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Abstract—In many Internet-of-Things (IoT) applications,
various RFID-tagged objects need to be localized by mobile
robots. Existing RFID localization systems are infeasible, since
they either demand bulky RFID infrastructures or cannot
achieve sufficient localization accuracy. In this paper, a portable
localization (POLO) system is developed for a mobile robot to
locate RFID-tagged objects. Besides a single RFID reader on
board, POLO is distinguished with a tag array and a lightweight
receiver. The tag array is designed to reflect the RFID signal
from an object into multi-path signals. The receiver captures
such signals and estimates their multi-path channel coefficients
by a tag-array-assisted channel estimation (TCE) mechanism.
Such channel coefficients are further exploited to determine the
object’s direction by a spatial smoothing direction estimation
(SSDE) algorithm. Based on the object’s direction, POLO
guides the robot to approach the object. When the object is in
proximity, its 2D location is finally determined by a near-range
positioning (NRP) algorithm. POLO is prototyped and evaluated
via extensive experiments. Results show that the average angular
error is within 1.6 degrees when the object is in the far-range
(2∼6 m), and the average location error is within 5 cm while
the object is in the near-range (∼1 m).

I. INTRODUCTION

Many new Internet-of-Things (IoT) applications require to
accurately locate RFID-tagged objects on mobile robots. For
example, in smart manufacturing, robots need to locate the
products or the components in assembly lines, or in unmanned
express delivery, robots need to locate and sort packages. A
portable localization system is required in such applications.

In the literature, there are two categories of systems for
locating RFID-tagged objects. In the first category [1]–[4],
multiple RFID reader antennas are deployed in a well-designed
way to implement an antenna array. The phases of the channel
coefficients between the object and the antenna array are
exploited to determine the object’s location. However, to
achieve sufficient localization accuracy (10∼20 cm), at least
four RFID reader antennas are required in these schemes. As
each RFID reader antenna is typically in size of 26cm ×
26cm × 4cm, the first category is infeasible for mobile
robots. In the second category [5]–[7], an RFID reader
antenna is carried by a moving equipment, and a high-
accuracy localization system is deployed to track the real-time
location of the antenna (sub-cm accuracy). An antenna array
is then emulated by synthetic aperture radar (SAR) technology
[8]. However, the high-accuracy tracking of moving RFID
antennas restricts the mobility of the moving equipment, by
requiring its movement on a linear guide [5] or a rail [7],
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or demanding support from an anchor [6]. Such restrictions
make these schemes infeasible for mobile robots due to their
roaming in the entire factory.

In this paper, a portable localization system, called POLO,
is developed for mobile robots to locate RFID-tagged objects.
As shown in Figure 1, POLO consists of a portable locator
designed in this paper. The locator consists of a single RFID
reader, a tag array and a lightweight receiver. The reader is
used for interrogating the RFID tag on an object. The tag
array reflects the signals from the object into multi-path signals
by multiple tag elements. The receiver captures such signals
and estimates the channel coefficient of the path reflected
by each tag element (i.e., hi, i = 1, 2 · · · , in Figure 1).
The tag array can be folded up to a small size as shown in
Figure 2, so that it is convenient to be carried. Based on the
channel coefficients (hi, i = 1, 2 · · · ), a two-step localization
approach is developed. In the first step, the object’s direction
is determined to guide the robot to approach the object. In the
second step, when the object is detected to be in proximity,
its 2D location is determined.

There are three main challenges in POLO design. First, the
signals reflected by the tag elements are superimposed together
at the receiver. Only the combined channel coefficient (

∑
i hi)

can be estimated. To tackle this challenge, a tag-array-assisted
channel estimation (TCE) mechanism is designed. In TCE,
the reflection coefficient of each tag element is changed by
switching on or off each element sequentially. The channel
coefficients (hi, i = 1, 2 · · · ) are then estimated by the channel
variations induced by the tag element switching.

Second, the path from each tag element to the receiver
(denoted as T-R path) induces an offset in the channel
coefficient (hi), and thus affects the ultimate localization
results. To this end, a channel coefficient calibration (CCC)
mechanism is designed to eliminate the impact of the T-R
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path.
Third, the channel coefficient (hi) is affected by the

mutual coupling between the tag elements of the tag array.
Particularly, the mutual coupling varies with the incidence
direction of radio signals, which is referred to as anisotropic
coupling in this paper. Thus, the existing solution to resisting
multipath reflections from environment, i.e., the spatial
smoothing algorithm [9], [10], becomes ineffective for
the following reason. The impacts of anisotropic coupling
on different tag elements are different. Although the tag
elements are equally spaced, the tag array cannot be regarded
as a uniform linear array, and thus the spatial smoothing
algorithm cannot be applied. To tackle this challenge, a
coupling impact modeling (CIM) mechanism is designed to
model the impact of the anisotropic coupling. Based on this
model, anisotropic coupling is eliminated in the two-step
localization approach. In the far range, anisotropic coupling
is eliminated by obtaining an equivalent uniform array. Based
on the equivalent uniform array, a spatial smoothing direction
estimation (SSDE) algorithm is designed to estimate the
object’s direction. In the near range, a near-range positioning
(NRP) algorithm is designed to eliminate anisotropic coupling
and estimate the object’s 2D location.

POLO is implemented via a prototyping system that consists
of an 11-tag array, a USRP N210 device, and a commercial-
off-the-shelf (COTS) RFID reader. Extensive experiments are
conducted in various indoor scenarios (room and corridor)
and use cases (mobile and static). The experimental results
demonstrate that the average angular error is within 1.6◦ in
the far range (2 ∼ 6 m), and the average location error is
within 5 cm in the near range (∼1 m).

POLO has four advantages over the existing RFID
localization systems. First, POLO is not restricted to a fixed
place. The robot with POLO can move around to locate
RFID-tagged objects in a large scale area, as shown in Figure
3. Second, POLO can locate an object in non-line-of-sight
(NLOS) case (LOS path is absent), as shown by the NLOS
case in Figure 3. POLO measures the direction of a reflection
path from the object, and guides the robot to approach the
object via the reflection path. Third, POLO improves the
navigation capability of a robot. Fourth, POLO is lightweight,
low-cost, and easy to deploy. The contributions of this paper
are highlighted as follows.

• To the best of our knowledge, POLO is the first portable
localization system for mobile robots to locate the RFID-
tagged objects.
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• The main challenges in POLO design are solved by a
series of novel mechanisms, including TCE, CCC, CIM,
and a two-step localization approach.

• POLO is evaluated via a prototyping implementation.
The rest of this paper is organized as follows. The system
model and channel model are presented in Section II. The
design of POLO is elaborated in Section III. The prototype
implementation and evaluation are carried out in Section IV
and Section V, respectively. The related work is presented in
Section VI. The paper is concluded in Section VII.

II. SYSTEM MODEL AND CHANNEL MODEL

A. System Model

There are two entities in POLO system.
The first entity is an RFID-tagged object. It is

distinguished by an RFID tag on it. If the RFID tag is queried
by an RFID reader, it will reply its ID information.

The second entity is a portable locator. It is deployed on
the mobile robot to locate the RFID-tagged objects. It consists
of a COTS RFID reader, a tag array, and a radio receiver. The
reader is used to interrogate the RFID tag on the object. The
tag array consists of multiple equally spaced tag elements. The
reflection coefficient of each tag element are controlled by a
circuit via an electronic switch [11], as shown in Figure 4.
The support of the tag array is attached to the receiver. The
receiver has a pigtail antenna and can acquire the RFID signals
for localization.

B. Channel Model

The channel model between the receiver and the object in
POLO is presented as follows. The overall channel model is
shown in Figure 5(a). There are three categories of channel
paths in this system: 1) Background path: the path along
which the signal is reflected by surroundings (except the tag
array) and received by the receiver; 2) LOS path: the path
along which the signal arrives at the tag array through LOS
and finally reaches the receiver; 3) NLOS path: the path along
which the signal is reflected by surroundings, reflected again
by the tag array, and received by the receiver.

1) The channel model in the LOS path: The tag array
consists of N tag elements that are uniformly placed in a
straight line, as shown in Figure 5(a). The element spacing
is d. The distance between the center point of the tag array
and the object is L. The direction of the object is θ, which is
defined by the angle between the line from the middle point
of the tag array to the object and the perpendicular direction



Far range

1

2

N

Near range
y

1

2

N

x

(x,y)

Object
Object

L

Far_near.pdf   1 2021/1/15   15:38:00
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of the tag array. Thus, the object’s location is characterized by
L and θ.

The channel model in the LOS path is shown in Figure 5(b).
The channel coefficient of the LOS path from tag element i
is denoted by hlos

i , which is determined by three factors:
• The channel coefficient of the path from the object to the

i-th tag element (called the i-th O-T path):

hf (i, θ, L) = |hf (i, θ, L)|e
j2πLOT (i,θ,L)

λ , (1)

where λ is the carrier wavelength, and LOT (i, θ, L) is
the length of i-th O-T path.

• The channel coefficient induced by the tag array:
ht(i, θ, L). Based on the observational experiments in
Section III-D, ht(i, θ, L) varies with θ and L, which is
refered to as anisotropic coupling.

• The channel coefficient of the path from the i-th tag
element to the receiver (called the i-th T-R path): hb(i) =

|hb(i)|e
j2πLTR(i)

λ , where LTR(i) is the length of the i-th
T-R path, which is fixed in this system.

Thus, hlos
i is expressed as

hlos
i = hf (i, θ, L)ht(i, θ, L)hb(i). (2)

Based on Eqs. (1) and (2), it can be observed that the
location information (L and θ) is in the phase component
of hf (i, θ, L), i.e., LOT (i, θ, L). If ht(i, θ, L) and hb(i) are
removed, hf (i, θ, L) can be obtained, and the object’s location
can be determined.

Nevertheless, the phase of hf (i, θ, L) is a periodic function
with period λ, as mod ( 2πLOT (i,θ,L)

λ , 2π), which leads to
ambiguity in localization based on phase. To address this issue,
the tag element spacing (d) is set within λ/2, and thus the
difference between LOT (i, θ, L) of any two adjacent elements
is in [−λ/2, λ/2]. In this way, the object tag can be located
by the phase differences among hf (i, θ, L).

2) Channel model of NLOS paths: Suppose there are M
NLOS paths, the channel coefficient of the NLOS paths
(denoted by hnlos

i ) is expressed as,

hnlos
i =

M∑
m=1

hf (i, θm, Lm)ht(i, θm, Lm)hb(i), (3)

where θm and Lm is the direction and the length of the m-th
NLOS path through the i-th tag element, respectively.

The signals from the LOS path and the NLOS paths
are superimposed at the tag array. The combined channel
coefficient of the paths reflected by the i-th tag element
(denoted by hi) is expressed as

hi = hlos
i + hnlos

i . (4)
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3) The overall channel model: As the receiver has a single
antenna, the signals reflected by the tag array and that from
the background paths are superimposed together. The channel
coefficient between the object and the receiver at time t is,

h(t) =

N∑
i=1

hi + ho(t), (5)

where ho(t) is the combined channel coefficient of all the
background paths.

4) Far range and near range: An important property
should be noted: When the object is far from the tag array, the
O-T paths are almost parallel with each other, as shown by
the far range case in Figure 6. The phase differences among
hf (i, θ, L) are not sensitive to the object’s distance L. Only
the object’s direction can be determined. When the object is
in the proximity of the tag array, the phase differences among
hf (i, θ, L) is sensitive to both the object’s distance L and the
object’s direction θ, as shown by the near range case in Figure
6. The object’s 2D location can be determined.1

To locate the object, a) the channel coefficients in the
tag array (ht(i, θ, L)) and the T-R path (hb(i)) need to be
eliminated; b) the interference from the background paths
(ho(t)) and the NLOS paths (hnlos

i ) need to be resisted.

III. DESIGN OF POLO

A. Overview

In POLO, the backscattered RFID signal from the object
is further reflected by the tag array into multi-path signals,
and acquired by the receiver in the portable locator. The
channel coefficients of such multi-path signals are estimated
and calibrated for locating the object. When the object is in the
far range (2∼6 m), the object’s direction can be determined.
When the object is in the near range (∼1 m), POLO can
recognize the near range case, and determine the object’s 2D
location. POLO is designed with six key function blocks, as
shown in Figure 7:

• Tag-array-assisted channel estimation (TCE): TCE is
designed to estimate the channel coefficients hi, and to
remove the interference from the background paths.

• Channel coefficient calibration (CCC): CCC is
designed to eliminate the impact of T-R path.

1For the ease of presentation, in the near range, the location of the object
is expressed by a Cartesian coordinate system (x, y), where x = L cos(θ)
and y = L sin θ, as shown in Figure 6.
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• Coupling impact modeling (CIM): CIM is designed to
model the impact of anisotropic coupling. Both the far-
range model and the near-range model can be obtained.

• Spatial smoothing direction estimation (SSDE): In the
far range, SSDE is developed to eliminate anisotropic
coupling via an equivalent uniform array, and to
determine the object’s direction via a spatial smoothing
algorithm.

• Near-range positioning (NRP): In the near range, NRP
is designed to eliminate anisotropic coupling based on
the coupling impact model, and to determine the object’s
2D location via a location spectrum.

• Near/far range decision: The near/far range decision is
designed to determine whether the object is in proximity.

B. Tag-Array-Assisted Channel Estimation

TCE is deigned to estimate the channel coefficients hi.
Since the receiver only has a single antenna, the signals
reflected by the tag elements are superimposed together at the
receiver. The conventional channel estimation schemes [12]
can only estimate the combined channel coefficient between
the object and the receiver, which is expressed by

ĥ(t) =

N∑
i=1

hi + ho(t) + wh(t), (6)

where ĥ(t) is the estimated channel coefficient at time t, and
wh(t) is the noise in channel estimation procedure.

To obtain the channel coefficients of the N paths from the
tag array, TCE is conducted in N+1 time slots. In the first slot
t = t0, the electronic switches of all tag elements are shorted.
In the slot t = ti, only the electronic switch of the i-th tag
element is open, as shown in Figure 8. As a result, the channel
coefficient of i-th path is changed from hi to γihi, where γi is
a complex constant determined by the characteristic of the i-
th tag element. In each slot, the combined channel coefficient
between the object and the receiver, i.e., ĥ(t) is estimated. This
procedure proceeds until all tag elements have been opened
once.

The estimated channel coefficient of the i-th path (denoted
by ĥi) is acquired by the difference between the combined
channel coefficients at t0 and ti, i.e., ĥ(t0) and ĥ(ti), as

ĥi = ĥ(ti)− ĥ(t0)

= (γi − 1)hi − [ho(ti)− ho(t0)]− [wh(ti)− wh(t0)].
(7)

where (γi − 1) is a constant whose impace to hi can be
eliminated by the CCC mechanism in Section III-C. The
noise term [wh(ti)−wh(t0)] can be suppressed by increasing
the number of received samples in the channel estimation
procedure. However, ho(ti) − ho(t0) is the channel variation

of the background paths from t0 to ti, which is not negligible,
especially in a dynamic environment.

To resist the channel variation of the background paths
(ho(ti)−ho(t0)), the time slot duration of each state is set to
0.05 millisecond. In such a short interval, the channel variation
of the background paths is negligible. Besides, TCE proceeds
repeatedly to acquire sufficient samples to suppress the noise
term in Eq. (7). Thus, the channel coefficients of the paths
through the tag array hi can be estimated as

ĥi ≈ (γi − 1)hi. (8)

C. Channel Coefficient Calibration

CCC is designed to eliminate both the channel coefficient
in the T-R path (hb(i) in Eq. (2)) and the parameter induced
by TCE (γi − 1 in Eq. (8)). As the support of the tag array
is attached to the receiver, the above parameters are constant
numbers. Hence, CCC is only conducted once during system
initialization.

In CCC, the first step is to measure the channel coefficient in
the T-R path. There are two requirements in this measurement:

Requirement 1: To avoid the influence of the NLOS paths,
the measurement is conducted in an open space, e.g., outdoors.

Requirement 2: To avoid the impact of the O-T paths, an
object RFID tag is placed at the perpendicular direction of the
tag array (θ = 0◦), and in the far range (L = L0), as shown
in Figure 9. Thus, the channel coefficients of the O-T paths
are equal, i.e., hf (i, 0

◦, L0) = hf (1, 0
◦, L0), i = 1, · · · , N .

The measured channel coefficient hi is recorded for
calibration, and denoted by ĥ0

i . Based on the Eqs. (2), (4),
and (8), ĥ0

i is expressed as

ĥ0
i = (γi − 1)hf (1, 0

◦, L0)ht(i, 0
◦, L0)hb(i), i ∈ [1, N ]. (9)

In the second step, the estimated channel coefficients ĥi

in TCE are calibrated as hc
i = ĥi · (ĥ0

i )
−1, where hc

i is the
calibrated channel coefficient after performing CCC. Based on
Eqs. (2), (3), (4), (8) and (9), hc

i can be expressed as

hc
i =

hf (i, θ, L)ht(i, θ, L) +
∑M

m=1 hf (i, θm, Lm)ht(i, θm, Lm)

hf (1, 0◦, L0)ht(i, 0◦, L0)
.

(10)

Hence, hb(i) and (γi − 1) are eliminated.

D. Coupling Impact Modeling

1) Anisotropic coupling: The anisotropic coupling affects
the calibrated channel coefficient hc

i . The reason of anisotropic
coupling is that the radiation patterns of the tag elements on
the tag array are coupled with each other [13]. The coupling
pattern varies with the incidence direction of the radio signals
at tag elements. Particularly, the incidence direction of the
radio signals at each tag element is determined by the object’s
2D location in the near range (as the O-T paths are not parallel
with each other), and is determined by the object’s direction
in the far range.

Hence, anisotropic coupling is revealed via two sets of
observational experiments. They are conducted outdoors to
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Fig. 10. Influence of anisotropic coupling in a 11-tag array. The measured
results and the theoretical results are represented by ‘meas’ and ‘theo’,
respectively.

remove other influence factors such as multipath reflections.
The first set of experiments are conducted in the far range
where an object is placed at different directions (−10◦,−30◦

and −50◦). The second set of experiments are conducted
in the near range where an object is placed at different
locations ((0.4m, 0m), (0.7m, 0m), and (1m, 0m)). The phase
values of the calibrated channel coefficients (hc

i ) in the
first set and the second set of experiments are shown in
Figures. 10(a) and 10(b), respectively. To reveal the impact
of anisotropic coupling, the theoretical phase values of the
channel coefficients are derived based on the object’s true
locations, as 2πLOT (i,θ,L)

λ . The theoretical results are shown by
the dashed lines in Figures. 10(a) and 10(b). Two observations
are as follows:

Observation 1: The measured phase values deviate from the
theoretical values. The deviations are different for different
tag elements. Moreover, the deviation can exceed one radian,
which greatly degrades localization.

Observation 2: The phase differences between the measured
channel coefficients and the theoretical values vary with the
object’s location (i.e., direction in the far range and 2D
location in the near range).

2) Process of CIM: CIM is to characterize the impact of
anisotropic coupling on the calibrated channel coefficient hc

i .
The model consists of a set of calibrated channel coefficients
corresponding to different directions in the far range, or a set
of calibrated channel coefficients corresponding to different
locations in the near range. They are used to eliminate
anisotropic coupling in SSDE scheme and NRP scheme,
respectively.

The measurement is conducted in an open space to avoid
the impact of multipath reflections, and is conducted in both
the far range and the near range. In the far range, the direction
of the tag varies from −75◦ to 75◦ with a step of 1◦, as shown
in Figure 11(a). At each direction, the channel coefficient of
the path reflected by each tag element is estimated by TCE,
and calibrated by CCC. The calibrated channel coefficient hc

i is
collected as the coupling impact model in the far range. These
coefficients are denoted as hα

cm(i, θl), where θl ∈ [−75◦, 75◦].
In the near range, the tag is placed at 21 × 21 reference

points individually in a 1m× 1m rectangular area, as shown
in Figure 11(b). The distance between two adjacent calibration
points is 5 cm. The tag array is placed at the left border of
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Fig. 11. Coupling impact modeling.

the rectangular area. At each reference point, the calibrated
channel coefficient hc

i is collected as the coupling impact
model in the near range. These channel coefficients are
denoted as hβ

cm(i, xl, yl), where xl ∈ [0cm, 100cm] and
yl ∈ [−50cm, 50cm].

It should be mentioned that CIM can be conducted in a
one-time initialization procedure, as anisotropic coupling of
a certain tag array is time-invariant and is independent from
environment. Hence, CCC and CIM can be conducted once
forever, which does not add extra workload for users.

E. Spatial Smoothing Direction Estimation (SSDE)

When an object is in the far range, the O-T paths can be
regarded as parallel with each other, as shown in Figure 12.
The relation between the channel coefficient of the O-T path
hf (i, θ, L) and the object’s direction θ in Eq. (1) is expressed
as

hf (i, θ, L) ≈ hf (1, θ, L)e
j2π(i−1)d sin θ

λ , (11)

where |hf (i, θ, L)| ≈ |hf (1, θ, L)|, as the distances between
the tag elements are far smaller than the distance between
the tag array and the object. In Eq. (11), the phase differences
between any two adjacent elements of hf (i, θ, L) are identical,
i.e., 2πd sin θ

λ , which is a crucial property of uniform linear
arrays. It seems that the spatial smoothing algorithm in [9],
[10] can be applied to estimate the object’s direction and
resist the interference from NLOS paths. However, hf (i, θ, L)
cannot be obtained in our system, and the tag array cannot
be regarded as a uniform linear array. The reason is that the
impacts of anisotropic coupling on different tag elements are
different, which destroys the property of a uniform linear array.

1) Equivalent uniform array: To combat the anisotropic
coupling, an equivalent uniform array is designed based on
the coupling impact model hα

cm(i, θ). The equivalent uniform
array is an ideal uniform linear array without impact of
mutual coupling, and is equivalent to the true tag array in
all directions. Based on such an equivalent uniform array, the
spatial smoothing algorithm can be applied.

The channel model of the equivalent uniform array is
denoted by a vector av(θ) as,

av(θ) =
[
1, e

j2πdv(θ) sin θ
λ , · · · , e

j2π(N−1)dv(θ) sin θ
λ

]⊤
, (12)

where dv(θ) is the element spacing of the equivalent uniform
array (and thus it is equivalent element spacing).

At each direction θ, dv(θ) is obtained by ensuring
av(θ) and the normalized coupling impact model, i.e.,
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ejϕ

α
cm(1,θ), · · · , ejϕα
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]
, as close as possible, where

ϕα
cm(i, θ) is the phase of hα

cm(i, θ). Hence,

dv(θ) = argmax
d

∣∣∣∣∣
N∑
i=1

ej[
2π(i−1)d sin θ

λ −ϕα
cm(i,θ)]

∣∣∣∣∣ . (13)

The calibrated channel coefficients [hc
1, · · · , hc

N ]⊤ in Eq.
(10) can be expressed in form of av(θ). If there is only the
LOS path between the tag array and the object (M = 0),hc

1

· · ·
hc
N

 =
hf (1, θ, L)

hf (1, 0◦, L0)
av(θ) +

w1,0

· · ·
wN,0

 , (14)

where wi,0 is the approximation error between the equivalent
model and the true model. An example of the equivalent
uniform array and the true array in −30◦ direction is shown
in Figure 13.

Considering that there are M NLOS paths, the channel
coefficients [hc

1 · · ·hc
N ]⊤ are expressed as

hc
1

· · ·
hc
N

 =
[av(θ) · · ·av(θM )]

hf (1, 0◦, L0)

 hf (1, θ, L)
hf (1, θ1, L1)

· · ·
hf (1, θM , LM )

+

M∑
m=0

w1,m

· · ·
wN,m

 .

(15)
2) Spatial smoothing: Based on the equivalent model in

Eq. (15), the spatial smoothing scheme developed in [9], [10]
can be applied. The detailed procedure is as follows.

First, the channel coefficients [hc
1 · · ·hc

N ]⊤ are divided into
K subarrays, as shown in Figure 14. In the k-th subarray,
the channel coefficient is [hc

k hc
k+1 · · ·hc

N−K+k], and its
correlation matrix is

Rhh,k = [hc
k · · ·hc

N−K+k]
H [hc

k · · ·hc
N−K+k]. (16)

Second, Rhh,k is averaged over k ∈ {1, · · · ,K} with the
average of Rhh = 1

K

∑K
k=1 Rhh,k. Rhh is required to have

full rank, and thus K ≥ N+1
2 . It has N −K + 1 eigenvalues

[σ1 · · ·σM+1 σM+2 · · ·σN−K+1] in a decreasing order. The
biggest M +1 eigenvalues are corresponding to the LOS path
and the M NLOS paths. The next N −K −M eigenvalues
are corresponding to the noise term wi,m in Eq. (15). The
N −K + 1 corresponding eigenvectors are

E = [e1 · · · eM+1 · · · eM+2 · · · eN−K+1], (17)

h1 h2 h3 hN-2hN-1 hN

4
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Fig. 14. Spatial smoothing.

where [e1 · · · eM+1] is the signal subspace, and denoted as
ES . [eM+2 · · · eN−K+1] is the noise subspace, and denoted
as EN .

Third, the MUSIC AoA spectrum in [14] is applied to
estimate the directions of the LOS path and NLOS paths as

PD(θs) = [as(θs)ENE∗
Nas(θs)

∗]
−1

, (18)

where as(θs) =
[
1, · · · , exp( j2π(N−K)dv(θs) sin θs

λ )
]
. When

θs = θ, θ1, · · · , θM , as(θs)⊥EN , and sharp peaks appear in
PD(θs).

3) LOS/NLOS path recognition: Based on the MUSIC AoA
spectrum, multiple direction values are obtained (including
the LOS path and NLOS paths). The direction of the LOS
path needs to be recognized. This issue is solved based on a
property: the direction of the LOS path is more stable than
the directions of NLOS paths, when POLO is moved with
the robot through a small distance. This property has been
revealed in [10], where the LOS path and NLOS paths can be
recognized with an accuracy of 90%. Moreover, an advantage
of POLO should be highlighted here. Even if a NLOS path
may be recognized as the LOS path (due to stronger signals
in a NLOS path), the robot with POLO can still follow the
NLOS path to approach the object.

F. Near-Range Positioning

When an object is in the near range (the O-T paths are
not parallel), the tag array cannot be regarded as a uniform
array even if anisotropic coupling can be eliminated. Hence,
SSDE cannot be applied in the near range. A new algorithm
NRP is designed to estimate the object’s 2D location. First,
based on the coupling impact model for the near range, the
nearest reference point to the object is determined. As the
reference points are densely spaced, the object’s possible
region is controlled to be within 5cm×5cm. To accurately
determine the object’s location, the phase offset induced by
anisotropic coupling is eliminated, and the object’s location is
finally determined.

1) Reference point searching: Given a reference point
(xl, yl), if it is close to the object’s actual location, the phase
of hβ

cm(xl, yl) (denoted by ϕβ
cm(i, xl, yl)) is also close to

the phases of calibrated channel coefficients hc
i (denoted by

ϕc
i ). Based on this principle, a location similarity parameter

Γ(xl, yl) is designed to measure the similarity between
ϕβ
cm(i, xl, yl) and ϕc

i as

Γ(xl, yl) =
1

N

∣∣∣∣∣
N∑
i=1

ej[ϕ
c
i−ϕβ

cm(i,xl,yl)]

∣∣∣∣∣ . (19)
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Fig. 15. Similarity map Γ(xl, yl).

Γ(xl, yl) reaches the maximum at the nearest reference point
(x̂l, ŷl). Hence,

(x̂l, ŷl) = arg max
(xl,yl)

Γ(xl, yl). (20)

2) Anisotropic coupling elimination: Based on the
reference point (x̂l, ŷl), the phase offset induced by the
anisotropic coupling is obtained by the difference between
the ideal channel phase (i.e., 2πLOT (i,x̂l,ŷl)

λ ) and the phase in
coupling impact model as,

ϕδ
i =

[
ϕβ
cm(i, x̂l, ŷl)−

2πLOT (i, x̂l, ŷl)

λ

]
. (21)

The impact of anisotropic coupling is eliminated by ϕc
i − ϕδ

i .
3) Location spectrum: The object’s location (denoted by

(x̂, ŷ)) is determined by calculating a location spectrum as

PL(x, y) =
1

N

∣∣∣∣∣
N∑
i=1

e
j
[
ϕc
i−ϕδ

i−
2πLOT (i,x,y)

λ

]∣∣∣∣∣ . (22)

If (x, y) = (x̂, ŷ), ϕc
i − ϕδ

i − 2πLOT (i,x,y)
λ = 0, and then

PL(x, y) reaches the maximum. Hence, the location of the
object is determined by

(x̂, ŷ) = argmax
(x,y)

PL(x, y). (23)

Since NRP is not effective in resisting multipath reflections,
it is not applicable to the far range.

G. Near/Far Range Decision

POLO needs to determine if the object is in the near range
so that NRP can be applied. This can be achieved via Γ(xl, yl)
as follows. By calculating Γ(xl, yl) of all reference points, a
location similarity map can be built for a certain location of
the object. On this map, each point (xl, yl) has an associated
value of Γ(xl, yl), as shown in Fig. 15. If the object is closer
to the near range, the number of points whose value exceed
a threshold (e.g., 0.95) increases. As shown in Fig. 15, when
the object is at location (200cm, 0cm), there is only one such
a point. However, the number of such points increases to 18
points when the object is at (80cm, 0cm). Thus, the number
of such points can be used to indicate if the object is in the
near range.
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Fig. 16. Experiment setup.

IV. PROTOTYPE IMPLEMENTATION

A. Hardware

1) Tag array: A fixed array of eleven tags and a control
circuit are implemented. Each element has a dipole antenna,
separated at a distance of 8cm, installed via two 7cm
copper wires. The reflection coefficient of each tag element
is controlled by the control circuit, using an MSP 430
microcontroller [15] and a BF1101WR switch chip [16].
The control circuit can sequentially switch the reflection
coefficient of each tag element.

2) Radio receiver: The radio receiver is implemented on
a USRP N210. Signals are sampled at 4 MS/s and sent to a
general purpose computer, where the designed algorithms are
performed with National Instrument Labview software.

3) COTS RFID system: The COTS RFID reader Impinj
R420 and ALN-9610 RFID tags that follow the EPC Gen2
protocol [17] and operate on 920 ∼ 924 MHz are used [18],
[19]. The reader is equipped with a 9dBi reader antenna.

V. PERFORMANCE EVALUATION

A. Methodology

1) Setup: The experiments are conducted in various indoor
scenarios: a) room scenario; b) corridor scenario; c) NLOS
scenario, as shown in Figure 16. In these scenarios, both the
static case (the robot is static) and the mobile case (the robot
is moving toward the object) are evaluated.

2) Metric: In the far range, the angular errors, defined as
the differences between the true direction and the measured
direction are collected. In the near range, the location errors,
i.e., the differences between the true location and the measured
location, are collected.

3) Other approaches: To the best of our knowledge, there
is no existing RFID localization system based on portable tag
array. Hence, the antenna array based localization systems
are considered for comparison, which consists of single-
channel based approaches [6], [10] and multi-channel based
approaches [7], [20]. As our system operates on a single
channel, the single-channel approaches [6], [10] are applied
to the same system setup for comparison.

• Arraytrack: We compare POLO with Arraytrack [10]
in the far range. In Arraytrack, the object’s direction
is estimated via a spatial smoothing based MUSIC
algorithm.
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Fig. 17. The signals received by the receiver.
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• RFly: We compare POLO with RFly [6] in the near
range. In RFly, the object’s 2D location is estimated via
a location hologram.

B. Channel Estimation

The signals received by the receiver are shown in Figure 17.
It can be observed that these signals are changed significantly
when the reflection coefficient of a tag element is switched.

The phase values of the channel coefficients of the paths
reflected by 4 tag elements of the tag array are shown in Figure
18, where the channel estimation is based on one packets. The
variation of the results is due to the existing of noise. To reduce
the noise, TCE is conducted based on multiple packets. The
relation between the phase noise and the number of packets
is shown in Figure 19. It is shown that when the number of
packets exceeds eight, the phase noise is within 0.03 radian,
and the angular noise in direction estimation is within 0.5
degree. Hence, to obtain a stable result, 8 packets are needed
in TCE, which is acceptable, as a general commercial RFID
reader can read 100 ∼ 200 packets per second [21].

C. Direction Estimation

When the object is far from the mobile robot, SSDE is
applied to estimate the object’s direction.

1) Effectiveness of the equivalent uniform array: In
SSDE, the equivalent uniform array is designed to solve the
anisotropic coupling problem. The key parameter, equivalent
element spacing dv(θ) in Eq. (13), is measured and shown
in Figure 20, where θ ∈ [−75◦, 75◦]. It is shown that dv(θ)
varies with the object’s direction θ, and the variation can
exceed 0.6 cm, which denotes the influence of anisotropic
coupling on the tag array is severe.

To validate effectiveness of the equivalent uniform array,
the benchmark method Arraytrack in [10] is applied in
portable locator (anisotropic coupling is not considered in
the Arraytrack). The object is placed at the directions from
−70◦ to 70◦ with a step of 2◦. The distance between the
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object and the portable locator is 6 m. The direction estimation
errors of SSDE and Arraytrack are collected, as shown in
Figure 21. It can be seen that Arraytrack is greatly affected
by anisotropic coupling, and the estimation error exceeds 10◦

in some directions. In contrast, the SSDE scheme can resist
anisotropic coupling, and achieves high accuracy of direction
estimation in the range of [−70◦, 70◦].

2) Direction estimation in the static case: SSDE is further
evaluated in indoor scenarios: the room scenario and the
corridor scenario shown in Figure 16. In the room scenario.
the object is placed at 105 points individually. The distance
between the object and the portable locator varies from 2 m to
6 m. Moreover, there exists much metal furniture in the room,
which creates multipath reflections. In the corridor scenario,
the object is placed at 50 points individually. The distance
between the object and the portable locator varies from 2 m
to 6 m. The walls in the corridor can generate strong NLOS
reflections.

The cumulative distribution function (CDF) of the direction
estimation error is shown in Figure 22. The average angular
errors in the room scenario and the corridor scenario are 1.6◦

and 1.1◦, respectively. The direction estimation accuracy in
the room scenario is worse than that in the corridor case, as
the room scenario has more severe multipath reflections than
the corridor scenario.

3) Direction estimation in the mobile case: When the
object’s direction is measured, the robot can move towards the
object. Hence, the direction estimation in the mobile case is
evaluated. In the experiments, the robot measures the object’s
direction at multiple points on its way to the object. The CDF
of the angular errors is shown in Figure 23. It can be observed
that the angular error in the mobile case is close to that in the
static case. Hence, direction estimation accuracy is not greatly
influenced by the robot’s mobility.
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4) Direction estimation in the NLOS case: When the LOS
path between the object and the portable locator is blocked,
the robot can follow the NLOS path to approach the object.
The corresponding experiments are shown by the NLOS case
in Figure 16. The direction estimation results are shown by
the arrows in Figure 24. It can be observed that, at the first
several points, the locator can only estimate the direction of the
NLOS path. The robot moves towards the wall that reflects the
NLOS path. When the LOS path between the object and the
locator appears, the locator obtains two directions and decides
which one is LOS path. As the direction of the LOS path is
more stable than that of the NLOS path, the locator chooses
the LOS path and approaches the object. Hence, POLO can
locate the objects in the NLOS case.

D. Location Estimation

When the object is in the proximity of the portable locator,
the object’s 2D location can be estimated via NRP scheme.

1) Effectiveness of the anisotropic coupling calibration: In
this experiment, the core algorithm in the RFly [6] is applied
in the same system for comparison. The anisotropic coupling
is not considered in the RFly. The object is placed at 80 points
individually, and the distance between the object and the tag
array varies from 0.4 m to 1 m. The localization errors in
RFly and NRP are shown in Figure 25. It can be seen that
the mean of location error of NRP is within 5 cm in both the
room scenario and the corridor scenario, and NRP reduces the
location error by 50%.

In the near range, the multipath reflections from
environment are not severe, as the object is in the locator’s
proximity. The localization accuracy is mainly influenced by
anisotropic coupling, which is eliminated in NRP scheme.

VI. RELATED WORK

1) Antenna array based localization systems: In [22], [23],
two or three antenna arrays are deployed in separate points
as positioning anchors. Each antenna array can measure the
object’s direction individually. The object is located by the
triangulation principle. In [24], a novel RFID tag array is
deployed on an object to measure the object’s orientation.
Based on the object’s orientation, the object’s location is
determined by two separate reader antennas. However, these
systems are not feasible for mobile robots due to the use of
multiple separate antenna arrays or separate antennas. In [1],
[2], [4], several advanced positioning algorithms are developed
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Fig. 25. The CDF of location error.

based on a linear antenna array that consists of 4 RFID reader
antennas. In [3], a well-designed antenna array that consists of
8 RFID reader antennas is developed to measure the trajectory
of an RFID tag. These schemes achieve excellent accuracy
(6.5 ∼ 12 cm). However, they are infeasible for mobile robots.

2) Moving antenna based positioning systems: In [5]–[7],
the SAR technology is applied to emulate an antenna array via
a moving RFID reader antenna with known locations. In [5], an
RFID reader antenna is carried by a robot moving in a straight
line (with known locations) to collect the multipath profiles
of reference tags, and locate the objects in the reference
tags’ proximity. In [6], an RFID relay is carried by a drone.
The location of the drone is measured by a camera based
localization system. In [7], an RFID reader antenna is moving
on a rail, and the location of the antenna is measured by a
laser distance meter. In these localization schemes, a high
accuracy of 5 ∼ 12 cm can be achieved in the indoor
environment. However, the high-accuracy tracking of moving
RFID antennas restricts the mobility of the moving equipment,
by requiring its movement on a linear guide [5] or a rail [7],
or demanding support from an anchor [6]. Such restrictions
make these schemes infeasible for mobile robots due to the
need of roaming in the entire factory.

VII. CONCLUSION

In this paper, a portable localization system POLO has been
developed for a mobile robot to locate an RFID-tagged object.
In POLO, a foldable tag array is associated with a receiver,
with which backscatter channels between the target object and
each element of the tag array can be accurately estimated by
eliminating the anisotropic coupling among tags. As a result,
the direction to the target can be estimated when the robot is in
the far range, and 2D location of the target can be determined
when the robot approaches the target along the estimated
direction. We have implemented a prototype system. POLO is
lightweight and can accurately locate an RFID-tagged object
in various indoor scenarios. In addition, an object in NLOS
can also be pinpointed. POLO is currently designed to operate
in single channel. Future study is needed to further improve
its performance by considering multiple-channel operation.
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