2013 IEEE 33rd International Conference on Distributed Computing Systems

S3: Characterizing Sociality for User-Friendly
Steady Load Balancing in Enterprise WLANS

Chaoqun Yue, Guangtao Xue, Hongzi Zhu, Jiadi Yu, Minglu Li
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Email: xue-gt@cs.sjtu.edu.com

Abstract—Traffic load is often unevenly distributed among the
access points (APs) in enterprise WLANSs. Such load imbalance
results in sub-optimal network throughput and unfair bandwidth
allocation among users. In this paper, we collect real traces
from over twelve thousand WiFi users in Shanghai Jiao Tong
University. Through intensive data analysis, we find that user
behavior like leaving together may cause significant AP load
imbalance problem. We also observe from the trace that users
with similar application usage have the potential to leave together.
Inspired by those observations, we propose an innovative scheme,
Social-aware AP Selection Scheme(S?), which can actively learn
the sociality information among users trained with their history
application profiles and elegantly assign users based on the
obtained knowledge. Both real prototype implementation and
simulation results show that 5> is feasible and can achieve 41.2%
balancing performance gain on average.

Index Terms—IEEE 802.11, enterprise WLANS, load balanc-
ing, social behavior based AP selection

I. INTRODUCTION

In recent years, IEEE 802.11 wireless LANs (WLANs)
have been widely deployed in enterprises, public areas and
homes. Studies [13] [2] on operational WLANs have shown
that the traffic load is often unevenly distributed among the
access points (APs). In enterprise WLANSs, each user scans
all available APs and associates itself with the AP that has the
strongest received signal strength indicator (RSSI) by default,
ignoring the load condition on this AP. It is often the case that
APs suffer from severe load unbalancing, which hampers the
network from providing maximum throughput and fair services
to its users.

To solve the load balancing problem, however, is very
difficult. The reason is two-fold. First, without knowing future
traffic demands on individual APs, it is very hard, if not
impossible, to make an optimal assignment or adjustment of
WLAN users among a set of APs. Second, it is inevitable
to cause link disruptions when dynamically migrating users
from heavy-load APs to those light-load ones. Although it
is possible for a user to maintain multiple links at the same
time, it requires all users to have extra hardware and therefore
is infeasible in practice.

Although the AP load balancing problem has been studied
for years, it still has not been thoroughly solved. In the
literature, the existing schemes can be classified into two
categories. One is user-arrival-based methods [14] [15] [18],
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where the AP with the least workload will be chosen to
serve a new coming user. Such schemes can adjust the
load balancing only when there are new users joining but
incapable in improving load balance when network traffic
churns happen (e.g., joining and leaving of users and changes
of running applications). Therefore, these schemes sacrifice
load balancing performance for excellent user experience. In
contrast, the other one is online load balancing schemes which
can rapidly adjust the traffic load among APs. When traffic
churns are highly dynamic, those schemes can achieve good
load balancing performance but would also cause unpleasant
constant connection disruptions. As a result, there is no
existing scheme, to the best of our knowledge, to successfully
tackling the load balancing problem in enterprise WLANSs that
can achieve superior load balancing while still preserving good
user experience.

In this paper, we take an empirical methodology to study
the load balancing problem in enterprise WLANs. We have
collected real WLAN trace from Shanghai Jiao Tong Univer-
sity involving more than 12,000 users over three months from
July to October, 2012. After intensively mining and analyzing
the trace with regard to the load balancing problem, we first
find that the state-of-art strategy adopted in enterprise WLANs
can hardly achieve load balance. For instance, we find that
for about 20% peak-hour time and 60% off-peak-hour time
traffic load on APs is rather unbalanced in our trace using the
Least Loaded First (LLF) scheme [9]. We further seek for the
fundamental leading factors and find that the churns of WLAN
users have the most significance in causing the high dynamics
of traffic load on APs. Moreover, we observe obvious social
characteristics of users behavior, namely, coming to or leaving
the network together (called co-coming or co-leaving events).
We dig the trace and find that co-leaving users have very
similar application profiles. With this insight, we propose an
innovative scheme, Sociality-aware AP Selection Scheme or
§3, for user-friendly load balancing in enterprise WLANS.
The core idea of S is to characterize the sociality of users
by grouping users with similar application profiles. With the
knowledge of application profiles and social relationships of
users, S elegantly distributes co-leaving users to a set of
APs considering the current work load on those APs as well.
The main advantage of 3 lies in two folds. First, $3 is user-
friendly as it does not migrate users from an AP to another.
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Second, it is very resilient to network churns as it can resist
sudden traffic demand changes caused by co-leavings. The
real prototype implementation verifies the feasibility of the $3
design. Through extensive accurate trace-driven simulations,
we demonstrate the efficacy of 3 and the results show that
$3 can achieve 41.2% balancing performance gain on average
comparing with LLF.

The main contributions of this paper are highlighted as
follows:

« We have collected tremendous amount of WLAN usage
trace containing entire network users of over twelve
thousand. By data mining, we find the state-of-art strategy
adopted in enterprise WLANSs can hardly achieve steady
yet user-friendly load balance and the leading factor is
the churns of network users.

We have also observed that strong social behavior among
WLAN users, which can be characterized using appli-
cation profiles of users. We propose a user-friendly and
steady AP selection scheme S° leveraging all these key
observations.

We have implemented a small-scale prototype to verify
the feasibility of S> and conducted extensive trace-driven
simulations to evaluate its performance. Results have
demonstrated the effectiveness of S3.

The remainder of this paper is organized as follows. We
presents the related work in Section II. In Section III, we
describe the details of our collected data set and exhibit the
social relations through the analysis of the real trace and
then study the impacts of the unbalanced user leaving on
the AP performance. We characterize the relation between
users’ application profile and their social behaviour. In the
fourth section, we provide the system model and propose the
algorithm. We describe the prototype in Section V. Section VI
describes the methodology to evaluate the performance of our
AP selection algorithm and presents the results. Finally, we
present concluding remarks and outline in Section. VII.

II. RELATED WORKS

There exists many works on AP load balancing. The existing
algorithms can be divided into the following two classes:

One attempt to adjust the users during the runtime [12],
i.e., moving users from one AP to another. These approaches
have been widely challenged due to the large computational
overhead. In addition, users will experience disruptions during
the immigration, which is undesired or even unacceptable.

Another majority of approaches distribute user when they
arrive. Nicholson, A.J. et al [15], [14] design the AP selection
algorithm based on the assessment of the AP. In its design, a
node tentatively associates to each of the AP and evaluates
the bandwidth and delay of the AP towards the Internet.
The AP with a better service quality will be selected. In the
work [13], an AP-selection strategy is proposed that takes
two major factors into account. One is the individual user
throughput, and the other is the impact on the performance of
other users who are already associated with the AP. In [17],
a distributed load balancing system is introduced which takes
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Fig. 1. Structure of the WLAN in SJTU

into account the AP loads defined as the aggregated uplink and
downlink traffic through the AP. The author in the paper [19]
proposes an online AP association strategy that maximizes
the minimum throughput among all users at the cost of an
acceptable overhead. A distributed algorithm [20] is proposed
where the APs can tune their cell size according to their load
and their neighbors loads in a way transparent to the end users
and thus improve the fairness and performance. The author in
[18] proposes to balance the load on the basis of the entire
network. In the design, demand clusters will select the AP that
is able to provide ample bandwidth, rather than the closest AP
which often has the largest signal level. In [21], the authors
proposed a unique solution called SAP (Smart Access Point),
which smartly balancing the network load across multiple
interfaces based on users time-varying traffic load conditions.
All these approaches, however, only consider the arrival of
the users, and none of them have taken the social relations
between users into account.

The other category of related work studies the social rela-
tions in users. Hsu, W. et al [23] studied the user behaviors in
AP access and explicit patterns are observed. In the work [24],
the authors tried to understand the inter-user interaction in
wireless environments by investigating the inter-node encoun-
ters. The Small World concept is explored. Furthermore, the
author displays the feasibility of an infrastructure-less network,
where most of the nodes can be reached through utilizing inter-
node connectivity and encounters. These works only consider
the social relations among users and never study the impact
of such relations to the AP selection and balance in WLANS.

III. MEASUREMENT ANALYSIS

In this section, we first introduce the trace data that we
have collected and then examine the AP load unbalancing
problem with the trace. Next, we analyze the major factors
that cause the load unbalancing problem. With the observation
that churns of users play an essential role, we finally reveal
the sociality of users that triggers the churn.

A. Collecting Empirical Trace Data

We collect WLAN usage trace data from SJTU, a pres-
tigious university in mainland of China. Fig. 1 illustrates
a typical enterprise WLAN deployed in SJTU, which con-
sists of three major entities, i.e., light-weighted APs, WLAN
controllers and a back-end data center. A WLAN controller
taking the charge of several APs in vicinity is responsible for
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assigning users to specific APs within its domain. The state-of-
art strategy adopted by a controller is to assign a new user to
the AP with the least traffic load (or with the least number of
users). We collect trace from the back-end data center, which
records all login information.

For the study in this paper, we have collected trace data over
three months from July to October in the year of 2012 which
involve 12,374 users collected from 334 APs deployed in 22
buildings. The specific fields in logged records include: user
identifiers (i.e., MAC addresses of wireless cards), connected
time stamps (the time instance when a user successfully con-
nected to an AP), disconnected time stamps (the time instance
when a user disconnected from an AP), accessed AP, and the
served traffic amount (the total traffic amount a user sent to
or received from an AP during a connection). In addition,
from the core network routers, we also obtain all WLAN
traffic information including: the source and destination IP
addresses of a packet, transportation layer and application
layer ports (e.g., tcp, HTTP, DNS, SIP). By analyzing the port
combination using certain heuristics [1], concrete applications
can be accurately identified. In our trace, all user identifiers are
processed with hash functions (e.g., SHA) to remove privacy
concerns. For proprietary reasons, the results presented in
this paper are normalized, which, however, does not change
the range of the metrics used in this study. Furthermore, the
missing information due to normalization does not affect the
understanding of our analysis.

As there are a vast number of applications involved in the
trace, we examine the top 30 in terms of generated traffic vol-
ume, which constitute the vast majority of all data traffic. Thus,
understanding the remainder is not critical for the purpose of
network engineering [2]. Furthermore, we categorize these top
applications into the following six application realms: 1) IM,
2) P2P, 3) music, 4) E-mail, 5) video, and 6) web-browsing.

B. Load Balancing Problem in Enterprise WLANs

As load balancing is of great importance to the network
performance and user experience, we now examine the load
balancing problem with our trace. To better quantify the load
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balance level among a set of APs, we use the following
balancing index definition [26]:

Definition : Given n APs, let T; denote the throughput of
the i-th AP, i =1,...,n, the balancing index is defined as:

5 (TP
nxXT?

We further define the normalized balancing index as:

B
1—

3=

B =
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This index has been widely used in the literature to assess
the load balancing performance. Other fairness metrics, such
as max-min [16] and proportional fairness [11], may also be
used. With different load-balancing strategies, the balancing
index ranges from % to 1 with larger index value indicating
better balancing level. Fig. 2 shows the cumulative distribu-
tion function (CDF) of normalized balance index calculated
between all APs under a WLAN controller over all controllers
with the trace. Peak hours in the figure refer to the hours from
10:00 to 11:00 and from 15:00 to 16:00, when the network
throughput reaches the peaks during a day. It can be seen
that about 20 % of time during peak hours and about 60%
of time during a workday, the traffic load on APs is rather
unbalanced (balance index is less than 0.5). This indicates
that enterprise WLANSs cannot achieve good load balancing
performance using the state-of-art AP selection strategy which
is LLF [9].

C. Leading Factors Analysis

There are two cases where the original AP load balance
may be broken. One is when users suddenly change their
running applications, which may incur sudden changes of
traffic demands. The other is when the number of users on
APs suddenly drops unevenly, which can also result in sudden
changes of traffic demands. We first look at each case in this
subsection.



1) Factor of Application Dynamics: To know whether the
change of applications accounts, we analyze the variations of
balance index caused by application dynamics. Specifically, we
divide the trace with time periods of an hour and remove the
traffic amount generated by users who just came or left during
a time period. For each time period, we further divide the
time period into n sub-time-periods. We calculate the balance
indexes of all APs under a controller in the ith sub-time-period,
denoted as f3;, and calculate the variance of B;,i=1,--- ,n. We
defined the variance of balance index S as:

Bi—Bi—1

Bi-1
Fig. 3 plots the CDFs of the S over all time periods and all
controllers with the length of a sub-time-period equal to five
minutes, ten minutes and twenty minutes, respectively. It can
be seen that more than 80% of variance is less than 0.02
with ten-minute sub-time-periods. This result shows that the
balance index does not change suddenly with fixed users.

2) Factor of User Dynamics: We now investigate the
impact of churns of users on the load balancing problem of
WLANSs. We use a similar method to quantify balance index
of the number of users [, among all APs under a WLAN
controller. Fig. 4 shows an example of the relationship between
the balance index of the number of users S, and the balance
index of traffic load fB;4¢fic on an AP during a workday from
8:00 to 24:00. It can be seen that two plots are very similar
in layout. Particularly, when B, drops, Birfic also drops
(indicated by the dotted lines in the figure). Note that the
number of users associated with an AP is affected by both
joining and leaving of users. With the state-of-art arrival-based
algorithm LLF where a new coming user is allocated to the
AP with the least workload, therefore, joining users will be
well tended by the LLF scheme and will not cause a serious
load unbalance. However, when multiple users leave an AP
in a short period of time, the traffic demands on this AP will
dramatically drop and may lead to load unbalance. In this case,
LLF can not recover from such load unbalance. Therefore,
we have the conclusion that the churn of users, especially,
co-leavings of users, plays an essential role in causing load
unbalance in enterprise WLAN.

Si

D. Revealing User Sociality behind the Churns

1) Sociality of WLAN Users: in this section, we investigate
the user activities which might cause unbalanced leavings.
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For example, people in an enterprise domain often have
routine activities, such as classes in schools and department
meetings in corporations. These social activities may have
great influence on the way people use WLAN. From the
perspective of AP- accessing behavior, we study two main
events in the trace data that may reflect those social activities
as follows:

o Encountering is referred to as a pair of users keep the
connections with the same AP for a certain period of
time. Notice that a co-coming is not necessary to lead to
an encountering as one of two users may leave sooner
than the given period of time.

Co-leaving is referred to as a pair of users leave the same
AP at the same time or within a short period of time.

Two users are said to have a social relationship if they share
common aforementioned events. Indeed, it is likely for two
users to have common events by chance instead of attending
the same social activities, especially when a relatively long
time period of time is used to extract co-leaving events. Such
fake social relationships are random and have no capability
to predict future AP access behavior of users. We take fake
social relationships as noise and diminish its effect by carefully
choosing appropriate time periods for event extraction and
aggregating multiple common events between the same pair
of users for a single social relationship.

In order to investigate the probability of co-leaving events,
we plot the CDF of the number of co-leaving events to the total
number of leaving events over all users in Fig. 5, using three
different time periods of time for event extraction, namely, ten
minute, twenty minutes and half an hour. It indicates that most
users show strong sociality in their AP access behavior and
do not leave an AP independently.

2) Capturing User Sociality: As different users have dif-
ferent application usage profiles, we used normalized his-
tory traffic volumes of the six major application categories
mentioned before to characterize the application interest of a
user. To answer the question that how much history data are
sufficient to accurately capture the user interest, we examine
the temporal correlation of user application profiles. More
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specifically, for a particular user u, we consider the application
profile Ty(u) = (a%,al,...,a8) where a!, is the volume of
traffic caused by applications in the ith category (1 <i<6)
associated with user u on day x. We also have the vector for
user u from day x —n, Ty_,(«). We can then compute the
entropy of the joint distribution of T,(u) and Ty_,(u) over
applications 1 through 6. The mutual information of 7y («) and
Te—n(u), I(T:(u, Ty—n(u)), can be obtained via the joint entropy
H(T:(u),Ty—n(u)) and the entropies of Ty(u) and Ty_,(u) as
follows:

I(Te(w), Ten()) = H(Tu(w)) +  H(Te n(w))
H (T (), Ty (1))

where H(.) is the entropy. We define the Normalized Mutual
Information (NMI) by

H(T(w), Tn(u))
H(T(u))

We examine the change in the NMI when we make more
historical data available. Instead of using solely the data from
day x —n, we aggregate the data from day x — 1 through
day x —n. The resulting traffic vector is thus ¥} | Ty(u — i)
Then, we consider the mutual information between 7, (u) and
> Ti(u—i) normalized by H(Ty(u)). We show the results in
Fig. 6. It is quite clear to see that the NMI increases until about
n =15, when it hits a plateau and stabilizes. This means that
adding more history data before 15 days does not help (but
does not hurt either) in building application profiles.

By further checking with those co-leaving users, we find that
users who having higher probability to leave together also have
more similar application profiles. Inspired by this connection,
we further investigate whether two users who share similar
application usage profiles would often leave together. For
this purpose, we cluster users using their normalized traffic
volumes of applications. We utilize a well-known unsupervised
clustering algorithm called k-means to cluster application dis-
tributions of cells. k-means algorithm is a simple yet effective
technique to cluster feature vectors into a predefined k£ number

NMI(T (), Tr—(u)) =
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of groups [4]. The selection of appropriate value of k is crucial
and is an open research problem [5]. Several heuristics have
been proposed in prior literature, which primarily focus on
the change in intra-cluster dissimilarity for increasing values
of k [6], [7]. One of the most well-known heuristic, called
gap statistic, involves comparing the change in intra-cluster
dissimilarity W for given data and that for a reference null
distribution [8]. Gap statistic provides a statistical method to
find the elbow of intra-cluster dissimilarity W, as the values
of k varies. Gap statistic is defined as:

1 B
Gap(k) = B 2 log(Wip) — Llog(Wy)
b=1
where Wy, denotes the intra-cluster dispersion of a reference
data set from a uniform distribution over the range of the
observed data. Using gap statistic, the optimal value of k can
be chosen to be the smallest one for which:

Gap(k) = Gap(k+1) — O+

where o denotes the standard deviation of intra-cluster
dispersions in reference data sets. Fig. 7 shows the plot
of gap statistic for varying values of k. We observe that
Gap(4) > Gap(5) — 05, so we select the optimal value of
k = 4. After selecting the value of k =4 using gap statistic, we
apply the k-means clustering algorithm to cluster application
usage patterns of users into four groups.

To get a clue about the optimal clustering result, we plot
cluster centroid of four user groups as Fig. 8 shows. We
observe that a user can be divided into a distinct group

TABLE I
POSSIBILITY OF LEAVING TOGETHER BETWEEN DIFFERENT
USAGE TYPES
T | typel type2 type3 typed
iypel 0.51 0.23 0.31 0.17
type2 0.23 0.66 0.31 0.26
type3 0.31 0.31 0.54 0.22
typed 0.17 0.26 0.22 0.61




according to its application usage profile. We label these four
groups using typel, type2, type3, and type4. Let T(type;,type;)
represents the mean possibility that a pair of tags from group
type; and type; will leave together.

Table 1 shows that a user is more likely to leave together
with another user in the same group than other users (this can
be seen that T(rype;,type;) has greater values in the diagonal
line of the table). We consider to utilize this strong pattern for
forecasting the co-leaving events.

E. Summary

In summary, we have the following key observations: 1) the
throughput of an AP is tightly connected with the number of
users associated with that AP; 2) the churns of WLAN users
especially caused by co-leaving events are the key factor to
load unbalance status of APs; 3) user application usage profiles
can be used to predict social behavior of users such as co-
leavings.

IV. SOCIAL-AWARE AP SELECTION ALGORITHM DESIGN

In this section, we first introduce the social relation index, a
key metric to quantify social relationships between users. We
then formally define the AP selection problem. At last, we
present our social-aware AP selection algorithm for enterprise
WLANS.

Given two users u and v, the social index of them is defined
as :

O (u,v) = P(L(u,v)|E(u,v)) + axt(U,V)

where L(u,v) and E(u,v) denote the co-leaving and en-
countering events between u and v, respectively. In other
words, (L(u,v)|E(u,v)) is the conditional probability that u
and v encounter at the same AP and then leave the AP in
unison. However, if the pair of users have not encountered
each other before, we need other information to guess the
possibility that they will leave together. T(U,V) is mentioned
in the last section where u € typey,v € typey and o is an
constant coefficient. Thus, a high social relation index implies
a stronger relation between users and vice verse. We expect
the social relation index can effectively forecast the co-leaving
events between users which affect the balanced index in the
same controller domain.

A. Problem Statement

The original AP balancing problem is to distribute the users
to different APs so that all the APs are kept balanced in
all the time, i.e., min(ZB). In practice, this problem has no
optimal solution because the optimal solution requires the
exact leaving time for each user. Such information is about
the future and can never be obtained. Fortunately, we recall
that the main cause of the AP unbalance is the user co-leaving
events. Alternatively, we take another approach towards the
optimal AP balance scheme. We try to distribute user pairs
of tighter social relations to different APs so that users in
the same APs are diversified. In other words, they have fewer
social relations and will be unlikely to present similar access
behaviors. The problem is formally defined as follows.
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Definition 1: Given a user willing to subscribe to an AP
and there are N APs can be accessed. suppose this user u
has a demanded throughput w(u) and there is a social relation
index between any pair of users (u,v),u,v € Y} | AP, Assume
the bandwidth of the APs are W(i), i = [1, m], the problem is
to find an allocation for the user to an AP such that

Object:

1) min:i Y 8(u,v)
i=1Yu,veAP,
2 ) min(Bew)

subject:

Y w(u) <W(i),i€[1,n]

uca
Here the constraint ¥, w(u) < W(i),i € [1,n] is due to the
fact that the aggregated throughput demands cannot exceed
the provided AP bandwidth.

We have the following theorem:

Theorem 1: The load balancing problem defined in Defini-
tion 1 is NP — complete.

The proof of Theorem 1 can be conducted by inducing the
weighted maximum cut problem, a well known NPC problem
to the load balancing problem. Due to the page limitation, we
omit the detail proof.

The problem proposed here is also a multi-objective op-
timization problem. To achieve the solution, we consider
Object 1) as the main object to achieve. As our scheme let
balance index not be too bad because of the erase of the
co-leaving events, we just need to prevent the balance index
from decreasing too much which may be caused by the user
distribution.

Assume that each user to be assigned is a vertex in an
undirected graph. We define an edge between two users if
the social relation index between this pair of users is higher
than 0.3, which is the threshold used to recognize users with
close social relationships. We call a group of users where each
pair of users have a close relationship a “clique”. Finding all
cliques in a graph is also a well-known NP-complete problem.

We take an iterative procedure to get all cliques. Specif-
ically, we first generate a corresponding graph according to
the procedure described before. Then, iteratively, we pick a
maximum clique each time in the graph and delete all vertices
in the clique and all corresponding edges from the graph until
there are no more vertices left in the graph. The reason that
we pick the maximum clique each time is that the order in
which we remove cliques from the graph does not change an
original clique from being a clique in the left graph, removing
the max clique each time helps shrink the size of the graph,
which decreases the complexity of the S problem. If there are
multiple maximum cliques found, we choose the one with the
largest sum of edges. The reason is that a larger sum of edges
means those users are more likely to leave and they need to
be distributed to different APs. After find a user clique, we
distributed them and find the next clique until no users need
to be allocated.
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Fig. 8. Cluster centroid of four user groups

To pick a maximum clique from the graph, we adopt
a heuristic branch-and-bound algorithm [25]. Each time the
users are first sorted by a greedy vertex coloring algorithm.
Then, the search starts from the first vertex.

B. AP Selection Algorithm

In this subsection, we describe the AP selection algorithm
adopted in S3. We start from the design principles and then
present the detailed algorithm.

1) Design principles: In general, the problem is to distribute
users to a set of different APs so that the sum of the social
relation index O between each pair of users on each AP under
a controller is minimized. Towards this goal, user pairs with
tight & should be dispersed to different APs. For this purpose,
we augment users to APs so that the increment on the total §
is minimal.

2) AP selection algorithm: For ease of presentation, we
use the following notations. Let S(AP;),i = 1,...,n be the
set of users associated in the ith AP. Fig. 9 shows the
pseudopod of the AP selection algorithm. The AP selection
algorithm will output the ID of an AP, say 1 < j <n, to
a new user u. Specifically, if S(AP,) is empty or there are
multiple candidate APs to choose, we simply apply LLF. Let
T(AP) = Z,cs(ap)w(u) be the traffic at the AP; and C(AP;) be
the total social relation index when u is added to AP, i.e.,

Y &(uw).

VweS(AP;)

C(AP) =

Notice that the cost will be set as infinite if the bandwidth
constraint cannot be satisfied (line 8 and 9 in Fig. 9). The
demand of each user bandwidth W (u) can be estimated using
the history trace of u as studied in work [10].

C. Discussion

The AP selection algorithm tries to associate new user to the
AP so that the increment of the total internal social relations
within the domain of a controller is minimized. The rational
behind this strategy is to assign users with strong social
relationships to different APs since they tend to leave together,

which may cause unbalanced workload of APs. It is clear that
when users have strong social relationships, our algorithm will
achieve great gain in balancing AP workload. It is often the
case for most enterprise WLANS since colleagues have regular
working schedules, e.g., meetings. In addition, our algorithm
fits enterprise WLANs most since it can be implemented
on WLAN controllers, where most recent historical login
records of users can be collected and used for extracting social
relation indexes between users. We will further investigate
how parameters can be chosen for our online algorithm in
the performance evaluation section via extensive trace-driven
simulations.

Algorithm 1 Social Relation Based Selection
Input:
6(u,v) for all users u and v
User u to be allocated
Output:
S(aP)
1: Initial T(AP): X} Zyeapw(v)
2: Initial G(V,E)(V={users to be distributed}, E={social
relation between users over 0.3})
3: while G# 0 do
4:  Find clique G, from G
5:  Search the solution space of distribution users in G, and
sort them by Y7 | C(APR)
6:  Find the top 30% distribution and choose the one which
make 8 min
7. Update S(AP)
8: erase G, from G
9: end while
10: return S(AP;)

Fig. 9. The pseudocode of AP selection algorithm

V. PERFORMANCE EVALUATION

A. Methodology

We evaluate our S° AP-selection algorithm based on trace-
driven simulations. We use the same trace as described in
Section II and use four-week trace data from July 4 to July 24,
2012 as the learning stage for establishing social relationships
between users, leaving the trace data from July 25 to July 27
for AP selection experiments. We compare S° AP-selection
algorithm with LLF , where a new coming user is allocated to
the AP with the least workload. We consider the balance index
of throughput among all APs in WLAN controller domains to
evaluate the performance of our $* and the LLF algorithms.

B. Effect of Algorithm Parameters

In this experiment, we examine the effect parameters in-
volved in the algorithm. We first look at the time window
size used to extract co-leaving events. We change the length
of the co-leaving extraction time interval from one minute to
twenty minutes with a step of five minute to extract co-leaving
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Fig. 10. The balancing index varying under two parameters in simulation

events in the trace data. Fig. 10 plots the average normalized
balancing index over all WLAN controllers as a function of
co-leaving extraction time intervals. It can be seen that, as the
length of the extraction time interval increases, the normalized
balancing index first increases, reaches to a maximum at
the optimal time interval length of five minutes, and then
drops. This trend can also be seen using different constant
coefficient & in calculating the balancing index. The reason is
that a larger time interval will generate more co-leaving events,
which facilitates the calculation of social relationship strength
between users. On the other hand, it will also introduce
more fake social relationships as the chance for two non-
related users to share a common co-leaving event increases.
In contrast, a smaller time interval can result more accurate
social relationships but the number of such relationships would
be limited, which is important to S3 algorithm. We then use
a = 0.3 and a five-minute co-leaving extraction time interval
as the optimal parameter configuration.

We then examine whether the parameter 7 can represent the
real social relation and achieve the best result. We used differ-
ent training days and test days to estimate this parameter.We
found that the value of system parameters we choose before
always lead to a higher normalized balance index among APs.

We then investigate how much history data do we need. In
this experiment, we use five minutes co-leaving extraction time
and varies the value of «. Fig. 11 plots the average normalized
balancing index over all WLAN controllers as a function of
historical data. It can be seen that, for all o, as more historical
data are available, the normalized balancing index increases
and stabilizes when the length of training stage reaches about
15 days. This implies that information older than 15 days does
not help in increasing the balance index but does not hurt
either.

C. Comparison with LLF

In this section, we compare S° with LLF .We take all
training data for establishing pairwise social relationships and
use the same experimental data for all the algorithm to assign

498

0.95 ; : ‘ :

0.1
09 | —o3
o8sr |~ ""05 ]

0.8

0.75

0.7

0.65

Main Normalized Balance Index

0.6

0.55 ! ; ;
1 10 13
Days to look back

15 20

Fig. 11. The balancing index varying under two parameters in simulation

0.6

0.4

Normaolized Balancing Index

0.2

1 2 3 4 5 6 8 9

7 10
Different AP Control Domain Indexed by the Number

Fig. 12.  Comparison between S° and LLF in one controller domain

users to APs. Fig. 12 shows the average normalized balancing
index over all WLAN controllers and all experimental data as
a function of time in daytime. There are two main observations
found in Fig. 12. First, it can be seen that S* outperform
LLF over most time. On average, S3 can achieve about
41.2% balancing index gain compared with LLF. Second, the
performance of S is more stable and robust against user
behavior than that of LLF. Especially, S* performs well when
suffering co-leaving events. For example, in SJTU, time from
12:00 to 13:00 , from 16:00 to 17:50 and 21:00 to 22:00 are
peak time when users leave network, against which S® can
achieve about 52.1% balancing index gain against LLF. The
reason is that s> can effectively cancel the negative impacts of
social relations on AP load balance.

To further demonstrate the effectiveness of S° on all sites,
Fig. 12 shows the average normalized balancing index on all
sites with 95% percentage confidence error bar. We find that
$3 shows much higher stability than LLF. The error bar can
be reduced by 72.1% overall compared with LLF. The average
normalized balancing index can be improved by 41.2% overall.



These results demonstrate that > effectively distribute users
to APs, providing significant improvements in balancing AP
loads.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the load balancing problem in
enterprise WLANS. By systematically mining the WLAN trace
we collected,we have found the fundamental leading factors
to load balancing problem is the churns of WLAN users.
We have also observed obvious social behavior between users
which can be characterized with application profiles of users.
With this insight, we have proposed an innovative scheme
$3 for user-friendly and steady load balancing in enterprise
WLANS. §3 is resilient to churns of WLAN users and maintain
excellent user experience without requiring to migrate user
among APs. The real prototype implementation have verified
the feasibility of the S design. Moreover, extensive accurate
trace-driven simulations have also demonstrated the efficacy of
§3. In our future work, we will further examine more aspects
in characterizing the network usage profiles of users so that
they can be used to obtain more accurate sociality information
of users. In addition, we will implement S* in our campus
WLAN and further improve the > design by solving the issues
encountered in practice.
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