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Abstract—Accessing to timely and accurate road condition information, especially about dangerous potholes is of great importance to

the public and the government. In this paper, we propose a novel scheme, called P 3, which utilizes smartphones placed in normal

vehicles to sense and estimate the profiles of potholes on urban surface roads. In particular, a P 3-enabled smartphone can actively

learn the knowledge about the suspension system of the host vehicle without any human intervention and adopts a one degree-of-

freedom (DOF) vibration model to infer the depth and length of pothole while the vehicle is hitting the pothole. Furthermore, P 3 shows

the potential to derive more accurate results by aggregating individual estimates. In essence, P 3 is light-weighted and robust to various

conditions such as poor light, bad weather, and different vehicle types. We have implemented a prototype system to prove the practical

feasibility of P 3. The results of extensive experiments based on real trace demonstrate the efficacy of the P 3 design. On average, P 3

can achieve low depth and length estimation error rates of 13 and 16 percent, respectively.

Index Terms—Pothole profile perception, smartphone, one degree-of-freedom, 3D accelerometer
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1 INTRODUCTION

POOR road conditions, especially dangerous potholes, are
most concerned by drivers, insurance companies and

the government, which severely threatens the drive safety
and causes enormous losses. For example, in 2011, the coun-
cil of UK paid more than 22 million pounds for compensa-
tion to drivers whose cars were damaged by potholes on
roads [1]. To detect and repair all those potholes in England
and Wales, however, would cost more than ten billion
pounds [2]. In America, nearly a quarter of major metropoli-
tan roads have pavements in poor condition, which results
in rough rides and an extra vehicle maintenance cost of
around four hundred dollars per driver per year [16]. Fur-
thermore, a tough road also brings uncomfortable trip expe-
rience to drivers [5]. Nevertheless, not all potholes are that
serious and need to take urgent actions immediately. Know-
ing the precise road condition in advance can help drivers
decide whether to alter their routes to avoid dangers and
damages. Furthermore, it also helps the government to bet-
ter evaluate when and where to fix or rebuild a road at a
minimum cost. Therefore, such timely and precise road con-
dition information is of great importance to both the public
and the government.

To solve the pothole profile perception problem, which
refers to obtain up-to-date and accurate profiles of danger-
ous potholes (i.e., the size and depth) in a metropolitan
scale, however, is very challenging due to the labor-inten-
sive nature of this problem. For instance, there might be
thousands or tens of thousands of roads to be checked in a
big city. The current solution of sending professional staff to
drive on road and manually evaluate the road condition
is neither cost-nor time-efficient. Recently, with the rapid
development of mobile devices, especially smartphones,
participatory sensing [8], [10], [17], [21], [22] is an
appealing technique and can be leveraged to solve this
problem efficiently. With this new paradigm, volunteer
drivers can first help collecting sensory data while driv-
ing via their personal smartphones and then uploading
their sensory data to a data center for further processing
to perceive the final road condition information. Never-
theless, retrieving road condition information in this way
poses two new challenges. First, as the sensors embed-
ded in a smartphone are usually low-end products, the
quality of the retrieved sensory data is usually low,
which makes it very hard to accurately estimate the pro-
files of potholes based on such data. Second, it is possi-
ble to improve the accuracy of pothole-perception results
by aggregating those low-quality sensory data. However,
designing an effective aggregation scheme is non-trivial,
which has to leverage the unique features of the specific
problem and particular domain knowledge.

In the literature, a few works studied on the pothole
detection but as far as our knowledge, no work on the prob-
lem of profiling the pothole. A few number of pothole detec-
tion schemes have been proposed. Dedicated sensors such
as ground penetrating radar (GPR) [9] are installed on a
vehicle and used to detect potholes. Using GPR can achieve
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high-resolution subsurface images by using high-frequency
radio waves. However, to detect timely road condition, it
would require a wide deployment of special vehicles with
GPR installed, which would lead to a prohibitively high
deployment cost and therefore is infeasible. Besides GPR,
cameras [11] can also be mounted on vehicles for pothole
detection. Although cameras are cheap and easy to deploy,
the usage of camera is often limited by the light condition.
In addition, it is possible to judge whether there is a pothole
on road but quite challenging to obtain accurate pothole
profiles (e.g., when full of water). Recently, there are several
pieces of work using 3D accelerometers built in smart-
phones to collect vibration data and distinguish road condi-
tion (e.g., potholes, cracks, rails and bumps) [4], [13], [15],
[23]. Similar with using camera, those schemes can easily
detect potholes but fail to perceive accurate pothole profiles.
Knowing the details of a pothole is of great significance as
not all potholes are harmful and urgent to be repaired. As a
result, to the best of our knowledge, there is no existing low
cost solution to the pothole profile perception problem.

In this paper, we propose an innovative participatory
sensing scheme, called Perceiving Pothole Profiles (P 3),
which utilizes common vehicles to tackle pothole profile

perception problem. The core idea of P 3 is for a driver to
first collect 3D acceleration information via its own smart-
phone while driving and then infer the profile of a pothole
based on the obtained sensory data. Individual perceptions
about the pothole are further collected and aggregated to
obtain a more accurate profile of this pothole by a data cen-

ter. In designing P 3, we mainly solve two following chal-
lenges. First, it is not obvious to directly understand the
underlying pothole from the raw acceleration readings of
the smartphone as the vehicle is equipped with a suspen-
sion system to absorb shocks to the vehicle body. Especially,
the characteristics of such a suspension system are different
from vehicle to vehicle. Dealing with this challenge, we pro-
pose an active vibration recovery algorithm which can auto-
matically learn the dynamic knowledge about the vehicle
and recover the actual vibrations of wheels from raw accel-
eration readings regardless of the type, its mass, or the
speed of the vehicle. With the vibrations of wheels, the pro-
files of the pothole can be precisely estimated. Second, indi-
vidual estimates about the profile of a pothole can be rather
inaccurate due to limited performance of low-end sensors
available on smartphones. To tackle this challenge, we char-
acterize the relationship between the underlying potholes
and the retrieved individual estimates and design an indi-
vidual perception aggregation algorithm, which assigns an
appropriate weight to an individual perception according
to the speed when the perception was made.

The main advantage of P 3 is four-fold. First, P 3 can infer
accurate pothole profiles in metropolitan scale at very low

costs, leveraging ordinary commuting vehicles. Second, P 3

is light-weight and can easily run on smartphones. Third,

P 3 is also robust to various conditions such as poor light,

bad weather, and distinct vehicle types. Last, P 3 requires no
expensive dedicated hardware, which stimulates a wide

deployment of P 3 and facilitates the performance of the sys-

tem in return. Nevertheless, the limitation of P 3 can also be
directly observed. Specifically, as volunteer drivers are not

especially trained or required for the purpose of P 3, they
may drive arbitrarily passing different parts of a pothole,
which leads to different views about the same pothole and

there is no way for P 3 to ever find out. As the potential
harm of a pothole that might bring to driving safety is the
major concern, we only consider the worst-case where
the worst driving experiences on a pothole count and

should be estimated by P 3 to represent the pothole. To eval-

uate the design of P 3, we implemented a prototype system
and conduct intensive field studies and experiments. The
real experiment results show that the average depth and
length of error is less than 13 and 16 percent, respectively.

We highlight our main contributions as follows:

� We have proposed a self-learning vibration recovery
algorithm, where the particular parameters of the
vehicle can be first actively learned by the on-board
smartphone and then adopted in inferring the actual
vibrations of wheels. With this algorithm, P 3 can be
used on different vehicles to perceive the profile of
potholes.

� We have implemented an on-campus prototype sys-
tem and conducted extensive field study the effec-
tiveness of P 3 on different potholes, vehicle types
and traversing speeds. The results demonstrate the

feasibility and efficacy of the P 3 design.
� We have designed an individual perception aggrega-

tion algorithm to improve the individual estimates,
showing its potential for the large scale pothole pro-
file perception problem. The P 3 scheme needs no
dedicated devices but only smartphones, handy to
use and easy to gain a wide deployment.

The remainder of this paper is organized as follows. The
related work is presented in Section 2. In Section 3, we define
the pothole profile perception problem and present the sys-
tem model and design goals. Section 4 elaborates the design
of P 3 and analyzes its computational complexity. In Section 5,

we discuss the potential issues when applying P 3 in practice.

We introduce the prototype implementation ofP 3 in Section 6.

The methodology to evaluate P 3 and the experiment results
are presented in Section 7. Finally, we give the concluding
remarks and future directions of thiswork in Section 8.

2 RELATED WORK

The existing work related to road condition perception can
be categorized into two types in general as follows:

Dedicated-Sensors Based. Ground Penetrating Radar used
inwork [9] uses radar and operates in awide radio frequency
band from 0.05 to 6.0 GHz to detect tiny defects on roads.
Furthermore, GPR can detect the potential potholes hidden
under the ground. The defect of this system is that GPR is
unrealistic to be widely deployed on ordinary vehicles. In
work [11], the authors use an on-board vision system to cap-
ture the view of the road when driving, and use the image
recognition technique to find out potholes. In theirwork, pot-
hole larger than 2 feet in diameter can be detected. Using
image recognition technique is mature and easy to deploy
but has the problem of line-of-sight limitation. In addition,
the performance of the scheme is also constrained by poor
light conditions such as under badweather or at night.
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Vibration-Sensor Based. The Nericell project [15] utilizes
acceleration information to detect car braking, stop-and-go
traffic and bumping (caused by potholes or other uneven
road surface). The detection algorithms are threshold-based.
In work [13], the authors examine the vibration characteris-
tics such as the maximum acceleration values and the varia-
tions when hitting potholes and propose thresholds to
detect the potholes. The pothole patrol [4] is based on a
machine learning approach using x- and z-axis acceleration
information obtained from a 3D accelerometer and the
velocity of a vehicle as inputs to identify potholes and other
severe road surface anomalies. In [23], the authors investi-
gate the variation of vertical vibrations of vehicles using
neural network (NN). The approach proposed in [18] uti-
lizes supervised and unsupervised machine learning meth-
ods to detect road anomaly. In [7], the authors extract
features such as the mean, root mean square, standard devi-
ation and variance of vibrations, and use Support Vector
Machine (SVM) to detect potholes.

In general, both types of existing schemes conduct a
qualitative analysis, which mainly focuses on the detection
of an on-road obstacle and its type. However, they cannot
tell the specific details of such an obstacle such as the size
and the shape of a pothole. As not all potholes are harmful
and should be informed to drivers, establishing the profiles
of a pothole is of great importance. In P 3, though we also
utilize the 3D acceleration information to perceive on-road
potholes, our major effort is to further infer the specific pro-
files such as the depth and the length of potholes.

3 PROBLEM DEFINITION AND SYSTEM MODEL

3.1 Problem Definition

We aim to obtain the road condition information, especially
about the distribution and the characteristics of potholes. in a
metropolis where the number of roads needed to be checked
is huge. Thanks to the popularity of mobile devices such as
smartphones and tablets, crowdsourcing technique leverag-
ing normal commuting drivers provides a cost-efficient and
stunning solution. With crowdsourcing, drivers can first col-
lect sensory data about potholes with their personal smart-
phones while driving, which can be collected and analyzed to
perceive the demanded road condition information. In this
paper, we study the accurate pothole profile perception prob-
lem, which refers to obtain the most important attributes, i.e.,
the length and thewidth, of potholes on hard-surface roads in
a metropolis leveraging the 3D acceleration information col-
lected by individual vehicles.

3.2 System Model

To solve the problem defined above, a practical system
should consist of the following components:

� Individual smartphones: Every participating driver has
a smartphone with a low-end 3D accelerometer and
a GPS receiver embedded. The smartphone is
required to be placed in the center of the top cover of
the instrument panel of the vehicle where it is conve-
nient for the driver to touch. It keeps sensing the
acceleration and the current location information of
the vehicle via the 3D accelerometer and GPS

receiver, respectively. Moreover, it has sufficient
computational capability to pre-process sensory data
in situ.

� The Data center: In the system, the data center collects
and aggregates individual perceptions of a pothole
and disseminates the retrieved pothole information
such as the global distribution and the refined pro-
files of potholes to the public as an information
service.

� Wireless communications: Individual smartphones can
send either raw sensory data or intermediate results
to the data center via digital wireless communication
channels such as GPRS and 3G/4G or free WiFi
when available.

It should be noted that the power consumption of the
smartphone is not critical under the vehicular environment.
In this paper, we only consider sole potholes within a short
range (e.g., at the scale of GPS localization errors). The rea-
son is that, otherwise, it would be hard to distinguish
whether individual perceptions collected for aggregation
are about the same pothole or distinct potholes located in
vicinity. As the localization technique progresses, different
potholes in vicinity might be identified and estimated in
future.

3.3 Design Goal

An effective scheme to solve the pothole profile perception
problem should meet the following requirements:

� Low deployment cost: Considering the huge number of
road in a metropolis, schemes relying on additional
dedicated sensors or new infrastructure would intro-
duce great deployment cost, which is infeasible.
Therefore, a low cost pothole perception system
without additional expensive dedicated hardware is
preferred.

� Good perception accuracy: The profile including the
depth and the length of a pothole can be used to
evaluate the potential damages to moving vehicles
and therefore is significant to driving safety. An
effective scheme should not only be able to judge the
types of surface anomalies but have the capability to
infer the accurate profile of a pothole.

� Robust to dynamic conditions: A practical scheme
should be able to work under complicated and
dynamic conditions such as different weather, vehi-
cle types, traversing speeds and light conditions.

4 SYSTEM DESIGN

4.1 Overview

It is common that a driver or a passenger can feel the magni-
tude of a pothole according to the intensity of vibrations
made to the vehicle while crossing over a pothole on the
road. Inspired by this intuition, P 3 is designed to utilize on-
board smartphones to sense and further infer the details of
a pothole. In addition, with the wide spread of smart-
phones, normal drivers or passengers can help build a
whole pothole map of a big city by crowd sourcing. The sys-

tem architecture of P 3 is shown in Fig. 1. In general, the sys-
tem can be divided into four layers as follows.
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Collecting Sensory Data. In this layer, we utilize an on-
board smartphone to sense the mobility status of the vehi-
cle, including the acceleration information along the three
perpendicular axes of the phone and the GPS location infor-
mation. Furthermore, P 3 also need to know the wheelbase
information of the vehicle which can be obtained by looking
up a table given the type and brand of the vehicle. Note that

P 3 requires a volunteer driver to specify the type and brand
of its vehicle and put its smartphone at the center of the
instrument panel of the vehicle. We will discuss more about
these two requirements in the next section.

Pre-Processing Acceleration Data. While the vehicle is mov-
ing, besides a pothole, many other vibration stimuli, such as
bumps, braking, making turns and slamming doors, can
also lead to severe vibrations of the vehicle. In addition, the
running engine and the unsmooth surface of roads may
cause additional high-frequency noisy vibrations. In order
to perceive the profile of a pothole, it is necessary to smooth
the collected acceleration data and identify those vibrations
caused by potholes.

Perceiving Pothole Profile. Given the observation that the
vehicle would experience an underdamping vibration right
after a wheel (called the probing wheel) has hit a pothole,

P 3 extract such underdamping vibrations to learn the inher-
ent attributes of the vehicle. With the particular knowledge
about the vehicle, it can recover the vibration of the probing
wheel by adopting an vibration model of one degree-of-
freedom (DOF) [20]. After that, it is easy to roughly estimate
the depth of the pothole. Considering the displacement of

the smartphone from the probing wheel, P 3 corrects estima-
tion errors according to a linear model. In addition to the
depth, the length of the pothole can be estimated by multi-
plying the instant speed of the vehicle and the duration for
the probing wheel from entering to leaving the pothole.

Aggregating Individual Perceptions. As individual percep-
tions about the same pothole might not be accurate or con-
sistent, how to aggregate those individual perceptions so
that an accurate result can be obtained at the data center is
not trivial. To tackle this problem, we study the impact of a
number of factors to the perception quality and find that the
vehicle speed as well as the sampling rate of the embedded

3D accelerometer count most, i.e., a lower speed and a
higher sampling rate can result in a better perception accu-
racy. With this observation, P 3 aggregates individual per-
ceptions at the data center by increasing the weights of
those perceptions obtained with low speeds and high sam-
pling rates.

4.2 Background of One-DOF Vibration Model

As P 3 adopts a one-DOF vibration model [20] in perceiving
the profile of a pothole with an arbitrary shape, we first
briefly introduce this model before we elaborate the detailed

design of P 3. To facilitate the understanding, we enumerate
the symbols used in this paper in the Table 1.

The one-DOF vibration model is illustrated in Fig. 2
where the vehicle body is simplified as a box with the mass
of m, connected to the suspension system. The suspension
system can be simplified as a spring with a coefficient of k
and a damper with a damping coefficient of c, connecting
the vehicle body and a wheel. With this model, the relation
between the vertical shift distance of the vehicle body,
denoted as x, and the vertical shift distance of the wheel,
denoted as y, can be formalized as follows:

c€yþ ky ¼ m€xþ c _xþ kx; (1)

where _x and €x denote the derivative and the second deriva-
tive of x, respectively.

Equation (1) can be solved and deduced as follows:

y ¼ e�
k
ct½R qðtÞekct dtþ a�

qðtÞ ¼ m
c
€xþ _xþ k

c x;

�
(2)

where a is a constant and can be assigned with value 0. Note
that €x is the acceleration readings along z-axis of the smart-
phones. And _x and x can be obtained by calculating the inte-
grals of €x and _x along time, respectively. As a result, the rest
unknown parameters are the inherent attributes of the

Fig. 1. The system architecture of P 3.

TABLE 1
Symbols Used in This Paper

Symbol Description

m the mass of the vehicle
k the coefficient of the spring
c damping coefficient of the damper
x vertical shift distance of the vehicle body
y vertical shift distance of the wheel
_x the derivative of x
€x the second derivative of x
T periodicity of underdamping vibrations
p frequency of underdamping vibrations
h amplitude attenuation rate in underdamping vibrations
d the natural logarithm of h

Fig. 2. The one-DOF vibration model.
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vehicle, i.e., mc and k
c, which need to be figured out before we

can derive the vertical shift distance of the wheel y with the
vertical acceleration readings €x .

4.3 Pre-Processing Acceleration Data

With an on-board smartphone, we can continuously sense
the status of a vehicle including its acceleration along three
axes of the smartphone and GPS location information. As
mentioned above, there might be other vibration stimuli
which can cause obvious vibrations in addition to hitting a
pothole. Furthermore, high-frequency noisy vibrations
should also be removed from the acceleration signal. To this
end, we need to pre-process the acceleration data first,
which consists of two following components:

1) Vibration smoothing and segmenting: We first use mov-
ing average to mitigate the influence of noisy vibra-
tions. Then, we cut the acceleration signal by using a
sliding window to find a set of consecutive of vibra-
tion segments which exceed a predefined threshold
value. Such consecutive segments are then combined
to form a complete vibration signal caused by a par-
ticular vibration stimulus.

We compare Fourier transform, wavelet trans-
form and moving average to filter out the high fre-
quency noise. The main cause of choosing moving
average method is the lower computation cost com-
pared to Fourier and wavelet transform and nearly
the same result. The principle under moving average
method is continuingly calculating the average of
nearby m numbers.

To set a proper threshold value, we found that the
threshold set to be three times of the overall road
variance is well balanced to segment.

2) Pothole Identification: To distinguish a potential pot-
hole from other identified vibration stimuli such as
door slamming, braking and making turns, we adopt
the method proposed in [4] and check the duration

of the vibration stimulus and the acceleration vari-
ance along x- and y-axis to filter out non-pothole
vibration stimuli. For example, the typical duration
of door slamming is less than 0.2 second. For making
turns and braking, the acceleration along x- and
y-axis is obviously non-zero. Accordingly, we can
exclude those unrelated vibration stimuli. In addi-
tion, a pothole is believed to be found when the
acceleration in z-axis tends to decrease and the dura-
tion and the amplitude of such descending trend are
larger than predefined thresholds.

4.4 Perceiving Pothole Profiles

Given the pre-processed acceleration data, P 3 can smartly
perceive the pothole profile by integrating three following
techniques

1) Active vibration recovery: To estimate the profile of a
pothole, it is essential to recover the real vibrations
of the probing wheel from the acceleration data col-
lected by the smartphone. However, it is often the
case that vehicles may have different speeds and val-
ues of attributes with respect to the mass of the vehi-
cle, spring coefficients and damping factors of the
suspension system, which makes such recovery very
difficult with so many unknown factors.

In general, the vibration process while a vehicle is
crossing over a pothole can be divided into two
parts, i.e., forcing vibration and underdamping
vibration. As illustrated in Fig. 3, when the front
wheel hits a pothole, the vehicle is forced to vibrate
and forcing vibration part begins (demonstrated as
the left red block in Fig. 3) until the wheel leaves the
pothole. After that, the underdamping vibration part
starts (shown as the right blue block) where the vehi-
cle continues to vibrate at its natural damped fre-
quency with the amplitude gradually decreasing to
zero. Since the underdamping vibration happens
when the vehicle is running on an even road surface,
the value of y is therefore zero. So Equation (1) can
be transformed as

€xþ c

m
_xþ k

m
x ¼ 0 ! €xþ 2n _xþ p2x ¼ 0; (3)

where n denotes c
2m, and p denotes

ffiffiffi
k
m

q
. In under-

damping vibration where n < p, the result of in (3)
is

x ¼ Ae�ntsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � n2t

p
þ aÞ; (4)

where A and a are the initial amplitude and phase of
the underdamping vibration, respectively. It can be
seen from (4) that the periodicity T of the under-
damping vibration is fixed, which is

T ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � n2

p � 2p

p
! p ¼ 2p

T
: (5)

As a result, the frequency of the underdamping
vibration is p, which only depends on k and m. With
the damper in the suspension system of the probing

Fig. 3. Illustration of the forcing and underdamping vibrations caused
when a car is passing over a pothole.
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wheel, the amplitude of the underdamping vibration
attenuates at a fixed rate

h ¼ Ai

Aiþ1
¼ Ae�nt

Ae�nðtþT Þ ¼ enT ! n ¼ lnðhÞ
T

; (6)

whereAi and Aiþ1 denote the amplitudes of two con-
secutive vibration waves, respectively and d denotes
lnðhÞ. As shown in the central subplot in Fig. 3, the
periodicity T and the amplitude attenuation rate of
the underdamping vibration can be easily obtained.

Together with (5) and (6), we can finally estimate
the vertical shift distance of the wheel y during the
forcing vibration from (2)

y ¼ e�
pp
d
t

Z
qðtÞeppd t dt: (7)

With this observation, P 3 first needs to extract the
acceleration readings of underdamping vibrations;
then it can actively learns the attributes of the vehicle
and recovery the vibration of the probing wheel.

Nevertheless, the boundary between the forcing
vibration part and the underdamping vibration part
is not obvious. Note that the periodicity of the forc-
ing vibration is decided by the shape of the pothole
while that of the underdamping vibration is only
related to the inherent attributes of the vehicle. With
this fact, we first extract individual vibration waves
by searching two consecutive local minimums on the
z-axis acceleration signal and then compare the peri-
ods of two consecutive vibration waves. If both of
the periods are equal or very close, the underdamp-
ing vibration is identified and the corresponding
vibration waves are regarded as the beginning of the
underdamping vibration. With the identified under-
damping vibration (as illustrated in the central sub-

plot of Fig. 3), and p, d can be calculated as 2p
T and

ln Ai
Aiþ1

. Finally, we can recover the vertical shift dis-

tance of the probing wheel y by solving (7) with
those learned parameters.

2) Depth estimation: With the recovered vibrations of the
probing wheel, it is easy to roughly estimate the
depth of the pothole. Nevertheless, as the smart-
phone is not placed right above the probing wheel
which is experiencing the pothole, the estimated
depth may not be accurate. To deal with this prob-
lem,P 3 corrects the error according to a linear model
between the estimated depth of the pothole and the
placement of the smartphone.

Specifically, because the smartphone is placed on
the instrument panel of the vehicle which is far from
the probing wheel (i.e., the rear wheel in Fig. 4), the

vertical shift distance of the probing wheel inferred
by the smartphone (e.g., h1 in the left subplot) is
biased from the real value (e.g., h2 in the left sub-
plot). For example, in the case of Fig. 4, the relation

between h1 and h2 can be represented as h1
h2

¼ l1
l1þl2

.

The particular values of l1 and l2 can be obtained by
looking up a table given the brand and type of the
vehicle. In addition, when the smartphone is put in
the center of the instrument panel, there is also a dis-
placement from the probing wheel, as demonstrated
in the right subplot of Fig. 4. Therefore, the corre-
sponding relation between the inferred vertical offset

distance h4 and the real value h3 is h4
h3

¼ l4
l4þl3

¼ 1
2 .

Knowing the bias relationship, we can correct those
depth estimation errors by linearly scaling the
inferred depth. The bottom subplot of Fig. 3, illus-
trates the estimated vertical shift distance of the
probing wheel as time series, where the colored
block represents the inferred pothole.

3) Length estimation: In addition to the depth, the length
of the pothole can also be estimated by multiplying
the traversing speed of the vehicle with the duration
for the probing wheel from entering to leaving the
pothole.

To obtain the instant speed of the vehicle, how-
ever, is very challenging as the speed measured by
GPS is not that accurate. In P 3, we adopt the method
proposed in prior work [6]. The rationale behind this
scheme is that the vibrations caused by the front
wheel and the rear wheel are similar. By calculating
auto-correlation on the vertical acceleration signal
and checking the auto-correlation spike, we can
locate two similar vibration segments and the corre-
sponding lag (i.e., the delay) caused by the front and
rear wheels when hitting the same pothole. Conse-
quently, the instant speed can be calculated by divid-
ing the wheelbase by the lag. The information of the
wheelbase of the vehicle can be obtained by looking
up the table as mentioned above.

With the estimated time series of the estimated
vertical shift distance of the probing wheel, the dura-
tion for the probing wheel from entering to leaving
the pothole can be easily obtained, illustrated as win
the bottom subplot of Fig. 3.

5 PRACTICAL ISSUES

We first discuss the accuracy improvement technique by
aggregating individual perceptions, then we discuss several
potential design issues when applying P 3 in practice in this
section.

5.1 Individual Perception Aggregation

In fact, the profile perceptions of a pothole from individuals
may not be that accurate because these results could be
influenced by various factors such as different smartphones
used, different vehicle speeds, noise and other abnormal
vibrations of vehicles. For example, Fig. 5 plots the depth
estimate error rate as a function of vehicle speed and smart-
phone sampling rate. It can be seen that different vehicle

Fig. 4. Demonstration of smartphone placement.
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speeds and sampling rates would lead to different estima-
tion accuracy. Furthermore, vehicles may traverse different
part of a pothole (e.g., the edge of the pothole or the central
part of the pothole), making different views about the same
pothole.

In P 3, a data center is set up for two reasons. First, all
individual perceptions are collected in order to obtain the
road-surface-condition information in a metropolitan scale.
A perception is a five-tuple (location, depth, width, speed,
sampling rate), where location is the longitude and the lati-
tude of the pothole obtained with the on-board GPS
receiver, depth and width are the profile estimates about
the pothole, speed is the vehicle speed, and sampling rate is
the sampling rate of the on-board smartphone. Second, per-
ceptions about the same pothole are inaccurate and should
be aggregated to get more accurate estimates.

Before aggregation, perceptions about the edge of a pot-
hole should be discarded as we are mainly concerned about
the maximum depth and span of the pothole. To this end,
we utilize a K-means algorithm to cluster all perceptions of
the same pothole according to the depth field. TheK-means
algorithm is a simple yet effective technique to cluster fea-
ture vectors into a predefined k number of groups [12]. The
selection of appropriate value of k is crucial and is an open
research problem [3]. We use a heuristic, called gap statistic
[14], involves comparing the change in intra-cluster dissimi-
larity Wk for given data and that for a reference null distri-
bution [19]. Gap statistic provides a statistical method to
find the elbow of intra-cluster dissimilarity Wk as the values
of k varies. Using gap statistic, the optimal value of k can be
chosen. Finally, we choose the group with at least k percep-
tions and the maximum average depth for aggregation.

For aggregation, we study the correlation between the
estimation accuracy and the vehicle speed and the sampling
rate of the on-board smartphone. We have the observation
that the estimation can be very accurate with a low vehicle
speed and a high sampling rate as illustrated by Fig. 5.
Based on this observation, those individual perceptions
obtained at a low vehicle speed or with a high sampling
rate smartphone will be assigned with a higher degree of
confidence. We get the aggregated result by taking the

weighted average of all individual perceptions. As a result,
the aggregated depth and width will be used to describe the
“worst-case” of the pothole.

5.2 Other Practical Issues

Influence of Vehicle Speed and Phone Sampling Rate. When a
vehicle hits a pothole at a very high speed, it is possible that
the intensity of the shock exceeds the of the suspension sys-
tem, which may makes the smartphone jump off the surface
of the instrument panel or causes the magnitude of the ver-
tical acceleration goes beyond the measuring range of the
smartphone. Furthermore, when the vehicle moves at a
high speed (for example, at 80 km/h), due to the limited
sampling rate of the smartphone (e.g., around 200 Hz), the
number of available samples about the pothole becomes
quite limited. As a result, the estimated profile of the pot-
hole might be inaccurate. To migrate the influence of high
vehicle speeds and low phone sampling rates to the estima-

tion accuracy, P 3 can select those individual perceptions
obtained with low vehicle speeds for aggregation. In an
urban driving environment, we believe that at any time at
any where there exist the speed-limited samples which are
suitable for our scheme and computation.

In specific, with a crowdsourcing application involving
plenty vehicles, it is possible that we can obtain pothole pro-
files perceived by those low-speed vehicles. In addition, as
the hardware of modern smartphones improves and more
advanced accelerometers with faster sampling rates are
embedded in smartphones, the highest vehicle speed of our
approach can be increased.

Effective Sensory Data and Probing Wheel Selection. In P 3,
one essential condition is for both of the front and the rear
wheels to cross over the same pothole, as required in esti-
mating the instant speed of the vehicle. However, it is possi-
ble that both of the wheels or one of them may miss the

pothole. In order to deal with this case, P 3 only conducts
pothole profile perception with effective sensory data and
leave other trace unused. With the large number of partici-
pants, all potholes will be eventually recovered. With effec-
tive sensory data, the pothole can be estimated based on the
vibration information collected by either the front wheel or

the rear one. In P 3, we select the rear wheel as the probing
wheel. The main reason is that it is easier to extract the
underdamping vibration of the rear wheel as that of
the front wheel often overlaps with the forcing vibration of
the rear wheel when the vehicle speed is relatively high.

Recall that P 3 utilizes underdamping vibrations to actively
learn the inherent attributes of the vehicle and further esti-
mates the pothole. Using rear wheels as probing wheels can
lead to better estimation accuracy.

Smartphone Placement and Reorientation. In P 3, the smart-
phone is required to put at the center of the instrument
panel of the vehicle. This allows the smartphone to correct
estimation errors caused by the displacement of the smart-
phone and the probing wheel according to the linear model
mentioned in above section. However, it is possible to
loosen this requirement as long as the smartphone can rec-
ognize its relative location within the vehicle. As far as the
estimation accuracy is concerned, the best position to put
the smartphone is on the package tray of the vehicle right

Fig. 5. Depth prediction accuracy affected by both speed smartphone
sampling rate.
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above the rear wheels. The main consideration of putting the
phone on the instrument panel is for the ease of use for the

driver. In addition, P 3 cannot derive meaningful pothole pro-
files unless the coordinate system of the smartphone is aligned
with that of the vehicle. Since the pose of the phone could be
arbitrary, we need to align the two coordinate systems. We
adopt the solution proposed in [6] where a rotation matrix is
used to do the coordinate system transformation.

The True and the Perceived Depth of Potholes. In the case
where the length and depth of a pothole is less than the
diameter and larger than the radius of the probing wheel,
respectively, P 3 cannot perceive the real depth of the pot-
hole (e.g., denoted as D in Fig. 6) but a perceived depth of
the pothole (e.g., denoted as d in Fig. 6). Although the actual
depth of potholes is desired, knowing the perceived depth
can also provide invaluable assessment about the damage
of the road surface.

Obtaining the Wheelbase Information. In P 3, additional
attributes of vehicles such as the wheelbase information
and the distance relationship between the instrument panel
and the rear wheels are required but cannot be actively
learnt by the smartphone. One possible solution to this issue
is to let drivers manually provide such information as

inputs to P 3. One better solution which migrates the labor
work of driver is to let drivers select the brand and the type
of their vehicles. Then the corresponding attributes can be
obtained by looking up a pre-built table.

The Road Slope. There are doubts about the impact of road
slope to the detection accuracy. We tackled the case in previ-
ouswork [6]. It shows that the road slope factor can bewell fil-
tered in the sensing framework thus the road slope can cause
no impact on the detection and profiling phase. As long as we
get the vibrations vertical to the road surface (no matter it is
level or on a slope) the P 3 can work. The key point is how to
obtain vibrations vertical to the road surface even when the
road is on a slope. To this end,we can adapt the techniquepro-
posed in our previous work [6], which reorients the coordi-
nate system of the attached smartphone so that the coordinate
system of the smartphone can alignwith that of the vehicle.

6 PROTOTYPE SYSTEM

We implement P 3 as an Android application and install it
on a Galaxy Nexus 3 (made by Samsung, Android 4.2,
1.2 GHz dual-core, 1 GB RAM, maximum sampling rate of
the embedded accelerometer: 100 Hz). We use a workstation
of HP Z230 (manufactured by HP, Windows 8, Intel Core i7,
3.2 GHz, 8 GB RAM) to serve as the data center server for
aggregation in our prototype system.

We conducted field experiments on our campus to vali-
date the feasibility of the P 3 design. Specifically, we first
make a pothole on our campus (as shown in the upper right
subplot of Fig. 7) with the length and depth of about 50 and

5 cm, respectively. We use a four-door sedan (i.e., a Volks-
wagen Passat B5) and place the smartphone at the center of
the top cover of the instrument panel as shown in the upper
left subplot of Fig. 7. We drive the car and let the right side
of wheels to cross over the pothole at a speed of 10 and
30 km/h, respectively, for 10 times and estimate the depth

and length of the pothole according to the design of P 3.
Based on the above field experiments, it can be seen

that P 3 can effectively learn the related attributes of the
car and estimate the length and depth of the pothole
without too much human intervention as expected. Nev-
ertheless, we also have learnt two following lessons. First,

P 3 can achieve good estimation accuracy when the car is
moving at a low speed. When the vehicle speed exceeds
30 km/h, the derived results can severely deviate from
the ground truth, as what we have discussed in above
section. Second, linear aggregation based on vehicle
speeds can improve the estimation accuracy. For example,
the estimated length and depth of the pothole in the field
experiment is 56 and 5:2 cm. We will further investigate

the performance of P 3 in various settings in the perfor-
mance evaluation section.

7 PERFORMANCE EVALUATION

7.1 Methodology

To evaluate the performance of P 3, besides of the Galaxy
Nexus 3 smartphone and the Volkswagen Passat B5, we
also involve a new smartphone of the Google Nexus 4
(made by LG, Android 4.2, 1.5 GHz quad-core, 2 GB RAM,
maximum sampling rate of accelerometer: 200 Hz), a Volks-
wagen Lavida and two SUVs (a Honda CR-V and a Volks-
wagen Tiguan) in our experiments. Moreover, we consider
different vehicle speeds, different phone placement (i.e., at
the center and the right end of the top cover of the instru-
ment panel as shown in the left subplot of Fig. 7) and differ-
ent sides of wheels (i.e., the left-side and the right-side). We
identify 23 different potholes in the downtown area(see
Fig. 8) of a metropolis and obtain a trace of over 2,760 seg-
ments of vibration data collected with different configura-
tion of vehicle type, vehicle speed, phone placement and
side of wheels from June 4th to July 2nd for analysis.

For the ground truth purpose, we plot the distribution of
the real 23 potholes of the downtown road in Fig. 9. We see

Fig. 6. Demonstration of effective depth.

Fig. 7. Field study with the implementation of the prototype system.
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that the length and depth of these potholes are among quite
large ranges. The depth ranges from 2 to 10 cm while the
length between 30 to 120 cm.

We evaluate the performance of P 3 using the estimation
error rate (denoted as) metric defined as follows:

" ¼ destimate � dreal
dreal

����
����;

where destimate denotes the estimated length or depth of a
pothole where as dreal denotes the ground truth of the length
or depth of that pothole. In the following sections, we inves-
tigate the impact of various factors (i.e., vehicle speed,
phone sampling rate, smartphone placement and different

potholes) to the performance of P 3 and present the details.

7.2 Impact of Vehicle Speeds and Phone Sampling
Rates

As we have learnt from our prototype implementation,
vehicle speeds as well as the phone sampling rates are
essential to the performance of P 3. In this experiment, we
examine the impact of vehicle speeds and phone sampling
rates. Specifically, we vary the vehicle speed ranging from
10 to 30 km/h with an interval of 10 km/h and drive both
vehicles over all 23 potholes with both smartphones placed
at the center of the instrument panel and right-side wheels
hitting potholes. For each speed and each pothole, we drive
five times and estimate the profile of all potholes.

Fig. 5 plots the depth estimation error rate as a function
of different vehicle speeds. It can be seen that, in general,
low vehicle speeds can achieve good depth estimation. For
example, the average estimation error rate for Passat B5 is
around 9 and 12 percent with G4 (200 Hz) at the speed of 10
and 20 km/h, respectively. Second, the higher sampling rate
will lead to more accuracy of pothole perception. For exam-

ple, the performance of P 3 with G4 outperforms that with
G3 at all speeds. Last, using a vehicle with a better suspen-
sion system will achieve better estimations. For example,
the CR-V has less estimation error rates comparing with
Passat B5. In summary, we have the conclusion that good
suspension systems of vehicles and high sampling rates of
smartphones can help improve the estimation accuracy and

extend the applicable speed condition of P 3.
Fig. 10 plots the length estimation error rate as a function

of vehicle speeds. We have similar observations except that

the length estimation error rate is slightly larger than the
depth estimation error rate and the difference between dif-
ferent vehicles is minor. Recall that, in P 3, the instant speed
of the probing wheel is estimated as the average speed dur-
ing the time period from the moment when the front wheel
hits a pothole to that when the rear wheel does. This may
lead to inaccurate speed estimation and further cause the
length estimation errors, which are independent of vehicles.

7.3 Impact of Phone Placement and Side Wheel

As it is possible that vibrations of the wheel on the other
side of the probing wheel (called the side wheel) may affect
the pothole perception, we examine the eight potholes out
of 23 potholes which have uneven road surface nearby.
When crossing over these three potholes, it is possible to
cause violent side wheel vibrations in addition to the major
vibrations caused by the probing wheel at the same time. In
this experiment, we examine the impact of phone placement
and the side wheel.

Fig. 8. Those 23 potholes on the Google map and the example potholes.

Fig. 9. Distribution of depth and length of 23 detected potholes.

Fig. 10. Depth and length error at different speed.
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Specifically, we vary the placement of both smartphones at
the center (we denote this case as “C-”, standing for “Center
phone placement”) and the right corner (we denote this case
as “R-”, standing for “Right phone placement”) of the instru-
ment panels of both vehicles. For each of those potholes, we
first drive both vehicles to let right-side wheels hit the pothole
in both directions. In one of the direction, there is no side
wheel vibrations (we denote this case as “R”, standing for
“Right-side probingwheels”) while, in the other direction, we
let the side wheel go through the uneven road surface (we
denote this case as “R+SW”, standing for “Right-side probing
wheels plus SideWheel vibrations on the left”). Therefore, by
combining the phone placement and the side wheel vibra-
tions, we have four cases, i.e., C-R, C-R+SW, R-R and R-R
+SW, in total. For each of those cases, we drive at the speed of
20 km/h for five times and estimate the profile of all potholes.

Fig. 11a plots the depth estimate error rate as a function
of phone placement and with/without side wheel vibra-
tions. It can be seen that the estimation error rate with center
phone placement is the more stable and accurate than with
right placement. The reason is that it is hard to place the
phone right above the right wheels, in which case we cannot
obtain the accurate scaling factor in the linear error correc-
tion model described above. It can also be seen that the side
wheel vibrations will increase the estimation error rate. The

reason is that the side wheel vibrations are usually asyn-
chronous with the vibrations of the probing wheel. Those
asynchronous vibrations would interfere with each other
and therefore affects the estimation accuracy.

Fig. 11b plots the length estimation error rate for all cases.
It is interesting to see that the side wheel vibrations has little
influence on the length estimation. As explained in above
experiment, the inaccuracy of length estimation mainly lies
in the estimation errors of the instant speed and the forcing
vibration duration caused by a pothole, which are both
independent of the effect of side wheel vibrations.

We also try the left-side four cases, i.e., C-L, C-L+SW, L-L
and L-L+SW, and get similar results, which are omitted
from this paper due to the page limitation.

7.4 Overall Performance

As we have learned from above experiments, to examine the
best performance of P 3, we select those vibration data from
the trace when both smartphones are placed at the center of
the instrument panel and both vehicles move at the speed
less than 30 km/h. We estimate the profile of all 23 potholes
based on the selected data and plot the cumulative distribu-
tion functions (CDFs) of the depth and length estimation
error rate in Fig. 12, respectively. From these plots, it can be
seen that the Tiguan with a better suspension system and
the G4 smartphone with a higher sampling rate of 200 Hz

Fig. 11. Depth and length error with different placements.
Fig. 12. CDF of depth and length estimation errors.
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can always achieve lower estimation errors. For example,
with the Tiguan and the G4 smartphone, 90 percent of the
depth have an error rate less than 10 percent. With the Lav-
ida with a G4 smartphone 90 percent of the length can have
an error rate less than 20 percent.

Furthermore, we aggregate of all the pothole perception
data by using the linear error correction models described
in Section 5.1. The overall aggregated depth and length esti-
mation error rates over all potholes decrease from 15 and 19
percent to 13 and 16 percent, respectively. It shows that the
pothole perceptions with normal vehicles and smartphones
can also provide useful information for P 3 to improve
global pothole estimation. In the future, we plan to enlarge
the pothole profiling platform to the metropolitan scale in
crowdsourcing way, to enable the solution of precise metro-
politan-scale pothole sensing and profiling.

8 CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of pothole profile
perception at a metropolitan scale. We have proposed an
innovative scheme P 3, which is light-weighted and can be

implemented on smartphones. The beauty of P 3 is that it can
smartly learn the necessary attributes of various vehicles and
estimate the profile of a dangerous pothole without too

much human intervention. Moreover, P 3 is rather robust to
various conditions such as poor light, bad weather and dis-
tinct vehicle types. Leveraging the large population of smart-

phones, P 3 can achieve excellent coverage and improve
individual estimation by aggregating trustworthy local esti-
mates obtained at low vehicle speeds and high sampling
rates. We have conducted extensive field experiments and

results show that P 3 can achieve low depth and length esti-
mation error rate at 13 and 16 percent, respectively.

In the future, we will further improve P 3 in the following
directions. First, we will implement a crowdsourcing plat-
form to collect more individual perceptions of metropolitan
scale potholes. Second, we will look into the profound
aggregation methods. Third, we will further study how to
perceive the complete profile of a pothole instead of the
worst case. Finally, we will further study more sophisti-
cated vibration models other than the one-DOF model to
infer more accurate pothole profiles. Besides, we will study
how to obtain the accurate location information of potholes
for better aggregation without the need of GPS.
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