
IEEE Network • November/December 201874 0890-8044/18/$25.00 © 2018 IEEE

Abstract
IoVs have been envisioned to improve road 

safety and efficiency, and provide Internet access 
on the move, by providing a myriad of safety and 
infotainment applications to drivers and passen-
gers. However, with limited spectrum resource, 
harsh wireless channel, and variable vehicle den-
sity, IoV communication faces severe challenges 
to achieve scalability, efficiency, and reliability. 
In this article, we propose a context-aware IoV 
paradigm design to enhance the communication 
performance, where the high-level contextual 
information is utilized to bring intelligence in the 
design. Specifically, through big data analytics 
on large-scale IoV communication traces collect-
ed from an extensive experiment conducted in 
Shanghai, we investigate the impacts of different 
contextual information on V2V communication 
performance. We reveal that among many types 
of contextual information, the NLoS link condition 
is a major one that significantly affects V2V link 
performance. Based on that observation, we dis-
cuss three critical but challenging communication 
paradigm designs with context awareness of V2V 
link conditions: smart medium resource allocation, 
efficient routing establishment, and reliable safety 
message broadcasting. Furthermore, we present 
a case study of a cooperative beaconing scheme, 
where machine learning methods are utilized to 
learn the real-time link contextual information, 
and vehicles in deep NLoS condition choose help-
ers to enhance the overall beaconing reliability.

Introduction
The Internet of Vehicles (IoVs) constitutes the cor-
nerstone of intelligent transportation systems (ITS) 
by allowing vehicle-to-vehicle (V2V) and vehi-
cle-to-infrastructure (V2I) communications, and in 
general, vehicle-to-everything (V2X) communica-
tions [1–3]. By efficiently exchanging information 
among vehicles, communication infrastructure, 
and the Internet, a wide spectrum of applications, 
ranging from road safety and real-time navigation 
to entertainment and self-driving, can be provided 
to drivers and passengers. Specifically, in safety 
applications, including collision avoidance, safety 
warnings, remote vehicle diagnostic, and so on, 
vehicles periodically broadcast safety messages 
of positional and kinematic information to their 
one-hop neighbors, where ultra-low delay and 

high reliability is required; in comfort applications 
like file downloading, web browsing, and video 
streaming, vehicles may fetch the contents from 
Internet servers or edge servers through IoVs, 
where user quality of experience (QoE) should 
be satisfied. To this end, IoV communication par-
adigms (e.g., medium resource allocation, routing, 
and broadcasting) should be carefully designed 
with efficiency, scalability, and reliability.

However, the inherent features of IoV pose 
great challenges to efficient communication para-
digms design, which can be described as follows.

Spectrum Resource Shortage: The IEEE 
802.11p-based dedicated short-range communi-
cation (DSRC) has been a standard for vehicular 
communications in recent years, in which one 
control channel (CCH) and multiple service chan-
nels (SCHs) with two optional bandwidths of 10 
MHz and 20 MHz are set to simultaneously sup-
port safety and non-safety services. However, the 
Federal Communications Commission (FCC) only 
allocates 75 MHz 5.9 GHz licensed spectrum 
for DSRC, which is insufficient to support ever 
increasing and medium-rich applications, especial-
ly for those scenarios where the vehicle density is 
high [4]. Therefore, it is challenging to guarantee 
the required vehicular ad hoc network (VANET) 
performance under limited spectrum resources.

Harsh Wireless Channel: As vehicles move, 
the link conditions between them vary quickly 
and can be intermittent over time. For instance, 
urban driving environments can be highly dynam-
ic and complex with many unpredictable factors 
such as time-varying traffic densities, surrounding 
buildings, types of roads, and trees, which sto-
chastically degrade the V2V link performance 
[5]. As a result, reliable packet delivery under an 
unstable wireless channel is nontrivial.

Variable Vehicle Density: Vehicle density 
dramatically varies due to vehicle mobility [6]. 
It could be extremely high under traffic jams in 
urban and highway environments, while relative-
ly low in suburban environments. The dynamic 
topology makes optimal resource scheduling very 
hard to achieve. For example, scarce spectrum 
may be wasted under low-density scenarios, while 
channel congestion can easily be triggered under 
high-density scenarios.

In IoV, contextual information is usually uti-
lized in designing efficient and intelligent proto-
cols in order to improve the resource utilization 

Intelligent Context-Aware Communication Paradigm Design for IoVs Based on  
Data Analytics
Feng Lyu, Nan Cheng, Hongzi Zhu, Haibo Zhou, Wenchao Xu, Minglu Li, and Xuemin (Sherman) Shen 

AI FOR NETWORK TRAFFIC CONTROL  

Digital Object Identifier:
10.1109/MNET.2018.1800067

Feng Lyu, Hongzi Zhu, and Minglu Li are with Shanghai Jiao Tong University; Nan Cheng (corresponding author),  
Wenchao Xu, and Xuemin (Sherman) Shen are with the University of Waterloo; Haibo Zhou is with Nanjing University.



IEEE Network • November/December 2018 75

and enhance the network performance under the 
dynamic vehicular communication environments. 
Typical context information such as position, 
speed, direction, acceleration, road traffic, road 
conditions, and weather information can be effec-
tively obtained from onboard sensors or remote 
servers, and shared among vehicles to design 
intelligent context-aware IoV protocols, such as 
location-aware or mobility-prediction based proto-
cols [7, 8]. Furthermore, from such low-level con-
text information, implicit high-level context such 
as vehicle density, link condition and driver behav-
ior can be deducted, which reflects more detailed 
and deeper information about the environments.

Modern communication networks are generat-
ing fast escalations of data due to the proliferation 
of mobile devices, widespread network monitor-
ing, and emerging data-craving applications. Such 
big data can be extensively analyzed to reveal 
useful information and insights on the network, 
improve the network operations, and intelligently 
support a variety of mobile users and services. For 
example, high-level contextual information such 
as network key performance indicators (KPIs) can 
be inferred or learned from the network or traffic 
monitoring data by artificial intelligence (AI) meth-
ods and data analytics, and employed to design 
intelligent network operations [9].

In this article, we propose intelligent con-
text-aware IoV protocol design by employing big 
data analytics and machine learning methods, 
where the high-level contextual information of 
link conditions, that is, line of sight (LoS) and non-
line of sight (NLoS) conditions, is inferred and 
considered. We collect large datasets in Shanghai 
from two experiment cars conducting V2V com-
munications, with each mounting a commodity 
DSRC radio and two cameras, and we visually 
label all LoS and NLoS situations by checking vid-
eos across all collected data traces [10]. Through 
statistical analytics on the collected data, it is 
revealed that contextual information such as sepa-

ration distance, velocity, and altitude does not sig-
nificantly impact V2V performance. Instead, link 
condition (e.g., LoS/NLoS condition) is a major 
context that significantly affects V2V link perfor-
mance. With such knowledge, we then discuss 
three V2V communication paradigm designs with 
context awareness of link conditions:
•	 Smart medium resource allocation
•	 Efficient routing establishment
•	 Reliable safety message broadcasting

Moreover, a case study is provided, where 
an intelligent cooperative beaconing scheme is 
proposed to enhance the IoV broadcast reliabil-
ity. Machine learning methods are employed to 
detect the NLoS contextual information in real 
time, and helpers are chosen to rebroadcast the 
beaconing messages of the vehicles in harsh 
NLoS conditions.

Characterizing the  
Context in V2V Communication
Collecting V2V Communication Data

We collect data in two experiment cars driving 
normally in Shanghai, which continuously con-
duct V2V communications through an Arada 
LocoMateTM onboard unit (OBU) mounted on 
the roof. Specifically, we implement a unicast 
application in the OBU, in which a 300-byte 
packet is sent every 100 ms, based on the Wave 
Short Message Protocol (WSMP) in the DSRC 
module. Each packet includes a sequence num-
ber, and the latitude, longitude, altitude, and 
instantaneous speed of the transmitter vehicle. 
Both vehicles log the packet transmission and 

FIGURE 1. Illustration of data collection: a) experimental devices; b) data collection environments and dataset 
details.
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As vehicular environments can be highly dynamic due to the complicated urban scenarios in terms of 
traffic densities, surrounding buildings, types of road, and so on, we deploy two cameras in front and 

rear of each experiment car to record video of surrounding environment.
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reception, along with their own position infor-
mation. As vehicular environments can be highly 
dynamic due to the complicated urban scenari-
os in terms of traffic densities, surrounding build-
ings, types of road, and so on, we deploy two 
cameras in the front and rear of each experi-
ment car to record video of the surrounding 
environment, which can help us delve into the 
specific contextual information (e.g., the traffic 
density, surrounding vehicles, and NLoS/LoS 
conditions). Figure 1a shows the experimental 
devices, where the laptop and the Ethernet con-
trol interface are adopted to control the OBU 
and download the collected data from it due to 
its very limited storage capability. To cover dif-
ferent traffic conditions, and various road types 
involving a sufficiently long time period, we 
conduct data collection campaigns in highway, 
suburban, and urban areas in Shanghai, and 
the overall campaign lasts for over two months 
including both rush hour and off-peak time con-
ditions. Three datasets from highway, suburban, 
and urban areas are collected, with the total 
traveling distance over 1500 km and file size 
up to 110 GB. Figure 1b demonstrates the data 
collection environments and key statistics of the 
three data traces. Notice that we label all NLoS 
conditions by checking the video data, where 
vehicles cannot visually see each other, and we 
have synchronized the time between the video 
data and V2V communication data for in-depth 
data analysis.

Slight Impact of Kinematic Factors
In this subsection, we study the impacts of kine-
matic factors on V2V performance, that is, sepa-
ration distance, velocity, and altitude. To achieve 
the most reliable communication, we adopt the 
highest transmission power, 14 dBm, and the low-
est data rate, 3 Mb/s, on a channel with 10 MHz 
bandwidth in all experiments.

Impact of Separation Distance: We first 
investigate the impact of distance on V2V per-
formance. Figure 2 shows the cumulative distri-
bution functions (CDFs) of packet delivery ratio 
(PDR) within different distance ranges in three 
environments. We borrow two benchmarks from 
[5], good reception (PDR ≥ 80 percent) and poor 
reception (PDR < 20 percent), to examine the 
overall performance. It can be seen that across 
all environments PDR drops slightly as distance 
increases. For example, under the suburban envi-
ronment, the proportion of good reception is 
about 99, 97, 96, and 92 percent in respective 
distance ranges, that is, 0–100 m, 100–200 m, 
200–300 m, and 300–500 m. A more significant 
performance degradation can happen in high-
way and urban scenarios. The main reason that 
a supreme PDR performance can be achieved 
in the suburban environment is because slower 
speeds, shorter distances, and lighter traffic densi-
ties prevail in this environment. Nevertheless, the 
overall performance is rather reliable in all scenar-

ios compared to results in [5], where intermediate 
reception (20 percent ≤ PDR > 80 percent) pre-
vails throughout the whole communication range 
with a probability of 50.6 percent, while the good 
reception zone only has a probability of 35.2 per-
cent. The conclusion is a little different from the 
reference because very likely the setup of the two 
experiments may be different (scenarios, trans-
mission power, etc.). In summary, the separation 
distance has limited impact on V2V performance 
degradation, and the V2V link is reliable enough 
to support most vehicular applications when the 
separation distance is within 500 m.

Impacts of Effective Velocity and Relative Alti-
tude: To investigate how velocity affects PDR per-
formance, we adopt effective velocity, that is,

Veff = Vtx
2 =Vrx

2 ,  
to represent the variation of velocities of two vehi-
cles. Figures 3a and 3b show CDFs of PDR at dif-
ferent effective velocity ranges in highway and 

FIGURE 2. CDFs of PDR within different separation 
distance ranges: a) suburban; b) highway;  
c) urban. 
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We label all NLoS conditions by checking the video data, where vehicles cannot visually see each other, 
and we have synchronized the time between the video data and V2V communication data for  

in-depth data analysis.
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urban environments. Note that the result under 
suburban environments is omitted due to similar 
observations and space limitations. It can be seen 
that as effective velocity increases, the PDR per-
formance gradually decreases. Particularly, in the 
highway environment, the probability of good 
reception decreases from 97 to 89 percent when 
the effective velocity range increases from 0–10 
m/s to 20–30 m/s. A similar observation also 
holds in the urban environment. In addition, at the 
relatively high velocity ranges (e.g., 20–30 m/s), 
the overall performance is still reliable (with a 
probability of about 90 percent in a good recep-
tion zone), which indicates that high velocity has 
little impact on V2V performance.

We then examine the impact of altitude on 
V2V performance, and adopt relative altitude (i.e., 
Arel = |Atx – Arx|) to represent the variation of 
altitudes of two vehicles. Figures 3c and 3d show 
CDFs of PDR at different relative altitude ranges 
under highway and urban environments. It can 
be observed that relative altitude has very small 
effect on V2V link performance. For example, in 
highway environments, CDF results at different 
relative altitude ranges are analogous, all of which 
can achieve good reception (about 80 percent); 
under the urban environments, the proportion of 
good reception is about 94, 90, and 88 percent in 
relative altitude of 0–3, 3–6, and 6–10 m, respec-
tively, which are still very close.

Key Factors in Performance Degradation
Normally, good reception can broadly happen 
throughout our overall trace; however, during the 
data collection experiments, we surprisingly find 
that packet losses could be very common when 
the sending vehicle cannot see the receiving vehi-
cle directly, that is, two vehicles are being blocked 
by big obstacles (NLoS), including big trucks and 
buses, slopes, turns, and so on. On the contrary, 
when two vehicles are within sight of each other 
(LoS), packets are always perfectly received. 
Therefore, we then investigate the factor of link 
conditions in terms of LoS and NLoS, which may 
impact the V2V performance. By checking videos, 
we label all NLoS situations when two vehicles 
cannot visually see each other. It should be noted 
that although NLoS conditions found by cameras 
are not necessarily NLoS for RF radios, those visu-
ally NLoS conditions are still good approximations 
of real radio NLoS conditions and valuable for 
analysis.

LoS/NLoS Conditions Are Key Factors in V2V 
Performance Degradation: According to found 

FIGURE 3. CDFs of PDR at different effect velocity and relative altitude ranges: a) highway: at different effect 
velocity ranges; b) urban: at different effect velocity ranges; c) highway: at different relative altitude 
ranges; d) urban: at different relative altitude ranges
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During the data collection experiments, we surprisingly find that packet losses could be very common 
when the sending vehicle cannot see the receiving vehicle directly, that is, two vehicles are being 

blocked by big obstacles (NLoS), including big trucks and buses, slopes, turns, and so on.
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LoS and NLoS conditions, we divide the trace 
into two parts and obtain the average PDR vs. 
distance under LoS/NLoS conditions, respectively 
(Fig. 4). We can easily observe that under LoS 
conditions, most packets are well received, while 
under NLoS conditions, packet reception failures 
can happen frequently. For example, under LoS 
conditions, all PDRs are above 95 percent, where-
as most PDRs under NLoS conditions are below 
50 percent regardless of the distance variation. 
We can conclude that it is the NLoS condition 
that significantly affects link performance, and this 
can explain well why PDR can be very high even 
at relative long distance, high effective speed, and 
large relative altitude. Note that even though the 
distance is not the direct reason for poor PDR, 
long distance very likely leads to a higher proba-
bility of encountering an NLoS condition.

Context-Aware 
Communication Paradigms Design

Many communication paradigms could benefit 
from context-aware design if the link condition 
can be detected in real time. In this section, we 
elaborate the context-aware design of three IoV 
paradigms, that is, medium resource allocation, 
routing, and broadcasting safety messages. In 
the following section, we provide a case study 
to show online NLoS detection using machine 
learning methods and a safety message beacon-
ing scheme based on the link condition context.

Smart Medium Resource Allocation
Medium access control (MAC) protocol is of 
great importance for applications in VANETs, 
and distinct applications have their own particu-
lar medium access requirements. Specifically, for 
safety applications, ultra-low delay and high reli-
ability should be guaranteed. In contrast, comfort 
applications can tolerate a certain delay but need 
large numbers of media for file downloading or 
video streaming. In current VANET MAC proto-
cols like contention-based MAC 802.11p [11] 
and time-division multiple access (TDMA)-based 
MACs (e.g., VeMAC [12]), vehicles are treated 
equally to access the channel without consider-
ing link conditions. However, due to the medium 
scarcity, this equal fairness scheme may degrade 
the system performance, especially for high-den-
sity scenarios, as transmissions under NLoS con-
ditions can hardly succeed but incur interference 

to neighboring vehicles. A smarter strategy is to 
allocate the medium resources to those vehicles 
having good links with their receivers. For exam-
ple, in Fig. 5a, each vehicle wants to access the 
channel and transmit data to vehicle D. As heavy 
traffic, like big buses or trucks, will follow vehicle 
D, links are under NLoS conditions between vehi-
cle D and behind vehicles a, b, and c. In contrast, 
links between vehicle D and ahead vehicles A, 
B, and C are under LoS conditions. Obviously, 
vehicles A, B, and C should have higher priority to 
access the channel. In 802.11p, vehicles negotiate 
the channel usage under distributed coordination 
function (DCF), which relies on the carrier sens 
multiple access with collision avoidance (CSMA/
CA) mechanism: when a vehicle wants to access 
the medium, it has to sense the channel first; if 
the channel is idle, the vehicle can access the 
medium; otherwise, it has to perform random 
back-off. Under this case, back-off time could be 
unequally set considering link qualities. By doing 
this, when in light traffic scenarios, vehicles with 
good link conditions can access the channel with 
small delays, and in heavy traffic scenarios, the 
resource utilization can be enhanced. On the 
other hand, in TDMA-based MAC, time is parti-
tioned into frames consisting of equal-length time 
slots and synchronized among vehicles. During 
each time slot, every vehicle decides whether to 
transmit a packet with a probability p. To achieve 
fairer time slot acquisition, the p value of each 
vehicle can be dynamically set based on its link 
conditions. In the broadcast paradigm for safety 
applications, the number of LoS links |LoS| and 
NLoS links |NLoS| of each vehicle to its one-hop 
neighbors can also be an effective indicator for 
medium resource allocation. Beyond that, the 
congestion control framework can also take the 
context-aware factor into consideration to maxi-
mize the optimal performance.

Efficient Routing Establishment
In VANETs, for two remote vehicles, data packets 
can be exchanged through multiple hops. How-
ever, routing in vehicular networks is challenging 
due to highly variable network topologies and 
intermittent wireless link connections. On one 
hand, if broadcasting is used to discover routes 
and each vehicle blindly retransmits broadcast-
ed packets (flooding), the channel will witness 
an explosive growth of traffic (broadcast storm 
problem) and could be congested. As a result, 
transmissions can hardly succeed due to fre-
quent collisions. On the other hand, if a routing 
table is maintained, the source node can query 
the routing table when it starts a route discovery 
process. However, it is hard to efficiently update 
the table and guarantee the correctness of rout-
ing information due to the high speed of moving 
vehicles. Therefore, the packets are very likely to 
be dropped due to the error routes or unreliable 
wireless link conditions. Consequently, taking link 
conditions into consideration can mitigate this 
problem, that is, routing packets to those links 
with good conditions, which could improve the 
routing performance. For instance, in Fig. 5b, 
vehicle A wants to transmit packets to vehicle 
B, which is out of communication range of vehi-
cle A. Vehicle C is within one-hop range of both 
vehicles A and B, while vehicle D and E are within 

FIGURE 4. Average PDR vs. distance under LoS/NLoS conditions.
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one-hop range of the sender A and receiver B, 
respectively. To route a packet from A to B, one 
simple way is to choose vehicle C as a relay due 
to the minimum hops. However, since link con-
ditions between C and both A and B are under 
NLoS, which means that packet reception failures 
would commonly happen, C can hardly receive 
the transmitted packet, and even if it receives the 
packet, the retransmission is also very likely to 
fail. Another route is from A → D, D → E, then E 
→ B. Although one more hop of transmission is 
required, the packet can be well received by the 
receiver due to LoS links. Considering the prob-
ability of successfully receiving a packet under 
LoS and NLoS conditions to be PL and PN and 
with the value of 0.95 and 0.2,1 respectively, the 
probability of successfully routing the packet by 
vehicle C is P2

N = 0.04, while the probability could 
reach P3

L = 0.86 when relayed by vehicles D and 
E. Therefore, link conditions can heavily affect 
route performance and should be considered as 
a significant factor in designing efficient routing 
strategies.

Reliable Safety Messages Broadcasting
To enhance driving safety, IEEE 802.11p-based 
DSRC standards provide broadcast services (i.e., 
periodically broadcasting safety beacons) to 
let each vehicle keep up-to-date knowledge of 
surrounding environments. Based on constant-
ly updated information, upper-layer safety appli-
cations can be supported, and thus any loss of 
beacons might result in potential danger. In the 
literature, many works have studied how to trans-
mit safety beacons and guarantee transmission 
requirements to support reliable one-hop broad-
cast communication. For example, in [13], Zhang 
et al. designed adaptive beaconing schemes with 
safety awareness to control beacon congestion 
on the control channel. In all these research 
works, a common assumption is that if a beacon 
is sent out, it can be received well as long as two 
vehicles are within communication range. How-
ever, through our experiment, we find that V2V 
communication can be intermittent and heavily 
influenced by driving context (e.g., NLoS condi-
tions). Moreover, in broadcast mode of 802.11p 
protocol, request to send/clear to send/acknol-
edgment (RTS/CTS/ACK) packets are removed 
to facilitate response, and without ACKs, it is 
very hard to confirm whether safety beacons are 
received well. Therefore, it is nontrivial to achieve 
reliable safety beacons. With the knowledge that 
V2V communications could be reliable in LoS 
conditions but hardly succeed in NLoS condi-
tions, one possible beaconing strategy is to find 
a proper neighbor vehicle to cooperatively help 
rebroadcast beacons when encountering harsh 
NLoS conditions. For example, in Fig. 5c, since 

vehicles A and B are blocked by obstacles, vehicle 
B can hardly receive safety beacons from vehicle 
A. To enhance the reliability of beaconing, vehicle 
A can ask vehicle D to rebroadcast the beacon, 
and we define this vehicle as a helper. The sender 
should select a helper with the best link quality 
with both the sender and the receiver among all 
the optional helpers. Therefore, vehicle C should 
not be chosen as a helper due to the NLoS link 
condition between itself and the sender. This 
context-aware beaconing strategy can improve 
the reliability in safety beaconing without cost-
ing much rebroadcast overhead. Since beacon 
exchange in real time is highly related to driving 
safety, ultra-high reliability is normally required. To 
this end, the space-air-ground integrated network 
architecture can also be utilized, in which drone 
assisted communication can easily provide LoS 
links to relay the beacons [14, 15].

Case Study
In this section, we study the case where contextu-
al information of LoS/NLoS conditions is detect-
ed and applied in the V2V beaconing design. A 
cooperative beaconing scheme, named Co-bea-
con, is proposed, which integrates the following 
three novel techniques:
•	 Online NLoS detection
•	 Link status exchange
•	 Beaconing with helpers

Online NLoS Detection
To employ the contextual information of 
link condition, we first propose a supervised 
machine-learning-based online NLoS detection 
method. As we have labeled all NLoS/LoS con-
ditions by checking videos manually, that is, 
respective 16,425, 10,033, and 27,439 NLoS/
LoS samples under highway, suburban, and urban 
environments, we utilize one part of the samples 
for model training and the other part for model 
verification. From Fig. 4, it can be seen that the 
PDR values have latent relation to the LoS/NLoS 
condition, since all visually identified NLoS condi-
tions tend to have a lower PDR, and all LoS con-
ditions tend to have a higher PDR. As explained in 
[10], the PDR values have memories, and there-
fore we employ historical values of PDR as input 
features to train a classification model to detect 
NLoS condition online. Specifically, we choose 
three historical PDR values (e.g., previous 1 s, 5 
s, and 10 s) as the feature, and the labeled LoS/

FIGURE 5. Context-aware communication paradigm designs: a) smart medium resource allocation; b) effi-
cient routing establishment; c) broadcasting beacons reliably.
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Many communication paradigms could benefit from context-aware design if the link condition can be 
detected in real time. In this section, we elaborate the context-aware design of three IoV paradigms, 

that is, medium resource allocation, routing, and broadcasting safety messages.

1 The values are empirically 
set based on the average 
PDRs under LoS and NLoS 
conditions.
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NLoS conditions are used as the training target. 
Simple but effective machine learning methods 
such as Naive bayes (NB) and support vector 
machine (SVM) are employed, and the results 
are shown in Figs. 6a and 6b. It can be seen that 
the simple methods perform well with accuracy, 
precision, and recall higher than 90 percent, and 
false positive rate lower than 10 percent. Using 
the trained model, the vehicles can accurately 
detect the NLoS condition in real time by tracking 
the historical PDR values.

Link Condition Exchange
In Co-beacon, in each beacon, in addition to 
application data, each vehicle also includes the 
information of its link conditions (LoS/NLoS) 
between itself and its one-hop neighbors. Specif-
ically, for each vehicle, it keeps updating all link 
conditions with its one-hop neighbors, and then 
broadcasts all the link condition information with 
the application data together to its one-hop neigh-
bors. By receiving beacons, each vehicle can not 
only perceive the link status information between 
itself and its one-hop neighbors, but also achieve 

the link status information between its one-hop 
neighbors and the neighbors of its neighbors, that 
is, perceiving the link status information within 
two hops.

 Beaconing with Helpers
Upon identifying NLoS conditions, a sender 
should seek helper vehicles from its neighbors to 
forward beacons. Such a helper would be select-
ed if it has an LoS condition with both the send-
er and the receiver. For instance, when sender x 
detects an NLoS link condition with receiver z, 
Co-beacon will select a helper y from the neigh-
bors N(x) of x, when the receiver z ∈ N(y) and 
the two links x → y and y → z are both in LoS 
conditions. If no such helper y exists, Co-beacon 
will randomly choose a helper y from the set 
N(x). After helper y is selected, the ID of y will be 
added in the header of the beacon; when vehicle 
y receives the beacon, it will rebroadcast the bea-
con immediately.

Performance Evaluation
Simulation Setup: To investigate the impact of 
the number of neighbors on helper choosing, we 
first synthesize 100 links of data using our pre-
vious work of synthesizing V2V communication 
traces [10], in which each trace lasts for 100 min-
utes. In each simulation round, we first randomly 
choose two links of data mimicking the sending/
receiving process from the sender to the receiv-

FIGURE 6. Simulation results: a) NLoS detection results with NB; b) NLoS detection results with SVM; c) BRR 
vs. the number of neighbors; d) BU vs. the number of neighbors.
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It can be seen that the simple methods perform well with accuracy, precision, and recall higher than 
90 percent, and false positive rate lower than 10 percent. Using the trained model, the vehicles can 

accurately detect the NLoS condition in real time by tracking the historical PDR values.
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er. To add a neighbor, another two pairs of links 
are randomly chosen. One pair is for mimicking 
the sending/receiving from the sender to the 
neighbor, and the other pair is for the sending/
receiving from the neighbor to the receiver. The 
number of neighbors n ranges from 1 to 10, and 
the simulation is conducted over each value of n. 
All simulation results are achieved on average by 
computing the result in 30 simulation rounds.

Performance Metrics: We consider the fol-
lowing metrics to evaluate the performance of 
Co-beacon.

Beacon Reception Ratio (BRR): is defined to 
measure the reliability, which refers to the ratio of 
the number of neighbors having received a bea-
con to the total number of one-hop neighbors. 
For example, consider that there are 10 neigh-
boring vehicles in the radio range of a vehicle: if 
8 of them receive the beacon broadcast by the 
vehicle, the BRR is 0.8.

Broadcast Utility (BU): is defined to measure 
the communication cost, which refers to the ratio 
of the BRR to the total number of broadcasts of 
a beacon. As in the above example, if the BRR of 
0.8 is achieved using no helper (i.e., the beacon 
is only broadcast once by the sender vehicle), the 
BU is 0.8. The BU becomes 0.4 if one helper is 
used (the beacon is broadcast twice, that is, by 
the sender and by the helper).

We compare Co-beacon with two candidate 
schemes, that is, 802.11p (without any rebroad-
cast) and random forwarding (always randomly 
select one of its neighbors to rebroadcast its bea-
cons).

Performance Comparison: Figure 6c shows 
the average BRRs of the three beacon strate-
gies with different numbers of neighbors, from 
which the following two main observations can 
be obtained. First, with a helper to retransmit 
packets, the reliability of the link can be greatly 
enhanced. For instance, Co-beacon and the ran-
dom approach always surpass 802.11p and can 
increase the BRR from 85 to about 97.1 and 96.8 
percent, respectively, when there are two neigh-
bors near the sender and receiver. Second, with 
more neighbors in the environment, Co-beacon 
can achieve better performance, while 802.11p 
and random approach cannot react well to the 
environment. Specifically, the values of BRR will 
not change with 802.11p due to the lack of a 
retransmission scheme, the values fluctuate within 
a small range with random approach, and the val-
ues increase gradually with Co-beacon. Moreover, 
the value in Co-beacon can reach higher than 97 
percent, outperforming about 96.8 percent in the 
random approach when there are more than two 
neighbors.

Figure 6d shows the average BUs of three bea-
con strategies with different numbers of neigh-
bors. It can be seen that the random approach 
can achieve the lowest packet utility of below 
52 percent compared to the other two strategies 
of more than 85 percent. Considering a large 
number of vehicles in the network, the low BU 
of each vehicle in the random approach would 
bring a huge burden to the network. Another key 
insight is that with more neighbors in the environ-
ment, Co-beacon can achieve better BU perfor-
mance. Specifically, the BU values in Co-beacon 
gradually increase as the number of neighbors 

increases and can reach up to 86.2 percent when 
there are more than two neighbors in the environ-
ment, which surpasses the value of 85.6 percent 
in 802.11p.

In summary, compared to the other two strat-
egies, Co-beacon can significantly enhance the 
BRR without obviously degrading the BU, espe-
cially when there are more than two neighbors in 
the network.

Conclusion
In this article, we have proposed a context-aware 
communication paradigm design for IoV by 
employing big data analytics and machine learn-
ing methods. We have analyzed the V2V com-
munication performance in urban environments 
based on real-world data traces, and found that 
an NLoS condition could be the major factor 
that significantly affects link performance. Three 
important V2V communication paradigms have 
been discussed, that is, smart medium resource 
allocation, efficient routing establishment, and reli-
able safety message broadcasting. Moreover, a 
case study has been provided to demonstrate the 
effectiveness of the machine-learning-based NLoS 
detection scheme and the context-aware beacon-
ing scheme.
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