
Towards Truthful Mechanisms for Mobile
Crowdsourcing with Dynamic Smartphones

Zhenni Feng†, Yanmin Zhu†,�,∗, Qian Zhang‡, Hongzi Zhu†, Jiadi Yu†, Jian Cao†, Lionel M. Ni ‡
† Department of Computer Science and Engineering at Shanghai Jiao Tong University

� Shanghai Key Lab of Scalable Computing and Systems
‡ Hong Kong University of Science and Technology

∗ Corresponding Author
† {zhennifeng, yzhu, hongzi, jiadiyu, cao-jian}@sjtu.edu.cn; ‡ {qianzh, ni}@cse.ust.hk

Abstract—Stimulating participation from smartphone users
is of paramount importance to mobile crowdsourcing systems
and applications. A few incentive mechanisms have been pro-
posed, but most of them have made the impractical assumption
that smartphones remain static in the system and sensing tasks
are known in advance. The existing mechanisms fail when
being applied to the realistic scenario where smartphones
dynamically arrive to the system and sensing tasks are
submitted at random. It is particularly challenging to design
an incentive mechanism for such a mobile crowdsourcing sys-
tem, given dynamic smartphones, uncertain arrivals of tasks,
strategic behaviors, and private information of smartphones.
We propose two truthful auction mechanisms for two different
cases of mobile crowdsourcing with dynamic smartphones. For
the offline case, we design an optimal truthful mechanism
with an optimal task allocation algorithm of polynomial-time
computation complexity of O(n+γ)3, where n is the number
of smartphones and γ is the number of sensing tasks. For
the online case, we design a near-optimal truthful mechanism
with an online task allocation algorithm that achieves a
constant competitive ratio of 1

2
. Rigorous theoretical analysis

and extensive simulations have been performed, and the
results demonstrate the proposed auction mechanisms achieve
truthfulness, individual rationality, computational efficiency,
and low overpayment.

Index Terms—Crowdsourcing, Truthful mechanisms, On-
line mechanisms

I. INTRODUCTION

These years have witnessed the rapid adoption of smart-

phones. It is reported that 1.5 billion smartphones will be

shipped around the world in 2017 [1]. Being embedded

with a variety of sensors such as accelerometer, gyroscope,

camera, and digital compass, a smartphone is able to

read various sensing data about its surroundings. As being

attached to a user who may roam in different places, a

smartphone collects sensing data that can be valuable to

other users in the world.

Mobile crowdsourcing with smartphones, as illustrated in

Fig. 1, has become a promising paradigm for collecting and

sharing data, leveraging the unique advantage of distributed

mobile smartphones. Within a mobile crowdsourcing sys-

tem, there is a platform locating on the cloud and a pool of

dynamically available smartphones. Those users who want

to collect sensing data about a distributed phenomenon can

send sensing queries to the platform which then recruits

smartphones to provide the corresponding sensing services.

A number of useful applications and systems have been

investigated, such as noise mapping [2], cellular or WiFi

coverage maps [3], and traffic information collection [4].

Stimulating smartphone participation is of paramount

importance to the success of mobile crowdsourced sens-

ing with smartphones. In general, smartphone users are

reluctant to provide sensing services for others. On the one
hand, performing sensing services consumes considerable

resources on a resource-limited smartphone, such as energy

and memory. On the other hand, as a smartphone shares

sensing data, it may be subject to possible privacy breach.

Without enough contributing smartphones, one is not able

to receive desirable sensing services from the mobile

crowdsourcing application. As a result, mobile crowdsourc-

ing would not be practical for wide adoption. Although a

number of exciting mobile crowdsourcing applications and

systems [5] [2] have been developed, they usually assume

that smartphones voluntarily contribute their resources to

providing sensing services. This assumption does not hold

in reality, suggesting such mobile crowdsourcing systems

cannot be sustained in the long run.

A few truthful incentive mechanisms [6] [7] have been

designed for mobile crowdsourcing applications. However,
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Fig. 1. Illustration of a mobile crowdsourcing system. The platform
residing on the cloud receives sensing queries and assigns sensing tasks
to smartphones. Both tasks and smartphones arrive to the system dynam-
ically.
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most of them have made the impractical assumption that
both smartphones and sensing tasks are static in the system.

Clearly, such assumption is untrue in practice. In the real

world, a smartphone may be opportunistically available for

providing sensing services and hence may join the system

for a certain duration of time, when, e.g., the smartphone

is idle. When the smartphone user returns to use the phone,

it may leave the system. On the other hand, sensing tasks

also arrive to the system dynamically, and arrivals of tasks

can be unpredictable. As a result, existing incentive mech-

anisms may fail and become untruthful when being applied

to crowdsourcing systems with dynamic smartphones and

random arrivals of tasks.
It is particularly challenging to design incentive mecha-

nisms given the unique characteristics of mobile crowd-

sourcing with dynamic smartphones. First, smartphones

may dynamically join and leave the system, and sensing

tasks may arrive to the system at random. Such uncertain

and unpredictable behaviors further complicate the design

of incentive mechanisms. Second, the key information about

real cost, the begin and the end of active time are typically

private and unknown to others. Finally, smartphone users

are both rational and strategic. A smartphone takes actions

solely for maximizing its own utility.
In response to the challenges, we propose two truthful

auction mechanisms which include the new dimension of

time in mechanism design. The proposed auction mecha-

nisms explicitly take both dynamic smartphones and ran-

dom arrivals of tasks into consideration. For the offline case,

we design an efficient truthful mechanism with an optimal

task allocation algorithm of polynomial-time computation

complexity O(n + γ)3, where n is the number of smart-

phones and γ is the number of sensing tasks. For the online

case, we design a near-optimal truthful mechanism with an

online task allocation algorithm that achieves a constant

competitive ratio of 1
2 . Rigorous theoretical analysis and

extensive simulations jointly demonstrate that our proposed

auction mechanisms achieve truthfulness, individual ratio-

nality, and computational efficiency.
The major technical contributions made in this paper are

as follows.

• It is the first work, to the best of our knowledge,

that considers dynamic smartphones and random ar-

rivals of sensing tasks in designing truthful incentive

mechanisms for mobile crowdsourcing systems. The

dynamic behaviors of smartphones essentially increase

the design complexity due to possible misreports on

the active time.

• For the offline case, we design a truthful auction

mechanism in which the optimal task allocation al-

gorithm produces the maximum social welfare with a

polynomial complexity of O(n + γ)3. For the online

case, we design a near-optimal truthful mechanism in

which the online task allocation algorithm achieves a

constant competitive ratio of 1
2 .

• We have provided both rigorous theoretical analysis

and extensive simulations, and the results demonstrate

that our proposed mechanisms achieve truthfulness,

individual rationality, computational efficiency, and

low overpayment.

The rest of the paper proceeds as follows. The next

section reviews related work. Section III presents the system

model, the reverse auction model, and the mathematical

formulation. In Section IV, we describe the proposed mech-

anism for the offline case and in Section V, we describe

the proposed mechanism for the online case. Section VI

presents evaluation results. Section VII concludes the paper.

II. RELATED WORK

In the section we review recent related work from the

following three aspects.

Mobile crowdsourcing with cooperative smartphones.
A number of existing applications and systems of mo-

bile crowdsourcing have assumed voluntary participation.

They usually regard crowdsourcing as an efficient way of

collecting data, such as [5] [8]. In [5], the PEIR system

first crowdsources sensing tasks to mobile handsets. Based

on the sensory data sets, the PEIR performs system-wide

processing and extracts statistical information to support

interesting applications. Other studies [9] [10] focus on the

issue of preserving privacy of users (data providers).

Incentive mechanisms based on auctions. Auctions

have been widely used for providing incentives in mobile

crowdsourcing. In [7] and [11], the authors design pricing

schemes utilizing the auction framework to compensate the

costs of smartphones. However, they neglect that smart-

phones are self-interested and they may misreport their

private information to increase their benefit. In [6], two

incentive mechanisms are proposed for the platform-centric

model and the user-centric model, respectively. An optimal

incentive mechanism is proposed in [12]. The mechanism

aims to minimize the total payment to all the smartphones.

In [12], the author assumes that the distribution of real costs

of smartphones is known and then computes the expected

payment upon the distribution. All of the existing auction

mechanisms have made the impractical assumption on static

smartphones and given tasks.

Incentive mechanisms without auctions. Some non-

auction incentive mechanisms have also been proposed. In

[13], reputation mechanisms are integrated into the existing

pricing schemes of crowdsourcing websites, thus improving

the performance of the noncooperative equilibria. In [14],

an approach is proposed to motivate smartphones to join

crowdsourcing applications. Instead of providing monetary

rewards to smartphones, the approach requires a user should

offer services to others if the user wants to receive services

from others.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the section we first describe the system model of

the considered crowdsourcing scenario with smartphones.

Then, we discuss the reverse auction framework which
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models the interaction between smartphones, sensing tasks

and crowdsourcing system. Finally, the mathematical for-

mation of our problem is discussed in detail.

A. System Model

In the mobile crowdsourcing system, there are tasks,

smartphone users, and a cloud platform. We divide the time

into slots of equal size. A time slot is denoted by ti. There

are in total n smartphones existing in the system during the

whole time duration of interest. Let N denote the set of all

smartphones, N = {1, 2, · · · , n}. Note that the number of

smartphones active in the system in any time slot is no

more than n.

Tasks arise at random and dynamically arrive to the

platform. Let ri denote the number of tasks arriving in slot

ti. The k-th sensing task that arrives in slot j is denoted

by τj,k, k � rj . Let Γ denote the set of all sensing tasks,

γ = |Γ|. A task can be completed in a single slot. In the

real world, a larger task can always be divided to tasks that

can be completed in a single slot. A task is allocated to at

most one smartphone for processing. In our work, a task

can be processed by any smartphone in the system, i.e.,
each smartphone can provide all kinds of sensing services.

A smartphone spends a certain cost when performing a

sensing task, since it consumes resources, such as battery

and bandwidth. Since each task can be completed in a single

slot, we assume that the real cost for a given smartphone

completing a task is the same. Let ci denote the real cost
(i.e., the reserve price) of smartphone i for performing

each sensing task. Each smartphone can process sensing

tasks at certain periods when the user do not use it. Each

time joining the participatory sensing market to compete for

sensing tasks, a smartphone must determine the period of

available time (called active time) within which it promises

to complete a sensing task if it is assigned one.

B. Reverse Auction Framework for Mobile Crowdsourcing

We introduce the reverse auction framework to model the

interactions between the platform and the smartphones. A

reverse auction model is a kind of auction in which the role

of buyer and seller are reverse. In the mobile crowdsourcing

system, the buyer is the platform buying sensing services,

and the sellers are smartphones.

The reverse auction framework is depicted in Fig. 2.

We assume that the reverse auction is executed round by

round. Within each round, smartphones dynamically join

the system and tasks are submitted to the system at random.

Each round is of equal size, containing m slots. Within

each round, each smartphone i submits at most one bid

Bi = (ãi, d̃i, bi), 0 � ãi � d̃i � m, 0 � bi < ∞, to

the platform, where ai denotes the begin of active time

(arrival time) of i, di is the end of active time (departure
time), bi is the claimed cost for providing sensing service.

Since a smartphone can only submit a single bid, the length

of [ai, di] defines the maximum time that a smartphone is

willing to wait for an allocation of a sensing task. The

claimed cost bi may be different from the real cost ci and

we would explain this later.

The platform determines the allocation rule π and the

payment rule p. If B = {Bi|i = 1, 2, · · · , n}, then the

winning bids determination rule is π : Γ �→ B, where task

τj,k is allocated to the smartphone which has submitted

bid Bi = π(τj,k), i.e., Bi is a winning bid. After each

smartphone with a winning bid finishes the sensing task,

the platform pays a monetary reward to each smartphone

i subject to the payment rule, p : B �→ R
n. A smartphone

that is not allocated a task during its active time would get

no payment. Without lose of generality, we only consider a

single round. The same design and analysis can be applied

to other rounds.

Next, we discuss the characteristics of the rationality of

smartphones. Since the real cost, the begin of active time

and the end of active time of a smartphone are all private,

each self-interested smartphone may manipulate the market

by misreporting its private information, aiming at maximiz-

ing its benefit. For example, each smartphone may claim

a delayed begin (arrival), an earlier end (departure) or a

higher cost. However, it is clear that ãi � ai and d̃i � di,
which are called no early-arrival and no late-departure
misreport, respectively. This is because no smartphones can

offer sensing service beyond its active time. Next, we define

the utility of smartphone i as the net benefit it receives from

offering sensing service.

Definition 1 (Utility of Smartphone). The utility of each
smartphone i is the difference between the payment it
receives from the platform and its real cost, i.e.,

ui = pi(Bi, B−i) − ci, (1)

where B−i denotes the other bids in B except Bi.

Each self-interested smartphone selects strategy solely to

maximize its own utility. Thus, it is possible for them to

misreport its private information. This kind of misreporting

is called strategic behavior.

We next define the utility for completing a sensing

task and the social welfare. Suppose sensing task τj,k is

allocated to smartphone i who has submitted bid Bi. The
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Fig. 2. The reverse auction framework for the mobile crowdsourcing
system with dynamic smartphones and random arrivals of tasks.
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system (or the auctioneer) obtains a fixed value ν for a

task being completed. Then, the formal definitions are as

follows.

Definition 2 (Utility of Sensing Task). The utility of
sensing task τj,k is the difference between the value and
the real cost of smartphone i which is chosen to perform
the sensing task, i.e., Bi = π(τj,k).

u(τj,k) = u(τj,k, Bi) = u(τj,k, π(τj,k)) = ν − ci. (2)

Definition 3 (Social Welfare). The social welfare is the
sum of the utilities of all completed sensing tasks. It is
computed as follows:

ω =
∑

τj,k∈Γ
u(τj,k). (3)

Remarks: The social welfare is closely related to the

allocation rule π and set B of submitted bids. When the

allocation rule is fixed, the social welfare only changes with

B. Thus, the social welfare can be denoted as ω(B) as well.

C. Problem Formulation

In the paper, we aim to design auction mechanisms for

stimulating smartphone participation in mobile crowdsourc-

ing. The objective of our design is to achieve the following

important properties, such as, truthfulness, individual ra-
tionality, and computational efficiency. We give the formal

definitions of these properties.

Definition 4 (Truthfulness). An auction mechanism is
truthful if and only if, for each smartphone i, it cannot
increase its utility by misreporting its private information,
i.e., ui(π, B̄i, B−i) � ui(π,Bi, B−i) whatever others re-
port, where B̄i = (ai, di, ci) denotes the private informa-
tion, Bi = (ãi, d̃i, bi) denotes a bid that is different from
B̄i, B−i is the set of bids submitted by all others except i.

Definition 5 (Individual Rationality). An auction mech-
anism satisfies the property of individual rationality if
and only if each smartphone has a non-negative utility,
i.e., ui � 0, for each i ∈ N .

Definition 6 (Computational Efficiency). An auction
mechanism is computationally efficient if and only if it
terminates in polynomial time.

To design truthful auction mechanisms possessing the

properties listed above, we should address two key prob-

lems. The mathematical formulation of the two problems

is as follows.

Definition 7 (Winning Bids Determination Problem).
For the mobile crowdsourcing system, its objective is a
system-wide social welfare given in Definition 3. The mo-
bile crowdsourcing system aims at maximizing the social
welfare by selecting an optimal set of winning bids. The
optimal set W ∗ of winning bids is selected by the optimal
allocation rule, i.e., W ∗ = {Bi|Bi = π∗(τj,k), τj,k ∈ Γ}.

The winning bids determination problem is

maxW ω =
∑

τj,k∈Γ u(τj,k, π(τj,k)), (4)

s.t.
∑

τj,k∈Γ I(π(τj,k) = Bi) � 1, ∀i ∈ N, (5)

ai � j � di, if π(τj,k) = Bi, ∀i ∈ N, (6)

where I(π(τj,k) = Bi) is an indicator random variable
which is 1 when the sensing task τj,k in slot j is allocated
to smartphone i, and it equals to 0 otherwise.

Remarks: (4) gives the objective of maximizing the social

welfare. The social welfare reflects the efficiency of the

mobile crowdsourcing system. (5) indicates a smartphone

is allocated no more than one sensing task or has at most

one winning bid. (6) requires that a sensing task should be

allocated to a smartphone within its active time.

Definition 8 (Payment Determination Problem). The
payment determination problem is to determine how much
a participating smartphone should be paid and when the
payment is executed.

In the following two sections, we propose two auction

mechanisms for two cases of mobile crowdsourcing.

• In the offline case, at the very beginning the plat-

form receives the report of the active time of each

smartphone, and the arrivals of each task. It is also

at the beginning that the platform announces the set

of all tasks together with their arrival times to all

smartphones, each smartphone submits its bid, and the

platform determines the winning bids after receiving

all bids.

• In the online case, in the current time slot, the platform

only knows the tasks that have already arrived in the

current or the previous slots. It is also in the current

slot that the platform announces the set of all the tasks

that have arrived in the current slot, each smartphone

newly joining in the system in the current slot submits

its bid, and the platform determines the winning bids

for the tasks announced in the current slot.

IV. OPTIMAL AND TRUTHFUL AUCTION MECHANISM

FOR OFFLINE MOBILE CROWDSOURCING

We first consider the offline case. The offline case exists

when the future tasks have been deterministically scheduled

and the future availability of all smartphones can be known

in advance. The offline case also serves as the benchmark

for the online auction mechanism design.

A. Overview

We propose a truthful auction mechanism for the offline

case, which consists of two components. The two compo-

nents are designed in response to the two key problems

in Section III-C. To solve the winning bids determination

problem, we model the problem as the maximum weighted
matching in a bipartite graph and find the optimal solu-

tion with polynomial-time computation complexity. For the

payment determination problem, we leverage the traditional

14
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Fig. 3. An example of constructing the weighted bipartite graph. In the
first slot, two sensing tasks and Smartphone 1 arrive and another three
sensing tasks arrive in the second slot.

Vickrey-Clarke-Groves (VCG) mechanism and propose a

payment scheme which guarantees that each smartphone

discloses its private information truthfully. We also theo-

retically analyze the achieved properties of our proposed

auction mechanism.

B. Optimal Algorithm for Winning Bids Determination
Problem

We solve the winning bids determination problem in

three major steps. In the first step, we transform the

problem to a matching problem. In the second step, we

employ the Hungarian algorithm to compute the maximum

weighted matching. In the third step, we map the maximum

weighted matching to the winning bids and the allocation

of all the tasks.

Transforming to matching problem. For a bipartite

graph G = (X∪Y,X×Y ), where X and Y (X∩Y = ∅) are

two sets of vertices, X×Y is the set of edges each of which

connects two vertices in X and Y . Imagine that each task

τj,k is a vertex xj,k (k � ri) in X and each smartphone i is

a vertex yi in Y . For each pair of vertices xj,k and yi, they

share an edge (xj,k, yi) with the weight w(xj,k, yi) = ν−bi
only if smartphone yi is active in the j-th slot; otherwise,

w(xj,k, yi) = 0. We give a simple example in Fig. 3 to

illustrate the construction of the weighted bipartite graph.

Computing the maximum weighted matching. We

employ the Hungarian algorithm [15] to find the maximum

weighted matching in the bipartite graph G = (X ∪Y,X×
Y ) constructed in the previous step. The main idea of

the algorithm is as follows. First, an arbitrary matching

is selected. Then, for the current matching, an augmented

path is computed, based on which the current matching

can be improved. This process repeats until there exists no

augmented path. The resulting matching is the maximum

weighted matching for G.

Determining winning bids and task allocation. Let

the resulting maximum weighted matching be denoted by

M . Based on M , we can determine the winning bids and

the corresponding task allocation as follows. For each edge

(xj,k, yi) in M , the connection means that task τj,k in the

j-th slot is allocated to smartphone i.

C. Payment Scheme

It is critical to notice that social welfare calculated in

Section IV-B is based on the claimed cost of smartphones.

The payment determination problem for the auction mecha-

nism design is to design a payment scheme that guarantees

each smartphone truthfully discloses its real cost as well as

the begin of active time and the end of active time. The

payment scheme is dedicated to stimulate each smartphone

to participate and furthermore truthfully report its private

information. We design a payment scheme based on the

VCG mechanism [16]. The main idea of the payment

scheme is that each smartphone is paid an amount of money

equal to its contribution to the social welfare of others in

the mobile crowdsourcing system.

The payment of each smartphone i is computed as

follows:

pi(B) = (ω∗(B)− (−bi)) − ω∗(B−i) (7)

= h(B−i) − ω∗(B−i), (8)

where ω∗(B) denotes the maximum social welfare when

the set of submitted bids is B. ω∗(B−i) is similar to the

ω∗(B). h(B−i) is a function whose value depends on B−i

and is irrelevant to Bi.

Remarks: The payment scheme can be understood by

amortizing the total social welfare to each element (e.g., s-

martphone or sensing task) of the system. A sensing task

τj,k has a social welfare of ν while the social welfare of a

smartphone that is allocated a sensing task can be regarded

as −bi. The first part in (7) computes the social welfare

of all others in the mobile crowdsourcing system when Bi

is selected, and the second part in this equation computes

the maximum social welfare of all others in the mobile

crowdsourcing system without bid Bi. From the meaning

of the first part, we can see that it is not relevant to the

bid of smartphone i and thus we use function h(B−i) to

represent the first part.

Then, the utility of each smartphone i is,

ui(B) = pi(B) − ci = h(B−i) − ω∗(B−i) − ci. (9)

Obviously, for smartphone j that is not allocated in its

active time according to the winning bids determination

algorithm, the difference is zero.

D. Theoretical Analysis

Theorem 1. The proposed auction mechanism for the
offline case is truthful, i.e., each smartphone truthfully
reports its private information no matter what others report.

Proof: To demonstrate the auction mechanism is truth-

ful, we should guarantee that each smartphone i cannot

increase its utility by misreporting any dimension of its

private information whatever others report.

Firstly, we prove the proposed mechanism is cost-
truthful, which means the smartphone cannot increase its

utility by misreporting its real cost. Let Bi = (ãi, d̃i, bi)
denote the bid of smartphone i. When ãi and d̃i are fixed,

15



from (8), we can see that the two parts of computing

payment are independent with the claimed cost bi in bid

Bi. Thus, each smartphone i cannot increase its utility by

misreporting its real cost.

Then, we prove the proposed mechanism is time-truthful,
which indicates each smartphone cannot increase its utility

by delaying the begin of its active time and advancing its

end of active time. For a smartphone that is not allocated

a sensing task, it cannot receive a sensing task either, if

it reports a tighter active time interval. For a smartphone

that is allocated a sensing task by truthfully reporting its

active time interval, it cannot benefit from reporting a

tighter active time interval. The tighter active time interval

may make the bid of the smartphone fail, leading to non-

increasing utilities. Thus, a smartphone has no incentives

to misreport the begin and the end of its active time.

Theorem 2. The proposed auction mechanism achieves the
property of individual rationality.

Proof: For smartphone i that is not allocated any task

in its active time, it would neither be paid nor incur sensing

cost. Thus, its utility is zero.

For smartphone i that is allocated a task in its active

time, its utility is computed as shown in (9). The utility

can be computed in the following way:

ui(B) = ω∗(B) − ω∗(B−i) + bi − ci, ,

= ω∗(B) − ω∗(B−i), (10)

� 0, (11)

where (10) holds because we have demonstrated that s-

martphone i would truthfully report its private informa-

tion. As ω∗(B) denotes the optimal solution, we get that

ω∗(B) � ω∗(B−i).

Theorem 3. The optimal algorithm for winning bids
determination problem has polynomial-time computation
complexity.

The Hungarian algorithm can be modified to achieve an

O(n3) running time [17] [18], where n is the number of

vertices in the graph. Thus, the optimal algorithm can be

computed within O(n + γ)3.

V. NEAR-OPTIMAL TRUTHFUL AUCTION MECHANISM

FOR ONLINE MOBILE CROWDSOURCING

We next consider the online case, which is for practical

applications in the real world. We solve the two problems

in Section III-C by proposing a near-optimal algorithm

for winning bids determination and a payment scheme to

induce truthfulness. Finally, we theoretically prove the pro-

posed auction mechanism achieves the desired properties.

A. Overview

We propose an online auction mechanism, which is

comprised of two components for solving the two problems

stated in Section III-C, respectively. For the online winning

Algorithm 1: Winning Bids Determination
Input: Set B of bids, vector R = (r1, r2, · · · , rm).
Output: vector Π={p1, p2, · · · }.

1: S ← ∅, t← 1, Π← �0;
2: while t � m do
3: Add each newly arriving smartphone to S and remove

each smartphone that departs at slot t from S;
4: Sort bids in S by its claimed cost in non-decreasing order.
5: for k from 1 to rt do
6: Choose the first smartphone Bj in S, Π(j)← t;
7: S ← S −Bj ;
8: end for
9: t← t+ 1.

10: end while
11: return Π;

bids determination problem, however, it is almost impos-

sible to find an optimal solution due to the uncertainty

of future information about arrivals of tasks and active

time of smartphones. Therefore, we design a near-optimal

online algorithm to determine the set of winning bids.

Furthermore, because the VCG-style payment scheme is no

longer truthful when the allocation of sensing tasks is not

optimal [16]. We design a payment scheme that guarantees

each smartphone discloses its private information truthfully.

B. Online Algorithm for Winning Bids Determination

We propose an online greedy algorithm for solving the

winning bids determination problem. The main idea of this

greedy algorithm is to allocate the tasks to those smart-

phones with lowest costs which are currently active but

have not been allocated a task. The algorithm is executed

at the beginning of each slot. For example, if there are 3

newly arrived tasks in the current slot, then the algorithm

will select three active smartphones for the three tasks.

We proceed in two main steps to describe the algorithm.

In the first step, we show that maximizing the social

welfare is equivalent to minimizing the total cost of selected

smartphones. In the second step, we explain the greedy

strategy of the algorithm for selecting the smartphones in

each time slot.

Revealing equivalence. Since all the sensing tasks are

to be allocated and the sum of their values is fixed, the

winning bids determination problem which maximizes the

social welfare is equivalent to finding a subset of winning

bids to minimize the total claimed cost in these bids.

Greedy strategy. The greedy winning bids determination

algorithm is described in the following steps. Imagine that

the algorithm maintains a set of all active smartphones that

has not been allocated a sensing task. The set is updated at

the beginning of each slot when any smartphone begins its

active time, ends its active time or obtains an allocation.

In each slot, the platform greedily selects smartphones

with the lowest costs and allocates sensing tasks to them.

Algorithm 1 shows the details of selecting winning bids.

Illustrating example. In Fig. 4, we give an example to

illustrate the online algorithm. There are in total 7 smart-

phones, which has very different active time or claimed

16



 ���

+���
�,�
�
-�

� � � # �

$����

�	"�


'
(

)
*

+
&

!!

�
�
�
#
�
*
.. ��(�(*�

* ��(�(/�
� ��(�(#�
# ��(�(0�
� ��(�(���
� ��(�(��
� ��(�(��

�� ,�� 1""���
���
�	!

Fig. 4. An example illustrating the online winning bids determination
algorithm. The dotted rectangle contains all active smartphones in the
current time slot. The number above each line denotes the claimed cost.

costs. For example, Smartphone 2 begins its active time in

the 1st slot and ends its active time in the 4th slot. It claims

a cost of 5. The current slot is the 3rd slot. In this example,

it is assumed that in each time slot only one new task arrives

to the system. Previously, in the 1st slot, Smartphone 2 won

a bid, and in the 2nd slot, Smartphone 1 won. In the current

slot, the dynamic pool contains 3 smartphones, i.e., 3, 6,

and 7. According to the greedy strategy, Smartphone 7 wins

a bid in the current slot since its cost 6 is smaller than

those of Smartphones 3 and 6 (with a cost of 11 and 8,

respectively).

C. Payment Scheme

Next, we propose a payment scheme which guaran-

tees that each smartphone discloses its private information

truthfully. As mentioned before, a VCG-based payment

scheme is inapplicable to our online mechanism because

the winning bids determination algorithm is not optimal.

In addition, simple payment schemes, e.g., the scheme of

second price auction, also fail in our online scenario. We

take the payment scheme of the second price auction as an

example to illustrate how it fails. According to the second

price auction, multiple bidders compete for a certain item.

The bidder who claims the highest price wins. The winner

only pays the price that the second highest bid claims.

We could apply the idea of this payment scheme to our

scenario assuming there is only sensing task at each slot:

i.e., each winning smartphone pays the price that is offered

by the second lowest bid. However, we will use an example

to demonstrate that this payment scheme fails to induce

truthfulness, i.e., a smartphone may misreport its private

information.

The example is illustrated in Fig. 5, where the submitted

bids and sensing tasks are the same as that of Fig. 4.

The payment scheme which is derived from the idea of

second price auction is explained in Fig. 5(a). In the first

slot, Smartphone 2 is chosen to perform the sensing task

and the second lowest price in the first slot is 6 which

is reported by Smartphone 7, and then Smartphone 2 is

paid 6. In the second slot the sensing task is allocated to

Smartphone 1 and it is paid 4. However, Smartphone 1 has

the incentive to postpone the begin of its active time in
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(a) Smartphone reports its bid truthfully.
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(b) Smartphone misreports the begin of its active time.

Fig. 5. An example illustrating that smartphones can benefit from
misreporting when applying the idea of second price auction into the
system at each slot. In Fig. 5(a), Smartphone 1 honestly report the begin
of its active time while in Fig. 5(b) Smartphone 1 delays the begin of its
active time by 2 slots. According to the second price rule, Smartphone 1
is paid 4 and 8 in the two situations, respectively. Thus, Smartphone 1
increases its utility by misreporting the begin of its active time.

order to gain a higher utility, which is shown in Fig. 5(b).

When Smartphone 1 delays the begin of its active time by

2 slots, i.e., Smartphone 1 reports that its active time is

[4,5], and then it obtains a payment of 8. It is obvious that

this smartphone increases its utility by 4 when purposely

delaying the begin of its active time by 2 slots. Thus,

such payment scheme fails to ensure that each smartphone

truthfully reports its private information.

We next explain the proposed payment scheme in detail.

For a smartphone i whose bid wins, it is paid an amount

of money that equals to the claimed cost of the first

smartphone that makes the bid Bi fail. The smartphone

is called the critical player of i, denoted by c(i). Then, we

discuss how to find the critical player c(i) of i. If Bi wins

in slot t′i, the critical player c(i) of i is the smartphone with

the highest claimed cost and wins between t′i and the end

of active time di of smartphone i. For a smartphone that is

not allocated a task, it would not be paid. In addition, each

smartphone receives its payment in its reported departure

slot.

Main steps of payment scheme. The main steps of

computing the payment are listed as follows (Algorithm 2

shows the pseudo code of the payment scheme). First, it

removes Bi from B and allocates the sensing tasks to
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Algorithm 2: Payment Scheme
Input: Smartphone ID i, set B of bids of dynamic

smartphones, slot t′i in which Bi wins.
Output: payment pi.

1: t← 1, B̃ ← ∅, pi ← bi, B ← B −Bi, S ← ∅;
2: while t � d̃i do
3: add the bids of newly arriving smartphones to B̃ and

remove the bids that has departed;
4: sort the smartphone in B̃ according to its claimed cost in

non-decreasing order;
5: if t � t′i then
6: select rt-th smartphone j in the current slot;
7: add the first rt smartphones to S;
8: if bj > pi then
9: pi ← bj ;

10: end if
11: end if
12: remove the first rt smartphones from B̃;
13: t← t+ 1;
14: end while
15: return pi;

other smartphones utilizing the greedy rule in Algorithm 1

until slot t′i − 1. Next, in each slot in [t′i, di], it allocates

tasks to the smartphones according to the greedy rule and

records the smartphone with the highest claimed cost that

is allocated a task during these slots.

Illustrating example. We give an example to show the

computing of the payment for Smartphone 1 in Fig. 4.

In Section V-B, we know that Smartphone 1 is allocated

a task in the 2nd slot. If the tasks are allocated among

the rest smartphones, then the tasks would be allocated

to smartphones 5, 7, 6, 4 with claimed costs of 4, 6, 8, 9,

respectively. Then, the payment to Smartphone 1 is 9.

D. Theoretical Analysis

According to [16], we can prove that the proposed online

auction mechanism is truthful if it satisfies the following

two conditions: 1) The winning bids determination algorith-

m is monotonic, and 2) each smartphone is paid an amount

that equals to the critical value.

Definition 9 (Critical Value). Given the allocation rule,
the critical value bci for smartphone i is the minimum b′i if
smartphone i submits the bid Bi = (ai, di, b

′
i) and its bid

Bi wins.

Remarks: This is called critical value because if smart-

phone i charges lower than bci with bid Bi = (ai, di, b
c
i −

δ), δ > 0, it would win. Otherwise, it would lose for any

bid Bi = (ai, di, b
c
i + ξ), ξ > 0.

Definition 10 (Monotonicity). For a smartphone i that
wins with the bid Bi = (ãi, d̃i, bi), it would still win if it
reports a bid B′

i = (a′i, d
′
i, b

′
i), where a′i � ãi, d

′
i � d̃i, b

′
i �

b̃i.

Remarks: The definition shows that a monotonic win-

ning bids determination algorithm must guarantee that if

a smartphone wins with a bid Bi = (ãi, d̃i, bi), it would

certainly win by reporting a lower claimed cost or weaker

interval (i.e., a′i � ãi, d
′
i � d̃i).

Theorem 4. The proposed auction mechanism for the
online case is truthful.

Proof: Firstly, we show that the winning bids determi-

nation algorithm is monotonic. For a smartphone that wins

when submitting the bid Bi = (ãi, d̃i, bi), we replace its bid

Bi by B′
i = (a′i, d

′
i, b

′
i), where a′i � ãi, d

′
i � d̃′i, b

′
i � bi.

Assume that the smartphone i with bid Bi wins and is

allocated a sensing task in slot t̃i. It is obvious that bid B′
i

would be allocated a task in slot t̃i or earlier slot. Thus,

the winning bids determination algorithm is monotonic.

Then, we verify that the payment computed by Algorith-

m 2 is the critical value for smartphone i. Let pi denote

the payment computed by Algorithm 2. If the smartphone i
submits a bid B̄i = (ai, di, pi−ξ), ξ > 0, there exist at least

one smartphone j in the set S (obtained by Algorithm 2)

that charges higher than i. Thus, i would be allocated a task

instead of j. On the contrary, if the smartphone i reports bid

B̄i = (ai, di, pi+ζ), ζ > 0, smartphone i cannot win when

competing with smartphones in set S in its active time.

Thus, we prove that the payment calculated by Algorithm 2

is the critical value.

Theorem 5. The proposed auction mechanism satisfies the
property of individual rationality.

Proof: For a smartphone that whose bid fails, its utility

is zero. For a smartphone with a winning bid, its payment

is calculated in Algorithm. 2. Next, we demonstrate that

the payment of smartphone i is no smaller than its real

cost. For the smartphones in the set S, there is at least

one smartphone j chosen in the slot t′i that reports a

cost no smaller than the claimed cost of i; otherwise, the

smartphone j would be allocated a task instead of i in the

greedy online algorithm. Since we have demonstrated that

each smartphone would report its real cost, we conclude

that the payment is no less than the real cost. Thus, the

utility of i is nonnegative.

Theorem 6. The online algorithm for winning bids de-
termination problem is 1

2 -competitive, for each input,
ωapx/ωopt � 1

2 , where ωapx and ωopt denote the resulting
social welfare of the approximate online algorithm and the
optimal offline algorithm, respectively.

Theorem 7. The auction mechanism for the online case
has polynomial-time computation complexity.

Due to space limit, we omit the proof details of Theo-

rem 6 and Theorem 7.

VI. EVALUATION

In this section, we report simulation results and study

the performance of the proposed algorithms for mobile

crowdsourcing with dynamic smartphones.

A. Methodology and Simulation Settings

We evaluate the performance of two auction mechanisms

with extensive simulations based on the following metrics:
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social welfare, overpayment ratio. We give the definition

of overpayment ratio. The overpayment is the difference

between the total payment to smartphones and the sum

of real costs of each contributing smartphone. Then, the

overpayment ratio is defined as follows.

Definition 11 (Overpayment Ratio). The overpayment
ratio characterizes the relative overpayment. It is computed
as follows.

σ =

∑
Bi∈{π(τj,k)|τj,k∈Γ}(pi − ci)∑

Bi∈{π(τj,k)|τj,k∈Γ} ci
. (12)

The arrivals of dynamic smartphones and sensing re-

quests are generated with Poisson distributions. The length

of active time of each smartphone is uniformly selected

and its average is set to ten percents of the default number

of total time slots in a round. The length of active time

characterizes the average time that a smartphone is willing

to wait in a round. The default setting is listed in Table I.

TABLE I
SUMMARY OF DEFAULT SETTINGS

Parameter Default value

Arrival rate λ of smartphones 6
Arrival rate λt of sensing tasks 3

Average of real costs c̄ 25
Number of slots m 50

Average length of active time 5
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Fig. 8. Social welfare ω vs. Average of real costs.

B. Evaluation Results

Evaluation of social welfare. In Fig. 6, we can find that

the social welfare increases with the increasing number of

time slots. It is easy to understand since a higher social

welfare can be obtained when more sensing tasks are pro-

cessed in longer time. The offline auction mechanism offers

a larger social welfare than the online auction mechanism

does. The gap between them expands as the number of slots

increases. From Fig. 7, we can see that the social welfare

increases when the arrival rate of smartphones goes up.

This is because a larger arrival rate indicates there are more

smartphones existing in the system and it is more likely to

hire smartphones with lower costs. In Fig. 8, we find that

the social welfare decreases with the average of real costs

increasing. This is because when the average of real costs

becomes larger, the system needs to pay more to get these

tasks processed.

Evaluation of overpayment ratio. Fig. 9 shows that

overpayment ratio stays slow with the increasing number

of time slots. The modest and stable overpayment ratio

reflects that the mobile crowdsourcing system is stable

even in the long run. The overpayment ratio of the offline

mechanism is larger than that of the online mechanism.

This suggests that the offline mechanism must pay more

in order to induce cooperation from selfish smartphones.

Fig. 10 shows that the overpayment ratio keeps stable with

the increasing number of smartphones. The overpayment

ratio for the online mechanism decreases slightly since
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Fig. 9. Overpayment ratio σ vs. Number of slots m.
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the system is more likely to hire smartphones with lower

costs when there are more smartphones. Fig. 11 depicts

the change of overpayment ratio when the average of real

costs of smartphones increases. It can be observed that the

overpayment ratio of the offline mechanism is larger than

that of the online mechanism .

VII. CONCLUSION

In this paper we have studied the crucial problem of

incentive mechanism design for mobile crowdsourcing sys-

tems with dynamic smartphones. Although there have been

several incentive mechanisms for mobile crowdsourcing,

most of them have impractically assumed that the smart-

phones are static and the tasks to be allocated are given.

This paper has presented two truthful auction mechanisms.

For the offline case, we have designed an efficient truth-

ful mechanism which features an optimal task allocation

algorithm of polynomial-time computation complexity of

O((n + γ)3). For the online case, we have designed a

near-optimal truthful online mechanism which features an

online task allocation algorithm achieving a constant com-

petitive ratio of 1
2 . Both analytical and simulation results

have demonstrated our proposed auction mechanisms are

truthful, also achieving individual rationality, computational

efficiency, and low overpayment.
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