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Abstract
Acquiring accurate vehicle location information in urban settings is very challenging due to the complexity of urban environ-
ments. In this paper, we propose a novel scheme, called UPS, to tackle urban vehicle localization problem. After extensive 
empirical study, we find that GSM power spectrogram collected over a distance has ideal temporal–spatial characteristics 
for fingerprinting. Encouraged by this observation, UPS tries to utilize the geographical trajectory and the associated GSM 
power spectrogram information of a moving vehicle to identify its location with reference to a map. To this end, two appealing 
techniques, i.e., online vehicle localization and GSM map construction, are elegantly integrated. With the former, a vehicle 
can accurately fix its location under complex urban environments. With the latter, a reliable metropolitan-scale GSM power 
map can be cost-efficiently built at edges, leveraging the strong power of crowdsourcing. By design, UPS is light-weight, 
requiring only a minimum hardware deployment. We implement a prototype system to validate the feasibility of the UPS 
design. Furthermore, we conduct extensive trace-driven simulations and results show that UPS can work stably in various 
urban settings and achieve an accuracy of 5.3 m with a 90% precision, overwhelming the performance of GPS by five times.
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1  Introduction

Obtaining accurate location information of vehicles, espe-
cially in urban environments, is of great importance to 
many appealing applications. For instance, in the collision 

avoidance application, one broken car can periodically 
broadcast its precise location to upcoming vehicles via vehi-
cle-to-vehicle (V2V) communications so that these vehicles 
can get enough time to take necessary actions (e.g., braking 
or changing lanes). Besides driving safety, accurate location 
information is also desired in many location-based services 
(LBSs). Given the complicated road topology of a big city, 
navigation is one of the most popular LBSs, where a vehicle 
needs to know its location before the best route decision can 
be made. Wrong location information may lead to unnec-
essary detours and bring unpleasant driving experience to 
drivers.
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To solve the urban vehicle localization problem, which 
refers to obtaining the reliable and accurate location infor-
mation of vehicles in urban settings, however, is very chal-
lenging. The difficulty is four-fold. First, as the resolved 
location information would be used to build many safety-
related applications, the requirement for high accuracy, 
therefore, is very critical. Large localization errors are the 
root cause of false alarms in those applications. Second, as 
the urban environment could be very dynamic and complex 
(e.g., variant traffic conditions and all types of roads sur-
rounded by various buildings and infrastructures), to achieve 
stable yet accurate localization performance in all urban sce-
narios would meet various troubles, such as varying signal 
availability and non-line-of-sight condition. It is hard for one 
single solution to deal with all those problems. Third, the 
process for locating vehicles should be fast as vehicles often 
move at high speeds. Huge delays result in large deviations 
between the estimated and the true locations of a vehicle. 
Last, considering the large area of a metropolis and the vast 
number of vehicles, it is infeasible to construct new infra-
structures or deploy dedicated devices on vehicles for urban 
vehicle localization, due to the prohibitive cost.

In the literature, there have been quite a number of locali-
zation schemes. Range-based localization schemes, such as 
ToA (Chan et al. 2006), TDoA (Priyantha et al. 2000) and 
AoA (Elnahrawy et al. 2007), measure the distance or angle 
from reference points and then perform trilateration or trian-
gulation to obtain the estimated position. All these methods 
require specialized hardware and dense anchor deployment, 
which make them less attractive for a large deployment. 
Global Positioning System (GPS) is the most-widely used 
outdoor localization system. In metropolises like Toronto or 
New York, however, it is often the case that GPS may have 
large errors due to the signal availability problem caused 
by urban canyons. There are also Received Signal Strength 
(RSS) modeling-based ranging techniques (Chen et  al. 
2006) trying to capture the relation between signal strength 
and distance. In practice, the actual attenuation depends on 
multipath propagation effects, reflections and noises, which 
make it hard to build models in urban environments. Besides 
range-based schemes, range-free localization does not rely 
on measurement of distance or angles. Cell ID has been used 
in many schemes (LaMarca et al. 2005; Paek et al. 2011) to 
get efficient but coarse-grained location information with 
an error of tens of meters. Fingerprinting techniques (Bahl 
and Padmanabhan 2000; Varshavsky et al. 2005) can also be 
introduced and implemented to do localization. Although 
fingerprinting techniques have better accuracy, the overhead 
of constructing a reliable and fine fingerprint map at a met-
ropolitan scale is vast. How to cost-efficiently construct such 
a map is still challenging. As a result, there is no existing 
solution, to the best of our knowledge, to figuring the urban 
vehicle localization problem.

In this paper, we propose an innovative scheme, called 
Urban Positioning System (UPS), which utilizes the 
received GSM wide-band signals and geographical tra-
jectory information of vehicles to tackle the difficulty in 
solving the urban vehicle localization problem. Based on 
the intensive analysis on the received signal strength indi-
cator (RSSI) values of a wide band of 194 GSM chan-
nels (denoted as GSM power spectrogram), we have the 
observation that GSM power spectrogram has ideal tempo-
ral–spatial characteristics for fingerprinting. Encouraged 
by this observation, UPS can accurately localize a mov-
ing vehicle by comparing the GSM power spectrogram 
information it has collected along its trajectory with a pre-
constructed global signal map.

To this end, UPS tackles two following challenges. First, 
establishing a reliable metropolitan-scale map of GSM 
power spectrogram is labor-intensive, needing significant 
data collection. This is also the biggest obstacle which pre-
vents existing fingerprinting indoor localization methods 
from transplanting to outdoor settings. Second, given a 
GSM power spectrogram map, how to eliminate the uncer-
tainty in using compound trajectory for localization under 
dynamic and complex urban environments is nontrivial.

To deal with the first challenge, UPS leverages the 
extraordinary popularity of smartphones and the power of 
crowdsourcing to first collect compound trajectories, which 
refers to the combination of a geographical trajectory and 
the associated GSM power spectrogram measured along the 
trajectory, from individual vehicles. Then, individual RSSI 
measures of each vehicle are geographically aligned to a digi-
tal map by conducting a dynamic time wrapping (DTW) at 
edge servers. With the rich set of individual RSSI measures 
about the GSM channels at each location, an edge server first 
removes obvious outlier measures and then aggregates all 
consistent ones. In this way, UPS can cost-effectively retrieve 
a reliable and accurate GSM fingerprint map at a large scale.

To figure the second challenge, UPS conducts a sliding 
check on the map to identify the most-likely location with 
regard to a compound trajectory segment of a vehicle, using 
Pearson’s correlation coefficient. When the segment used for 
search is sufficiently long, UPS can achieve good localiza-
tion accuracy in urban settings. The rationale lies in the fact 
that the influence of faded channels at certain locations in 
a long trajectory is reduced. Compared with existing work 
where cell ID and RSS values on a little number of channels 
(up to 35; Varshavsky et al. 2005) are mostly used, the long 
trajectory and wide-band signal combine into a high dimen-
sion value which can be used to largely enhance the outdoor 
localization accuracy.

We implement a prototype of UPS and conduct extensive 
real-world experiments in Shanghai city. With a minimum 
hardware deployment, it is easy for UPS to gain a large 
deployment. In addition, when combined with a coarse 
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GPS- or cell-ID-based localization scheme, the computation 
cost of UPS can be extremely low as a vehicle only needs to 
compare with a limited number of roads in a small region 
on the map. The experiment results demonstrate the efficacy 
of UPS. On average, UPS can achieve a high localization 
accuracy of 5.3 m with a precision of 90% and outperform 
that of GPS by five times.

We highlight our main contributions made in this paper 
as follows:

•	 We have conducted intensive analysis on GSM power 
spectrogram and have the observation that a wide band 
of GSM signals are ideal for fingerprinting because of the 
wide availability and the good temporal–spatial charac-
teristics as well.

•	 We have proposed a cost-efficient GSM fingerprint map 
construction scheme, leveraging the wide availability of 
smartphones and the strong power of crowdsourcing and 
edge computing. Individual GSM RSSI measures can be 
geographically aligned to a digital map and aggregated 
with little intervention of outliers.

•	 We have proposed a robust online vehicle localization 
scheme based on the correlation calculation using com-
pound trajectories of a vehicle. With this scheme, UPS 
is resilient to dynamic and complex urban environment.

•	 We have implemented a prototype system consisting 
of two vehicles and conducted extensive experiments 
of over 200 km in Shanghai city. The results show the 
efficacy of UPS, outwitting that of GPS by five times on 
average.

The remainder of the paper is organized as follows. In 
Sect. 2, we survey the related work. We analyze the tem-
poral–spatial characteristics of GSM power spectrogram 
for fingerprinting in Sect. 3. Section 4 elaborates the UPS 
design. The detailed implementation of our UPS prototype 
system is presented in Sect. 5. In Sect. 6, we evaluate the 
performance of UPS under various conditions and describe 
the results. We discuss several design issues of UPS in 
Sect. 7. Finally, we draw our conclusion and give directions 
for our future work in Sect. 8.

2 � Related work

Here we review existing localization techniques, which 
can be categorized into two classes, i.e., range-based and 
range-free.

2.1 � Range‑based

Range-based localization methods measure the distance or 
angle from reference points and then perform trilateration or 

triangulation to obtain the estimated position. Through ToA 
(Chan et al. 2006), distance between sender and receiver of 
a signal can be determined by using the measured signal 
propagation time and known signal velocity. Similarly, AoA 
(Elnahrawy et al. 2005, 2007; Biswas et al. 2005; Li and 
Lu 2008) (Angle of Arrival) uses measured angle, which 
is typically achieved using an array of antennas or micro-
phones. Both of these two methods require specialized hard-
ware and highly accurate synchronization, which make them 
less attractive for a large deployment. Pinpoint (Youssef 
et al. 2006) improves the idea of TOA which needs no syn-
chronization between devices by increasing the number of 
exchange times of RF signals. TDoA (e.g., Cricket; Priyan-
tha et al. 2000) is a variance of ToA with no clock syn-
chronization required. There are also RSS modeling-based 
ranging techniques (Chen et al. 2006) trying to capture the 
relation between signal strength and distance. In practice, the 
actual attenuation depends on multipath propagation effects, 
reflections and noises, which make it hard to build models 
in urban environments.

GPS is the most widely used location-sensing system, 
which can be categorized as ToA-based. Although GPS is 
ubiquitous among cellphones nowadays, it still suffers from 
severe power consumption problem. A-Loc (Lin et al. 2010) 
continually tunes the energy expenditure to meet the chang-
ing accuracy requirements using available sensors. RAPS 
(Paek et al. 2010) turns on the GPS in a rate-adaptive man-
ner to obtain accurate position information while spending 
minimal energy. LEAP (Ramos et al. 2011) carefully parti-
tions the GPS signal processing pipeline and shifts delay 
tolerant position calculations to the cloud. Kjærgaard et al. 
(2011) utilizes the accelerometer and compass of smart-
phone to track a car based on an initial start location pro-
vided by the GPS. Besides huge power consumption, GPS 
is also restricted by factors such as the availability of signals 
and atmospheric effects which make GPS-based schemes 
can hardly achieve high localization accuracy. Differential 
Global Positioning System (DGPS) is an enhancement to 
GPS that provides improved location accuracy, from the 
15-m nominal GPS accuracy to about 10 cm in case of the 
best implementation. However, DGPS relies on a network 
of fixed, ground-based reference stations, which is costly to 
be widely deployed.

2.2 � Range‑free

Range-free localization does not rely on measurement of 
distance or angles. Cell ID has been used in many schemes 
to get coarse-grained location. Place Lab (LaMarca et al. 
2005) is a famous example which evaluates device position-
ing by listening to radio beacons (such as 802.11 APs, GSM 
cell towers, and fixed Bluetooth devices) and estimating their 
own location referenced to the positions of those beacons. 
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CAPS (Paek et al. 2011) uses a cell ID sequence matching 
technique to estimate current position based on the history of 
cell ID and GPS position sequences. There are also commer-
cial systems such as Google’s MyLocation (Google 2018) 
and Skyhook (2018), requiring a data of cell tower locations. 
Cell ID based localization is efficient but coarse-grained 
with an error of tens of meters (LaMarca et al. 2005).

Fingerprinting techniques can also be introduced and 
implemented to do localization. The key idea is to pre-
collect the characteristic values at different locations into 
a map and then match the real-time measurements to this 
digital map. RADAR (Bahl and Padmanabhan 2000) is a 
classic indoor localization system based on radio frequency 
(RF) fingerprinting. Deterministic techniques are proposed 
in Chen et al. (2006), Varshavsky et al. (2005) for GSM 
localization while CellSense (Ibrahim and Youssef 2012) 
is a probabilistic RSSI-based fingerprinting location deter-
mination system for GSM phones. Horus (Youssef and 
Agrawala 2005) and TIX (Gwon and Jain 2004) are other 
representative work using fingerprinting to localize in indoor 
environments. Channel State Information (CSI) is also used 
for indoor localization (Xiao et al. 2013), however CSI is so 
sensitive to apply to the dynamic and complicated outdoor 
environment with many moving objects. Note that although 
fingerprinting techniques can achieve better accuracy, the 
vast overhead of constructing a reliable and fine fingerprint 
map at a metropolitan scale still needs a better solution. As 
a result, fingerprinting is more likely to either be limited in 
indoor localization or stay unsatisfying in accuracy when 
extended to outdoor localization, as the best median accu-
racy of above fingerprinting-based work in outdoor environ-
ments is merely 30 m (Ibrahim and Youssef 2012).

In summary, there is no existing successful solution, to 
the best of our knowledge, which can provide fast and accu-
rate location information for fast moving vehicles in urban 
settings.

3 � Empirical study on GSM power 
spectrogram

In this section, we first describe the trace of GSM power 
spectrogram we have collected in our city and then analyze 
the temporal–spatial characteristics of GSM power spectro-
gram for fingerprinting.

3.1 � GSM primer

Global System for Mobile Communication (GSM) is the 
most widespread cellular telephony standard in the world, 
with deployments in more than 210 countries by over 676 
network operators (Varshavsky et al. 2005). In China, GSM 
mainly operates on the 900 MHz frequency band, which is 

subdivided into 200 kHz wide physical channels with index 
955-1023 and 0-124. As GSM is a cellular network, each cell 
contains an area with the radius of up to 35 km in suburban 
areas and down to 500 m in downtown areas, which means 
a higher cell density in downtown. Each cell is allocated a 
number of physical channels (five at most), according to the 
needs of network traffic. The indices of physical channels are 
chose in a way to avoid interference between neighboring 
cells. Although within a certain cell only a limited number 
of channels can be used for effective communication, the 
RSS values of the rest channels still vary between different 
locations.

Based on the prior knowledge above, we try to utilize the 
distinguishable characteristic of GSM wide-band signals to 
identify locations and enhance the stability by using signals 
along trajectories.

3.2 � Collecting GSM power spectrogram

We utilize the OsmocomBB project (Osmocombb 2018) 
and cheap GSM radios (i.e., Motorola C118 cellphones) to 
measure GSM power spectrogram. Figure 1 illustrates an 
R-GSM-900 power spectrogram measured at each meter on 
an urban road. Although there are 194 channels in the band 
(indexed from No. 955-1023 and from No.0-124), we only 
use 125 of them (from No.0-124) since the rest channels 
seem inactive as shown in the figure.

In order to obtain a large trace of real GSM power spec-
trograms for analysis, we mount 16 radios (for scanning 
channel in parallel) on top of the roof of an experiment 
vehicle and war drive a typical urban area in Shanghai city 
within an area of about 6 km2 and a route about 30 km long. 
With 16 radios, the 125-channel GSM power spectrogram 
can be sampled at a rate of 10 Hz. By deliberately driving 
at a speed lower than 35 km/h, we can obtain a power vec-
tor, which refers to the vector of RSSI values over all 125 
channels measured at one location, at every 1 m. Meanwhile, 
we also record the geographical trajectory information of 
the vehicle (including the heading direction and distance 
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Fig. 1   Illustration of GSM power spectrogram of 194 channels col-
lected over 150 m
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information, see Sect. 4.2 for details). We war drive for 
16 days from May 4th to May 19th in the year of 2014 and 
collect the trace. Note that trace collected on different days 
are geographically aligned using the technique described in 
Sect. 4.3.

3.3 � Temporary stability

For fingerprinting, it is essential for GSM power spectro-
gram to have the feature of temporal stability, which refers 
to that a power spectrogram measured at a fixed location 
tends to be invariant during a long period of time. Other-
wise, the cost for constructing and updating a map of GSM 
power spectrogram for localization will be enormous, which 
makes using GSM for localization try in vain. To investigate 
the temporal stability of GSM power spectrogram, we first 
measure the similarity between the RSSI values of the same 
channel over a distance measured at different time, using 
Pearson’s correlation coefficient, defined as

where Xt,l,m

i
= (x

t,l,1

i
, x

t,l,2

i
,… , x

t,l,m

i
) (referred to as a power-

strip) denotes the RSSI values of channel i measured at time 
t from location l over a distance of m meters; xt,l

i
 demotes 

the average of the power strip, i.e., the average of xt,l,j
i

 for all 
j ∈ [1,m]. We further calculate the spectrogram correlation 
coefficient (SCC) to measure the linear dependence between 
two GSM power spectrogram segments collected at different 
time, defined as follows,
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power spectrogram segments of m meters long consisting 
of n channels collected from location l1 and at time t1 and t2 , 
respectively. We randomly choose 2000 segments of 100 and 
200 m long, respectively, from the trace collected on May 
18th which is cloudy. For each segment, we calculate the 
SCC between this segment and the corresponding segment 
collected at the same location on May 17th which is rainy, 
May 11th which is sunny, and May 4th which is cloudy 
(i.e., with a time interval of 1 day, 7 days, and 15 days), 
respectively.

Figure  2 plots the cumulative distribution functions 
(CDFs) of the results. Here we have four observations. First, 
in general, the GSM power spectrogram has good tempo-
ral stability. For example, about 90% of the correlation 
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coefficient values are larger than 0.1 even when the dura-
tion is larger than 2 weeks. Second, the temporal stability 
may slightly vary on different dates. Furthermore, it is not 
obvious that the temporal stability decreases as time goes 
by. For example, the coefficient values calculated with an 
interval of 7 days (on May 11th) is even smaller than that 
calculated with an interval of 15 days (on May 4th). Third, 
increasing the length of segments can greatly increase the 
temporal stability. For instance, about 90% of the correla-
tion coefficient values are larger than 0.2 when the length 
of segments increases from 100 to 200 m. The reason is 
that increasing the length of segments can reduce the influ-
ence of faded channels at certain locations. The signal wide 
band and trajectory combine into high signal dimension, 
which enhances the temporal stability of GSM signals. Last, 
weather conditions have little impact on temporal stability of 
the GSM power spectrogram. It confirms to results (Usman 
et al. 2015) that suggest location as having a dominating 
impact on the received signal strength among other environ-
mental factors such as weather and time of the day.

3.4 � Geographical uniqueness

In addition to temporal stability, it is also desired for GSM 
power spectrogram to have the feature of geographical 
uniqueness, which refers to that power spectrograms col-
lected on different locations within a sufficiently large area 
should be distinctive. To examine the geographical unique-
ness of GSM power spectrogram, we calculate the SCC 
between �t1,l1,m and �t2,l2,m , which denote two power spec-
trogram segments of m meters long collected from location 
l1 and l2 and at time t1 and t2 , respectively. Moreover, we 
consider the Euclidean distance between l1 and l2 is less than 
a given distance d, i.e., l2 is within a disk area Rl1,d with l1 
located at the disk center and a radius of d.
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We randomly choose 500 segments of 100 and 200 m 
long, respectively, from the trace collected on May 18th. 
For each segment �t1,l1,m , we randomly select 100 segments 
of the same length within the region Rl1,1 km from the trace 
collected on May 17th, May 11th, and May 4th, respectively, 
and calculate the SCC.

Figure  3 plots the cumulative distribution functions 
(CDFs) of the results. We have two main observations. First, 
the GSM power spectrogram has excellent geographical 
uniqueness. For example, about 95% of the correlation coef-
ficient values are less than 0.1 over all time. Second, increas-
ing the length of segments has only negligible impact on 
the geographical uniqueness. For example in the figure, the 
correlation coefficient of using 200-m segments is almost the 
same as that of using 100-m segments. It is because that for 
two segments along different locations, the measurements 
on each corresponding points are supposed to have poor 
similarity with each other, which would not be improved 
by aggregating more points with poor similarity together. 
Combing with the observations about temporal stability, we 
are highly encouraged to use GSM power spectrograms for 
fingerprinting.

3.5 � Distinctive resolution

Besides the capability for fingerprinting, we also care about the 
resolution of GSM power spectrogram for localization as high 
accuracy is required in localizing urban vehicles. We check the 
distinctive resolution of GSM power spectrogram, which refers 
to the minimum distance over which two power spectrogram 
can be distinguished. We randomly choose 500 segments of 20, 
50, 100, 150, and 200 m, respectively, from the trace collected 
on May 18th. For each segment �t1,l1,m , we calculate the SCC 
using �t1,l1,m and �t2,l2,m , where t2 refers to May 4th and location 
l2 is taken m meters away from location l1 for m ∈ [− 50, 50].

Figure 4 shows the SCC as a function of the offset dis-
tance m. It can be seen that longer segments would have 
larger SCC. Moreover, the correlation coefficient can always 
achieve maxima when m = 0 , i.e., two segments are aligned, 
and monotonically and steeply decrease as the offset distance 
increases. As urban environment has many obstructions due 
to large buildings, these obstructions actually prove advanta-
geous because they help form unique fingerprints with sat-
isfactory resolution to allow the algorithm to differentiate 
between nearby locations. The blocking effect as well as the 
intense cell density in urban areas results in the unique GSM 
signal spectrogram, thereby enhances the resolution of GSM 
wide-band signals. It is also clear to tell that spectrogram 
correlation coefficient is an ideal metric to represent the fine 
distinctive of GSM power spectrogram as it varies even on 
a distance difference of 1 m. Given these observations, we 
are also encouraged to localize a vehicle with an appealing 
accuracy of 1 m by conducting a hill-climbing search for the 
maximum of the spectrogram correlation coefficient instead 
of using a threshold-based scheme.

As illustrated in Fig. 1, many GSM channels seem idle 
and therefore may affect the overall temporal–spatial char-
acteristics of GSM power spectrogram for fingerprinting. 
A channel is effective if it has good temporal stability, geo-
graphical uniqueness and distinctive resolution. To check 
the effectiveness of each channel, for a power strip Xt1,l1,m

i
 of 

channel i, we first calculate the utility of temporal stability 
of this power strip as

The utility of geographical uniqueness of this power strip 
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where location lk is within the disk area Rl1,d . The utility 
of distinctive resolution of this power strip is calculated as

where � denotes the target resolution that we would like to 
achieve with this channel. By averaging the utility of tempo-
ral stability, geographical uniqueness and distinctive resolu-
tion over all power strips of channel i, we get the utility of 
temporal stability, geographical uniqueness and distinctive 
resolution of channel i, denoted as ustability

i
 , uuniqueness

i
 and 

uresolution
i

 , respectively. Finally, we define the utility of chan-
nel i as follows

3.6 � Identifying effective GSM channels

We randomly choose 1000 segments of 300 m long from 
trace collected on May 18th. For each channel, we cal-
culate the utility of that channel with d and � set to 1 km 
and 10 m, respectively, using the trace collected on May 
4th. Figure 5 plots the utility of temporal stability, geo-
graphical uniqueness and distinctive resolution and the 
corresponding channel utility of each channel. It can be 
seen that the channel utility varies with different channels. 
We select 41 channels with the utility higher than 0.2 (as 
shown by the dotted rectangles in the figure) and use these 
channels for fingerprinting.

It should be noted that the selected effective channels 
would vary between different locations, which is determined 
by the channel allocation in current and neighboring cells. 
Based on our observation, the effective channels seldom 
change within a large area of several square kilometers. This 
suggests that we construct a correspondence table between 

(5)uresolution
X
t1,l1,m

i

= r
X
t1,l1,m

i
X
t2,l1,m

i

− r
X
t1,l1,m

i
X
t2,l1+� ,m

i

,

(6)ui = u
stability

i
− u

uniqueness

i
+ uresolution

i
.

cell IDs and the sets of effective channels and dynamically 
choose the proper channel set according to current coarse 
location information getting from cell ID or GPS.

4 � Design of UPS system

4.1 � Overview

With the observation that GSM power spectrogram has 
ideal temporal–spatial characteristics for fingerprinting, 
we are highly encouraged to localize a moving vehicle by 
comparing the GSM power spectrogram information it has 
collected along its trajectory with a pre-constructed global 
signal map. To this end, there are two main challenges, i.e., 
reliable metropolitan-scale map construction and robust 
online vehicle localization. To tackle those challenges, UPS 
elegantly integrates two key components in the system, i.e., 
online vehicle localization at the vehicle side and GSM map 
construction at edge servers. The system architecture of UPS 
is shown in Fig. 6.

Online vehicle localization In order to determine its loca-
tion, a vehicle first utilizes on-board motion sensors such as 
the accelerometer, gyroscope, and compass to perceive its 
motion and estimate geographical trajectory information. 
At the same time, the vehicle also captures the GSM power 
spectrogram via GSM radios as it moves, and conducts a 
compound trajectory generation procedure to bind the 
measured GSM spectrogram to the geographical trajectory, 
forming its compound trajectory. The vehicle contributes its 
compound trajectory to a nearby edge server and also down-
loads the up-to-date GSM signal map in return (as illustrated 
by the dashed arrow lines) once wireless communications 
are available. With the signal map, the vehicle executes an 
online maximum similarity search, seeking the most-likely 
location in the map with the help of GPS with its own com-
pound trajectory.

GSM map construction To build a metropolitan-scale 
GSM signal map, edge servers keep collecting enormous 

0 15 30 45 60 75 90 105 124
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

GSM channel index

C
o
rr

e
la

tio
n
 c

o
e
ff
ic

ie
n
t

 

 

stability
uniqueness
resolution
channel utility

Fig. 5   Selecting effective channels based on channel utility Fig. 6   System architecture of UPS design



	 H. Zhu et al.

1 3

amount of compound trajectories from individual vehi-
cles. Because GPS is not trustworthy in many urban sce-
narios and different vehicles may have variant trajectories 
even when moving along the same path, edge servers carry 
out the same compound trajectory alignment procedure as 
described above to align all collected compound trajectories 
to a digital map so that the location of a GSM power vector 
measured by a vehicle can be best estimated. After gathering 
sufficient power vectors assumed to be measured at a loca-
tion, an outlier removal procedure is conducted to eliminate 
obvious outlier measures before those consistent fingerprints 
are aggregated by conducting a fingerprints aggregation pro-
cedure. Leveraging the tremendous power of crowdsourcing, 
UPS can cost-effectively establish a reliable and accurate 
GSM power spectrogram map at a metropolitan scale.

As the observations found in temporal stability analysis 
suggest, GSM power spectrogram should be measured over 
time and aggregated in order to achieve a reliable signal 
map. Moreover, GSM power map do not need to be updated 
frequently because of its good temporal stability. Therefore, 
the cost for map updating in UPS is low. In addition, com-
bining a coarse localization such as GPS or a cell-ID-based 
scheme, the response time of UPS for fine localization can 
be greatly reduced as the searching area is restricted.

4.2 � Online localization at a vehicle

In this subsection, we first describe the key techniques 
adopted at the vehicle side for accurate urban localization.

4.2.1 � Physical trajectory estimation

From the temporal–spatial analysis, we have the observation 
that GSM power spectrogram segments over a long distance 
is better for fingerprinting than those with a short length. 
This encourages a vehicle to collect GSM power measures 
over its geographical trajectory for localization. Therefore, 
it is fundamental for the vehicle to first obtain its accurate 
geographical trajectory. In UPS, the geographical trajectory 
of a vehicle can be estimated with two techniques.

Perceiving the heading direction The vehicle can uti-
lize the embedded compass to get both the strength and the 
direction of the magnetism of the earth by calculating the 
sum of magnetization readings along the x- and y-axis of the 
compass. By aligning the coordinate system of the compass 
with that of the vehicle using the scheme proposed in work 
Xiao et al. (2013), the heading direction of the vehicle can 
be derived as the angle between the y-axis of the compass 
and the direction of the magnetism of the earth.

Estimating the instant speed The distance traversed along 
one direction can be calculated as the integral of instant 
speed values over time. In UPS, a simple way to obtain 
accurate speed information is to gain access to the onboard 

Electronic Control Unit (ECU) of the vehicle using an OBD 
interface. Schemes like SenSpeed (Han et al. 2014), where 
inertial sensors such as a 3D accelerometer and a gyroscope 
is used to estimate the instant speed of a vehicle, leveraging 
the uneven surface of urban roads and variant driving behav-
ior to eliminating accumulative errors, can also be adopted. 
Due to the page limitation, we omit the details from this 
paper.

With the heading and distance information, the vehicle 
can estimate its geographical trajectory of m meters, denoted 
as a vector �m with m elements. An element i in �m can be 
denoted as a tuple (�i, ti) , where �i and ti represent the head-
ing angle and the timestamp calculated for the ith meter on 
the trajectory.

4.2.2 � Compound trajectory generation

A vehicle can scan GSM channels with one or multiple 
GSM radios while moving. The retrieved power spectro-
gram, however, is a time-domain signal, which should be 
bound to the geographical trajectory of the vehicle to form 
a compound trajectory before it can be used for comparison 
with the GSM signal map.

To generate a compound trajectory, the RSSI readings 
of GSM channels measured at each time instance is associ-
ated to the corresponding location traversed by the vehi-
cle at that time in the geographical trajectory. We denote 
the tuple ℂm = (�m,𝕊m) as a resolved compound trajec-
tory of m meters, where �m and �m are the correspond-
ing geographical trajectory and the associated GSM power 
spectrogram measured over �m , respectively. An ele-
ment i in ℂm can be denoted as a triple (�i, ti,Vti,l,i) , where 
Vti,l,i = (x

ti,l,i

1
, x

ti,l,i

2
,… , x

ti,l,i
n ) is the associated power vector. 

It should be noted that, as it takes time to scan all effective 
GSM channels, when the vehicle moves fast, it is possible 
that some channels (referred to as missing channels) within 
a power vector at a particular location are not measured. In 
UPS, missing channels are filled with the nearest value along 
the trajectory.

The generated compound trajectories can be used for two 
purposes. One is for a nearby responsible edge server to 
construct local GSM map; the other one is to localize the 
vehicle with a pre-downloaded GSM signal map obtained 
from nearby edge servers.

4.2.3 � Maximum similarity search for localization

With the observations that the SCC can always reach max-
ima when two spectrogram segments are perfectly aligned, 
UPS conducts a maximum similarity search to localize a 
vehicle.

Specifically, to acquire its accurate location information, 
a vehicle uses a segment of its own compound trajectory to 
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search in a restrained area on the GSM map to identify the 
most likely location that the segment. Given a compound tra-
jectory segment ( �m,�m ) of the vehicle, we want to identify 
the location of the corresponding power spectrogram segment 
in the map that has the maximum similarity with �m , i.e.,

where l is an arbitrary location within the disk region Rl0,d 
on the GSM map; �(l,m) is a GSM power spectrogram seg-
ment of m meters picked from the map starting from location 
l; l0 denotes the coarse starting location of the compound 
trajectory segment obtained with GPS and d is the accuracy 
error of GPS. As a result, the solution to (7) l∗ , referred to 
as a location reference point  (LRP), is treated as the best 
location where �m might start. In UPS, and a hill-climbing 
procedure using a sliding window of m meters is conducted 
to search for l∗ road by road in Rl0,d.

As localizing a moving vehicle calls for short response 
time, how to minimize the complexity for searching l∗ is of 
great importance. Firstly, we should try the best to restrain 
the initial searching area by using some kind of coarse-
grained localization methods as supplement. In rather open 
areas where GPS is mainly available, such as on the main 
roads, an initial area with a radius of tens of meters can be 
attained by GPS. Whereas when surrounded by tall build-
ings or shielded by elevated roads, cell ID can be used as 
an alternative to GPS, though the initial area may expand to 
a distance of several kilometers. Secondly, note that given 
the limited area of Rl0,d , the number of roads needed to be 
searched is limited. In order to avoid unnecessary SCC calcu-
lation between �m and �l,m , the angle information of the cor-
responding geographical trajectory and the topology of road 
segments are first compared to filter out non-interest roads.

With a LRP, the location of the vehicle can be easily 
obtained by adding the distance traveled since that LRP.

4.3 � GSM map construction at edge severs

In this subsection, we describe how to cost-efficiently con-
struct a reliable and accurate GSM map at a metropolitan 
scale.

4.3.1 � Compound trajectories alignment

Different vehicles may have slightly different trajectories 
along the same path. In UPS, an edge server collects com-
pound trajectories of nearby individual vehicles, trying to 
obtain reliable GSM power measurement from those com-
pound trajectories. To reduce the divergence of individual 
trajectories, we adopt Dynamic Time Warping (DTW) 
(Chandrasekaran et al. 2011) to align each individual com-
pound trajectory to a digital map.

(7)argmax
l

r
�m�l,m , l ∈ Rl0,d,

Specifically, a large urban area is divided into small 
regions according to the deployment of edge servers. Each 
edge server collects compound trajectories from individual 
vehicles within its region via 3G/4G mobile networks to 
construct a GSM map of this region. For an edge server, 
collected compound trajectories are first partitioned into 
segments at turns. With the GPS location information of 
the starting and ending point of such a segment ℂm1 , the 
corresponding intersections can be located in the digital 
map. Given the two intersections, all paths on the map 
with a similar length with ℂm1 are selected. To generate a 
warping path between ℂm1 and one such path m2 (with a 
length of m2 meters), DTW constructs a distance matrix 
D[m1 × m2 ] which represents the minimum distance to 
reach any point (i, j) in the matrix from (0, 0) using a 
dynamic programming formulation shown as follows,

where d(i, j) refers to the Euclidean distance between the ith 
position in m2 and the jth position in ℂm1 . The algorithm is 
illustrated in Fig. 7.

We apply DTW to all paths and select the path with 
the minimum D(m1 − 1,m2 − 1) as the matched path with 
regard to ℂm1 . By retrieving the warping path with the 
matched path, we can get the correspondences of each 
locations on the compound trajectory segment to those 
on the matched path. With such correspondences, a GSM 
power vector measure on the compound trajectory segment 
can be assigned to the match path. For one-to-one or one-
to-many (e.g., l′

3
–l2 , l′3–l3 and l′

3
–l4 in Fig. 8) alignments, 

a measure can be simply copied. In contrast, for many-
to-one alignments (e.g., l′

1
–l1 and l′

2
–l1 ), measures are first 

averaged before assigned. By this means, for each location 
on each path in the digital map, the edge server can collect 
a set of power vectors measures of individual vehicles.

(8)
D(i, j) = d(i, j) + min(C(i − 1, j − 1),C(i − 1, j),C(i, j − 1)),

×

Fig. 7   The process of warping path generation in DTW
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4.3.2 � Outlier measure removal and consistent fingerprints 
aggregation

For each channel at a certain position on the digital map, 
outlier measures can be removed by computing the distri-
bution of differences between a RSSI reading and all other 
RSSI readings in the dataset. For each RSSI reading, we 
compute the mean difference from it to all its neighbors. 
By assuming that the resulted distribution is Gaussian with 
a mean and a standard deviation, all readings whose mean 
differences are outside an interval defined by the global dif-
ferences mean and standard deviation can be considered as 
outliers and trimmed from the dataset (Otsason et al. 2005). 
After all outlier measures are removed, a reliable and accu-
rate GSM power spectrogram map can be finally constructed 
by aggregating all consistent power measures into a mean 
digital map. However, the whole data set containing all con-
sistent power measures should be kept and maintained in 
an edge server for further usage of removing the abnormal 
measures and aggregating consistent fingerprints.

5 � Prototype implementation

We first study the impact of radio posture on the quality 
of collected GSM power spectrogram and conduct static 
experiments in our lab. In specific, as depicted in Fig. 9, we 
put five Motorola C118 phones with different postures on 
a plane and put another two phones with 0.5 m higher and 
0.5 m lower, respectively. Each phone continuously scans 
128 channels for one hour. Figure 10 shows the cumula-
tive distribution of correlation coefficient values between 
GSM spectrogram measurements from one of the horizontal 
phone and all other radios at the same scanning cycle. It can 
be seen that over 90% of the correlation coefficient values 
are larger than 0.6, which indicates a satisfactory similar-
ity between radios with different placements. Therefore, we 
draw the conclusion that the localization performance would 
hardly be affected by radio placement.

We implement a prototype system using two cars, i.e., 
one for map construction and the other for localization, as 

Fig. 8   Aligning an individual compound trajectory to the matched 
path on a digital map using DTW

Fig. 9   GSM radios set in different orientations
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Fig. 11   Our prototype implementation of UPS
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shown in Fig. 11. For online localization, the vehicle inte-
grates a set of GSM radios (e.g., Motorola C118 cellphones 
are used), an inertial motion sensor to estimate the head-
ing direction (e.g., we get motion sensor readings from two 
Android smartphones, one HTC S720t and one Samsung 
Galaxy S4), an OBD-II interface to read the instant speed 
of the car, a GPS module for rough location information, 
and an onboard computing unit (e.g., a laptop). To exam-
ine the impact of different GSM radio deployments to the 
performance of localization, we mount three sets of one, 
two, and four C118 phones, respectively, on the dash panel, 
and mount one set of one C118 phone on the roof of the 
vehicle. Each set of these phones scan the GSM band in 
parallel. For vehicles with no OBD interface available, the 
SenSpeed (Han et al. 2014) scheme based on motion sensors 
can be used to estimate speed information. Both methods 
can achieve good accuracy as about 90% errors for using 
OBD are about 0.8 km/h and 3.2 km/h for using vibration 
data. Using OBD and vibration data have an average error 
of 0.4 km/h and 2 km/h, respectively. For map construction, 
the map-construction vehicle integrates two smartphones, an 
OBD-II interface and a GPS receiver. In addition, to boost 
the procedure of map construction, we mount more GSM 
radios (i.e., 16 C118 phones) on the roof of the vehicle and 
a Hall sensor to detect the revolution of wheels in order to 
get the real travelled distance.

6 � Performance evaluation

6.1 � Methodology

With our prototype system, we war drive a typical urban 
area in our city within an area of about six square kilom-
eters and a route about 30 km long (as illustrated in Fig. 12) 
for 16 days from May 4th to May 19th. With 16 radios, the 
125-channel GSM power spectrogram can be sampled at a 
rate of 10 Hz. By deliberately driving at a speed lower than 
35 km/h, we can obtain a power vector, which refers to the 
vector of RSSI values over all 125 channels measured at one 
location, at every 1 m. In addition, the trace of all sensors is 
collected. We encountered both heavy and light traffic when 
the trace was collected. In order to mitigate the accumula-
tive errors in travel distance derived from the Hall sensors, 
we enforce exactly the same 23 stop locations on the route 
of each day.

We construct an aggregated GSM map using the trace 
of the first 14 days collected by the group of 16 radios 
according to the scheme described in Sect. 4.3 and use the 
trace of the last 2 days collected by groups of one/two/four 

radios for online vehicle localization test. We use group of 
fewer radios to simulate the practical situation where cars 
are usually driven at a higher speed and missing channels 
are more common.

We evaluate the localization performance of UPS and 
compare with GPS using the following metric.

Localization error refers to the absolute distance differ-
ence between the estimated location and the ground truth. 
The ground truth for UPS is calculated as the distance 
since last stop, which can be derived from the wheel revo-
lution information. We measure the circumference of the 
wheel on every experiment. The ground truth of GPS is 
the aggregated (average) GPS reports in the first 2 weeks 
on the same spots.

In the following trace-driven simulations, we first inves-
tigate the effect of system parameter configuration to the 
system performance, and then use the optimal parameter 
configuration to compare the performance of UPS with 
that of GPS.

In this section, we first study the effect of the sliding 
window length and radio configuration to the localization 
performance of UPS. We vary the length of the sliding 
window from 25 to 300 m with an interval of 25 m and 
vary the number and placement of GSM radios. For each 
setting, we randomly select 1000 locations for test from 
the trace collected on May 18th and 19th. For each loca-
tion, we use the most-recent compound trajectory segment 
of 200 m to conduct the maximum similarity search within 
a disk range with a radius of 50 m centered at the GPS 
coordinates of that location on the aggregated GSM map.

Fig. 12   The 2 km × 3 km urban experiment area
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6.2 � Effect of sliding window and radio 
configuration

Figure 13 plots the average and 90% confidence interval of 
localization errors as a function of the sliding window length 
under different radio configurations. It can be seen that, as 
the window length increases, the localization errors decrease 
gradually and plateau when the window length is larger than 
200 m. The reason is that the temporal stability goes better 
when long GSM power spectrogram segments are used for 
comparison. It can also been seen that adding more GSM 
radios can help improve the localization performance of UPS. 
From the figure, it can also be seen that the radio placement 
also accounts. For example, with the only one GSM radio 
placed on the roof of the vehicle, UPS can achieve even better 
localization performance than using a set of four radios placed 
in the vehicle when the window length is sufficient large.

6.3 � Impact of urban environment

To study the impact of urban environment to the localization 
performance, we divide the trace collected on May 18th and 
19th according to the four different scenarios, i.e., on two-
lane roads (normal urban roads), on four- and eight-lane roads 
(major urban roads) and on roads that are under elevated roads 
(major urban roads with semi-open condition). For each sce-
nario, we use the radio configuration with four radios placed 
in front of the vehicle and randomly select 1000 locations 
for test. For each location, we use the most-recent compound 
trajectory segment of 200 m to conduct online localization 
algorithm. In addition, we also use independent compound 
trajectory segments to localize three and five LRPs. With mul-
tiple LRPs, two aggregation schemes, i.e., normal average and 
selective average (the maximum and minimum estimates are 
discarded before the rest estimates are averaged), are adopted 
to retrieve the final localization results.

Figure 14 plots the average and the 90% confidence 
interval of localization errors under different urban sce-
narios with various aggregation schemes. It can be seen 
that, in all scenarios, UPS can achieve extraordinary locali-
zation performance. For example, the average localization 
error is less than 5 m. This implies that UPS is resilient to 
complex urban environments. It is also surprising to see 
that UPS can achieve best localization performance when 
it is on under elevated roads. The main reason is that the 
success of UPS relies on the wide availability and rich 
temporal–spatial features of GSM signals and therefore has 
less to do with the road type. In addition, using multiple 
LRPs and the selective aggregation scheme can effectively 
reduce the localization errors. Thus, we choose to use the 
selective average of five LRPs to estimate vehicle locations 
and compare UPS with GPS with this setting in the next 
experiment.
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6.4 � Performance comparison

In this experiment, we compare UPS with GPS under urban 
settings. We divide the test trace and use the same radio 
configuration as described in the above experiment. For 
each scenario, we randomly select 1000 locations for test. 
For each location, the selective average over five LRPs is 
adopted.

Figure  15 plots the CDFs of localization errors and 
Table 1 shows the comparison between UPS, GPS and a sys-
tem called POLS (Chen et al. 2006). It can be seen in Fig. 15 
that UPS is more robust and stable in all kinds of urban 
scenarios compared with GPS. For example, when tested 
on 2-lane, 4/8-lane and under-elevated roads, UPS achieves 
low localization errors of 6, 6.5 and 3.5 m with a precision 
of 90%, respectively, whereas GPS achieves much higher 
localization errors of 17.5, 23.5 and 40 m, respectively. As 
a result, UPS can outperform GPS by five times on average. 
When compared with POLS, UPS has an absolute advan-
tage although POLS needs a fine-grained fingerprinting by 
war driving. This is mainly because POLS only utilizes the 
RSS information of channels allocated in the current and 
neighboring cells and the information is limited to a single 
position.

6.5 � Effect of traffic load

To verify that the pre-built map can be generally employed 
in dynamic urban environments with different traffic load, 
we divide the collected data into two groups according to 
whether the traffic is heavy or light while collecting. Then 
we match the trajectories with the map built under the simi-
lar, opposite and average traffic conditions. For each sce-
nario, we use the radio configuration with two radios placed 
in front of the vehicle and randomly select 1,000 locations 
for test. For each location, we use the selective average of 
five LRPs algorithm with a window size of 200 m.

In Fig. 16, we show how localization error contributes 
when matched to maps built in different urban scenarios 
under various traffic conditions. As the contributions are 
only slightly vary from each other, we can simply neglect 
the impact of traffic on map construction. As a result, we 
can aggregate all collected data into one map and match to 
it regardless of the current traffic conditions.

7 � Discussion

In this section, we discuss some design issues of UPS 
encountered in practice.

Computational complexity To conduct the online vehicle 
localization, the most expensive step is to identify the opti-
mal location in the map starting from which a GSM power 
spectrogram segment picked from the map has the maximum 
correlation coefficient value. Therefore, the algorithm com-
plexity is bounded by the distance needed for search along a 
candidate road (can be identified with GPS). Given a search 
distance of k meters and a sliding window of n channels 
wide and m meters long, the computational cost for localiza-
tion is O(kmn). In our implementation, we consider a search 
distance of 50 m (larger than the maximum GPS errors) 
and use a sliding window of 41 channels wide and 200 m, 
respectively. We implemented UPS on a laptop with an Intel 
i7-2640M processor and measured the average processing 
time of our algorithm which is about 0.2 ms.

Map updating In UPS, a vehicle needs a pre-downloaded 
GSM map for online localization. The reliability of the map 
not only significantly affects the final localization accuracy 
but also decide whether using GSM power spectrogram for 
localization is feasible. For example, if the GSM map was 
transient and tended to vary along time, this would require 
edge servers to keep updating the map. In addition, this 

Table 1   Performance 
comparison between different 
localization schemes

UPS GPS Fingerprinting

2-lane 4/8-lane Under elevated 2-lane 4/8-lane Under 
elevated

 Chen et al. 
(2006)

Localization 50% 4 3 2 6 10 12 94
error(m) 90% 6 6.5 3.5 17.5 23.5 40 291
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Fig. 16   CDFs of localization errors of UPS with different traffic loads
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would also require a vehicle to frequently download the 
most up-to-date map before conducting online localization, 
which makes the scheme hard to use. With the temporal 
stability analysis on GSM power spectrogram, we have the 
observation that GSM power spectrogram has good tem-
poral stability over a period of 2 weeks (restricted by the 
limited duration of our trace) and would not unlimitedly 
and monotonously become more and more unstable along 
the time (as shown in Fig. 2, the coefficient values calcu-
lated with an interval of 7 days is even smaller than that 
calculated with an interval of 15 days). In addition, in UPS, 
a GSM power vector measurement on the map is achieved 
by aggregation a large number RSSI readings collected 
from individual vehicles, which can greatly help achieve a 
reliable map by reducing the impact of noisy and random 
measures. In practice, an edge server can keep collecting 
individual measures and only calculate the aggregated 
results after a long period of time or a sufficient number of 
individual measures are collected. If the difference between 
the newly resolved results and the current aggregated meas-
ures is larger than a threshold, the map will be updated. This 
situation may happen when some GSM base stations have 
been rearranged or a new building has been constructed, etc. 
During the beginning stage of these changes, there would 
be a buffer period for the system to fit the changed environ-
ment, when the localization error may be temporarily large. 
However, the system will automatically adopt to the new 
environment by updating GSM maps.

8 � Conclusion and future work

In the paper, we have observed that GSM power spectrogram 
has ideal temporal–spatial characteristics for fingerprinting. 
With this observation, we have proposed an online vehicle 
localization scheme, UPS. UPS can achieve stable localiza-
tion performance under variant urban environments and at 
the same time needs a minimum hardware deployment. In 
addition, UPS can cost-effectively obtain a fine-granularity 
and reliable GSM power spectrogram map at a metropolitan 
scale. We have implemented a prototype system of UPS and 
verified the efficacy of UPS design through extensive field 
experiments. The experimental results show a promising 
performance of UPS that UPS can achieve a high localiza-
tion accuracy of 5.3 m with a 90% precision.

In future, we will further improve UPS in the following 
two directions. First, we will further evaluate the effective-
ness of UPS at a broader area such as in different cities and 
countries. Second, we will continue to investigate other 
frequency band such as FM and TV for accurate outdoor 
localization. Last, we will consider to use GSM power spec-
trogram for accurate indoor localization.
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