routing for Structured Peer-to-Peer Overlay
Networks,” Proc. Symp. Operating Systems Design and Implementa-
tion (OSDI '02), pp. 299-314, Dec. 2002.

B. Dutertre, S. Cheung, and J. Levy, “Lightweight Key Manage-
ment in Wireless Sensor Networks by Leveraging Initial Trust,”
Technical Report SRI-SDL-04-02, SRI Int’l, Apr. 2002.

J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil Attack in
Sensor Networks: Analysis & Defenses,” Proc. Int’l Symp.
Information Processing in Sensor Networks (IPSN '04), pp. 259-268,
Apr. 2004.

S. Capkun, L. Buttyan, and J. Hubaux, “Self-Organized Public Key
Management for Mobile Ad Hoc Networks,” IEEE Trans. Mobile
Computing, vol. 2, no. 1, pp. 52-64, Jan.-Mar. 2003.

C. Piro, C. Shields, and B.N. Levine, “Detecting the Sybil Attack in
Mobile Ad Hoc Networks,” Proc. Securecomm and Workshop, pp. 1-
11, Aug. 2006.

N. Borisov, “Computational Puzzles as Sybil Defenses,” Proc. Sixth
IEEE Int’l Conf. Peer-to-Peer Computing (P2P '06), pp. 171-176, Oct.
2006.

P. Maniatis, D.S.H. Rosenthal, M. Roussopoulos, M. Baker, T.
Giuli, and Y. Muliadi, “Preserving Peer Replicas by Rate-Limited
Sampled Voting,” Proc. 19th ACM Symp. Operating Systems
Principles (SOSP "03), pp. 44-59, Oct. 2003.

H. Yu, M. Kaminsky, P.B. Gibbons, and A. Flaxman, “Sybilguard:
Defending against Sybil Attacks via Social Networks,” Proc.
SIGCOMM, pp. 267-278, Sept. 2006.

M.S. Bouassida, G. Guette, M. Shawky, and B. Ducourthial, “Sybil
Nodes Detection Based on Received Signal Strength Variations
within Vanet,” Int’l |. Network Security, vol. 9, no. 1, pp. 22-32, 2009.
B. Xiao, B. Yu, and C. Gao, “Detection and Localization of Sybil
Nodes in Vanets,” Proc. Workshop Dependability Issues in Wireless
Ad Hoc Networks and Sensor Networks (DIWANS '06), pp. 1-8, Sept.
2006.

T. Zhou, R.R. Choudhury, P. Ning, and K. Chakrabarty, “Privacy-
Preserving Detection of Sybil Attacks in Vehicular Ad Hoc
Networks,” Proc. Fourth Ann. Int’l Conf. Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous '07), pp. 1-8, Aug.
2007.

Q. Wu, J. Domingo-Ferrer, and U. Gonzalez-Nicolas, “Balanced
Trustworthiness, Safety and Privacy in Vehicle-to-vehicle Com-
munications,” IEEE Trans. Vehicular Technology, vol. 59, no. 2,
pp. 559-573, Feb. 2010.

L. Chen, S-L. Ng, and G. Wang, “Threshold Anonymous
Announcement in VANETs,” IEEE |. Selected Areas in Comm.,
vol. 29, no. 3, pp. 1-11, Mar. 2011.

C. Chen, X. Wang, W. Han, and B. Zang, “A Robust Detection of
the Sybil Attack in Urban Vanets,” Proc. IEEE Int’l Conf. Distributed
Computing Systems Workshops (ICDCSW ’09), pp. 270-276, June
2009.

S. Park, B. Aslam, D. Turgut, and C.C. Zou, “Defense against Sybil
Attack in Vehicular Ad Hoc Network Based on Roadside Unit
Support,” Proc. 28th IEEE Conf. Military Comm. (MILCOM '09),
pp- 1-7, Oct. 2009.

IEEE Vehicular Technology Soc.: 5.9 GHz Dedicated Short Range
Comm. (DSRC) - Overview. http://grouper.ieee.org.groups/
scc32/dsrc/, 2011.

JK. Liu, VK. Wei, and D.S. Wong, “Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups (Extended
Abstract),” Proc. Ninth Australasian Conf. Information Security and
Privacy (ACISP '04), pp. 325-335, 2004.

Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, “Anonymous
Identification in Ad Hoc Groups,” Proc. Int'l Conf. Theory and
Applications of Cryptographic Techniques (EUROCRYPT '04),
pp. 609-626, 2004.

P.P. Tsang and V.K. Wei, “Short Linkable Ring Signatures for E-
Voting, E-Cash and Attestation,” Proc. Information Security Practice
and Experience Conf. (ISPEC "05), pp. 48-60, 2005.

P.P. Tsang, V.K. Wei, TK. Chan, M.H. Au, JK. Liu, and D.S.
Wong, “Separable Linkable Threshold Ring Signatures,” Proc. Int’]
Conf. Cryptology in India (INDOCRYPT '04), pp. 384-398, 2004.
P.R. Ostergard, “A Fast Algorithm for the Maximum Clique
Problem,” Discrete Applied Math., vol. 120, nos. 1-3, pp. 197-207,
2002.

— —
- -
-—

—

Shan Chang received the BS degree in com-
puter science and Technology from Xian Jiao-
tong University in 2004, where she is currently
working toward the master-doctoral degree in
the Department of Computer Science and
Technology. Her research interests include
security and privacy in mobile networks and
wireless sensor networks.

Yong Qi received the PhD degree in computer
science and technology from Xian Jiaotong
University in 2001. He is a full professor in the
Department of Computer Science and Technol-
ogy of Xian Jiaotong University. His research
interests include sensor networks, operating
system, distributed middleware, and services
computing. He is a member of the IEEE.

Hongzi Zhu received the PhD degree in
computer science from Shanghai Jiao Tong
University in 2009. He is an assistant professor
in the Department of Computer Science and
Engineering at the Shanghai Jiao Tong Univer-
sity. His research interests include mobile net-
works, social networks and network security. He
is a member of the IEEE and IEEE Computer
Society and Communication Society.

Jizhong Zhao received the BS and MS degrees
in the Mathematic Department from Xi'an Jiao-
tong University. He received the PhD degree in
computer science, focusing on Distributed Sys-
tem, from Xi’an Jiaotong University in 2001. He
is a professor of Computer Science and Tech-
nology Department, Xi'an Jiaotong University.
His research interests include computer soft-
ware, pervasive computing, distributed systems,
and network security. He is a member of the

IEEE and IEEE Computer society, and a member of the ACM.

Xuemin (Sherman) Shen received the BS
degree from Dalian Maritime University, China,
in 1982, and the MSc and PhD degrees from
Rutgers University, New Jersey, in 1987 and
1990, respectively, all in electrical engineering.
He is a professor and University research chair,
Department of Electrical and Computer Engi-
neering, University of Waterloo. His research
focuses on mobility and resource management,
UWB wireless networks, wireless network se-

curity, and vehicular ad hoc and sensor networks. He served as an area
editor for IEEE Transactions on Wireless Communications and editor-in-
chief for Peer-to- Peer Networks and Applications. He is a distinguished
lecturer of the IEEE Communications Society, fellow of the IEEE, and
fellow of the Engineering Institute of Canada.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

