
FriendSeeker: Inferring Hidden Friendship in
Mobile Social Networks with Sparse Check-in Data

Shan Chang∗, Yuting Tao∗, Hongzi Zhu†, and Bo Li‡
∗School of Computer Science and Technology, Donghua University, Shanghai, China

†Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
‡Department of Computer Science and Engineering, Hong Kong University of Science and Technology, HongKong, China

Abstract—Check-in data widely published in mobile social
networks (MSNs) pose serious privacy threats to users. Existing
inference attack methods show that pairwise social relationship
could be estimated by analyzing check-in user records. However,
the efficacy of such attacks heavily depends on the density of
check-in data, which is often not present in practice. In this
work, we propose a new inference attack scheme, which for the
first time can effectively reveal hidden social friendship in both
the real world and in cyberspace among users with only sparse
check-in data. Our attack method enjoys two salient features.
First, it requires no prior knowledge about social connections,
instead it estimates users’ social proximity by exploiting both
physical presence and social proximities. Second, our attack
scheme can automatically learn representative features based
on the significance of various check-in records, rather than
relying on heuristic features. We conduct extensive trace-driven
simulations, and the results demonstrate that our inference attack
method can improve the efficacy of the state-of- the-art learning-
based schemes up to 40%. Moreover, our proposed attack method
is also robust against common data obfuscation mechanisms.

Index Terms—hidden friendship inference, sparse check-in
data, spatial-temporal proximity feature, social proximity feature

I. INTRODUCTION

We have have witnessed the blooming development of
mobile social networks (MSNs) in past decade, such as
Twitter, Facebook and WeChat, where people can easily make
friends in the real world and in cyberspace, while sharing
instant information at their fingertips. However, disseminating
information on MSNs has raised serious privacy concerns.
For instance, as reported in a recent study [1], the private
profile of a user can be precisely inferred by analyzing eight
of his/her contacts on an MSN platform. Moreover, many users
are accustomed to publish their check-in records at point-of-
interest (POI) locations ((e.g., a nice restaurant, a fabulous
shop, or a stunning scenery), which contain rich set of private
spatial-temporal presence information about users. Nowadays,
realizing the potential privacy leakage risks, more and more
MSN users start to hide their friend lists [2]. However, little
attention has been paid to protect check-in data, making it
possible to infer the friendship among users by mining these
check-in data. Such attacks, referred to as friendship inference
attacks, can seriously violate the privacy of users, even impair
the value of MSNs.

Launching a successful inference attack need to satisfy the
following two requirements. First, the attack should accurately
identify as many friends as possible, both in the real world and

in cyberspace. It is intuitive to identify real-world friends by
examining their check-in records as they tend to participate in
common activities, e.g., seeing a movie together or enjoying
a party. In contrast, it is difficult to capture cyber friendship
as they are usually strangers in the real world, and share no
common physical activities and check-in records. Second, the
attack must deal with a crucial problem - the sparsity of the
check-in data. Though check-in data are public and generally
accessible from an MSN, they are often sparse in terms of
temporal and spatial distributions because a large portion of
users are reluctant to update their states.

In general, existing friendship inference schemes can be
roughly divided into two categories,i.e., knowledge-based and
learning-based. In knowledge-based schemes [3] [4] [5] [6]
[7] [8] [9], for each pair of users, plenty of check-in records
with the same places, referred to as co-locations, imply a
potential real-world friendship between such pair of users.
When check-in data are sparse, only a small number of co-
locations can be discovered, making such attacks less effec-
tive. Noticeably, however, such schemes cannot capture cyber
friendship. In learning-based schemes [10] [11] [12] [13], the
correlation between the spatial-temporal proximity of a pair
of friends and their friendship can be learnt with machine
learning algorithms. On one hand, such schemes are capable
of identifying both real-world and cyber friends. On the other,
they are prone to find false positive real-world friends because
nearby strangers (e.g., those living in the same neighborhood)
often present similar spatial-temporal proximity. As a result,
there is no effective scheme, to the best of of our knowledge,
to tackle both real-world and cyber friendship inference with
sparse check-in data.

In this paper, we propose a two-phase hidden friendship
inference scheme, called FriendSeeker, which can effectively
predict both real-world and cyber friendship using sparse
check-in data. Based on our empirical study on two real-world
MSN trace datasets, there are two observations: 1) real-world
friends do share common physical POIs; 2) cyber friends have
common social structure embedded in an MSN. Therefore, in
the first phase, FriendSeeker aims to identify hidden pairwise
real-world friends by utilizing effective spatial- temporal prox-
imity features, extracted from the sparse check-in data. This
allows us to establish an initial social graph with all identified
pairwise real-world friends. In the second phase, new pairwise
hidden cyber friends can be accurately inferred based on social
proximity features, i.e., pairwise social graphs which indicate

how easy it is for two people to ”being friends” through their
social connections, extracted from the initial social graph. The
second phase results in the update of the initial graph, which
repeats until a stable social network with all predicted real-
world and cyber friends are obtained.

There are two main challenges in designing FriendSeeker.
First, it is difficult to accurately infer hidden real-world friends
solely based on sparse check-in data. One intuitive method
is to analyze the joint occurrences of a pair of users by
casting check-in records of both users into a predefined voxel
grid, referred to as joint occurrence cuboid (JOC), and train
a machine learning model with JOC samples for friendship
prediction. However, raw JOCs are sparse and noisy, and high-
dimensional, which implies both high false negative and posi-
tive, as well as low inference efficiency, making them inferior
features. To deal with this problem, we utilize an autoencoder
to derive superior spatial-temporal proximity features, referred
to as presence proximity features, thus suitable for friendship
prediction. More specifically, we label a small number of raw
JOC samples derived from check-in data with the ground truth
of friendship, and use them to jointly train an autoencoder and
a real-world friendship classifier in an end-to-end fashion. The
temporal and spatial features which contribute more to correct
classification (friend or not) will be learnt and retained in the
encoder in a more compact way. After that, we apply the pre-
trained encoder to extract presence proximity features from
raw testing JOCs for real- world friendship inference.

Second, it is challenging to predict hidden friends on a
given social network with sparse links. Conventional heuristic
features, such as common neighbors (e.g., more common
neighbors implies higher probability of a pair of nodes being
friends) and Katz centrality [14] [15] [16] (e.g., more paths
between a pair of users indicates higher social proximity
between them) can be used for link prediction in social
networks. These features are inaccurate for link prediction
when the initial social network is sparse in terms of the
number of links. To tackle this problem, we introduce a new
social proximity feature, called k-hop reachable subgraph,
which refers to the subgraph constituted by all paths within k
hops between a pair of users. As long paths may not derive
meaningful friendship, the intuition of this social proximity
feature is to increase the number of paths between a pair
of users for a better proximity presentation, and to reduce
the number of long paths at the same time by selecting a
proper value of k. Moreover, we embed k-hop reachable
subgraphs into social proximity features vectors, and combine
them with corresponding presence proximity features to train
a hidden friendship classifier for new friendship prediction.
Since the integrated two-factor features balance the importance
of presence and social proximities, those misidentified social
links (close-range strangers) will be pruned from the initial
graph, while at the same time hidden friends will be revealed
and added to the graph, leading to a social graph approaching
to the truth.

We conduct extensive trace-driven simulations on two
large-scale MSN trace datasets collected from Gowalla and
Brightkite. The results indicate that FriendSeeker can quickly

converge by reaching a stable social graph after only 5
or 6 iterations. FriendSeeker outperforms the state-of-the-
art knowledge-based and learning-based methods by 46.9%,
and 16%, respectively. The results also demonstrate that
FriendSeeker can effectively handle sparse check-in data by
discovering 29.6% friends with less than 25 check-in records.
In addition, it can identify 68.13% friends sharing no com-
mon locations. We further apply two commonly used spatial
and temporal obfuscation mechanisms, i.e., concealing partial
check-in records and blurring check-in records of users, to
defend against FriendSeeker. Experiment results show that our
attack can still achieve superior performance.

The main contributions are summarized below: 1) we de-
sign an effective spatial-temporal proximity feature extraction
method using the autoencoder structure based on sparse check-
in data; 2) we propose a novel social proximity feature, called
k-hop reachable subgraph, for social link prediction; 3) we
devise a two-phase friendship inference attack method and its
efficacy verified on real-world traces.

II. PROBLEM DEFINITION AND ATTACK MODEL

A. Problem Definition
We define a trajectory of a user as a sequence of times-

tamped check-ins, each of which represents the user visits a
Point Of Interest (POI, e.g., a shopping store, a drinking bar,
etc.). We formally define the notion of POI, Check-in and
Trajectory as follows.

Definition 1. (POI) A POI p is an exact place, indicated by
a triple (lng, lat, rad), where lng and lat are the longitude
and latitude of the geographical center of p, and rad is the
radius of p, implying geographical coverage.

We denote U, P, and T as the set of users, the set of POIs
and the time domain, respectively.

Definition 2. (Check-in) A check-in c is a triple (u, p, t) ∈
U× P× T, which implies a user u has visited p at time t.

We emphasize that geographical coordinate-based check-ins
can be easily converted into such POI-based check-ins with the
knowledge of P.

Definition 3. (Trajectory) The trajectory of a user ua is the set
Tua

= {(ua, p, t) ∈ T }, where T is a collection of check-ins.

Definition 4. (Co-location) A co-location of two users ua and
ub to a location p is defined as an event that ua and ub report
two check-ins (ua, p, ta) and (ub, p, tb), respectively.

Definition 5. (Social Graph) A Social Graph is defined as an
undirected graph G = (U,E), where U is the set of vertices,
each representing a user, and E is the set of edges between
vertices. e(a,b) ∈ E represents the friendship between users ua

and ub.

We explain that the above definition implicitly assumes the
friendship is symmetric, i.e., if ua is a friend of ub, then ub is
also a friend of ua. Although, the connection between users
can be unidirectional in some social networks, i.e., one user is
the follower and the other being the followee, we consider the

bi-directional relationship since it is common on most social
networks, for example Facebook.

Definition 6. (Induced Path) Given a graph G and a path
P on it, then P is called an induced path if there are no
additional edges in the subgraph induced by the vertex set of
P , i.e., each two adjacent vertices on P are connected by an
edge in G, and each two nonadjacent vertices on P are not
connected by any edge in G.

Based on the above consensus, we define our problem as
follows:

Definition 7. (Friendship Inference Problem) Given a group
of users U and their trajectories TU, for each pair of
users(ua, ub) in U, determine whether they are friends or not,
i.e.,f (ua, ub) = 0/1

B. Attack Model
An attacker launching a friendship inference attack attempts

to unveil friendship among anonymized users. The objective
of the attacker is to identify as many anonymized friends
as possible, utilizing check-in records. To be precise, in the
proposed attack, the attacker predicts friendship through the
following steps:

1) The attacker is able to access a small anonymized dataset
of check-in trajectories with friendship labels, which acts as
our training dataset. There are various ways to obtain such
a dataset, for example, learning from those public available
datasets from MSNs.

2) The attacker is able to obtain another targeted dataset of
check-in trajectories (without friendship labels). It should be
noticed that the users in the training dataset are not necessary
to overlap with that of our targeted testing dataset.

3) The attacker carries out the strategy of friendship infer-
ence such that friends in the targeted dataset can be identified.

C. Empirical Data Analysis
Datasets. We use two real-world datasets from Gowalla and

Brightkite. Each dataset contains both user check-in records
and the social graph of users. We use the check-in records to
infer friendship among users, and the provided social graph
as the ground truth to evaluate the performance of our attack.
Specifically, in Gowalla dataset, there are 36,001,957 check-in
records obtained from 319,063 users during the period from
March 21, 2009 to November 2, 2011, and there are 407,533
nodes and 2,209,170 edges in the corresponding social graph.
In Brightkite dataset, we have 4,747,287 check-in records
collected from 51,406 users during the period from April 18,
2008 to October 21, 2010, and we have 58,228 nodes and
214,078 edges in the corresponding social graph. Each check-
in is organized in the following form:

<user-ID, time, latitude, longitude, location-ID>.

We exclude users who never check in or only check in once
from our experiments. Table I shows the basic statistics of the
selected datasets.

Statistics and Observations. There exist two types of
friendship online: friends in reality (for example, families or

TABLE I: Statistics of two real-world MSN trace datasets.

Dataset # POIs # Users # Check-ins # Links
Brightkite 157,279 14,897 1,360,524 93,754
Gowalla 104,568 12,439 656,642 51,270

schoolmates), and likeminded peoples who might be strangers
in the real word, i.e., cyber friends. In the former case, online
friends may exhibit similar mobilities, while in the latter case,
they may show distinctive mobility patterns, however similar
social tie structures, e.g., sharing many common friends.
For example, in Gowalla, 27.71% friends have no common
location however at least one common friend. We make a
study on the percentages of friends and non-friends who
have co-locations and common friends, respectively. Statistical
results are listed in Table II. For example, we can learn from
it that 13.01% friends share no co-locations however have
co-friends in Gowalla. Thus, both the presence and social
proximity among users provides us opportunities to identify
online friendship.

We further count the number of co-locations and common
friends owned by friends and non-friends on the both datasets.
Fig. 1 shows the statistical results. The CDFs of the num-
bers of friends and non-friends sharing different numbers of
common POIs and friends are illustrated in Fig. 1(a) and (b),
respectively. We can conclude that there are indeed differ-
ences between CDFs belonging to friends and non-friends.
For example, when a pair of users share more than ten co-
locations, it is almost certainly that the two users are friends,
and about 92% non-friend pairs have no common friends,
while only 20% friends share no friends. However, directly
using co-locations and common friends as indicators is not
enough to distinguish between friends and non-friends, since
a large proportion of pairs have no co-locations no matter
friends or not, and non-friends may also share many friends.
For example, it can be seen Fig. 1(a) that 97% non-friends
and 71% friends have never share a common location.

TABLE II: The proportion of users to whether they have co-friends
(C-F) and co-locations (C-L) of Gowalla (above), Brightkite (below).

C-F
C-L Yes No

Friends Non-friends Friends Non-friends
Yes 52.49% 1.67% 13.01% 13.05%
No 27.71% 3.93% 6.79% 81.35%

C-F
C-L Yes No

Friends Non-friends Friends Non-friends
Yes 79.05% 1.08% 4.24% 10.83%
No 9.09% 3.93% 29.17% 55.76%

III. DESIGN OF FRIENDSEEKER

A. Overview
In general, FriendSeeker consists of two phases: real-world

friends inference phase and iterative hidden friends inference

(a) common POIs (b) common friends

Fig. 1: CDFs of the numbers of friends and non-friends sharing
different numbers of common POIs and friends.

phase as shown in Fig. 2. In the real-world friends inference
phase, pairwise check-in trajectories are first captured by
joint occurrence identification (JOI) which outputs joint oc-
currence cuboids. Second, predictive power of occurrences in
cuboids are modeled by latent variables in presence proximity
feature generation, outputting compressed feature vectors,
which are used to train a real-world friendship prediction
model, outputting a social graph of physical friends. In the
iterative hidden friends inference phase, the k-hop reachable
subgraph construction is applied to each pair of people on the
resulted social graph of physical friends, generating pairwise
subgraphs. Social proximity feature extraction encodes those
subgraph as feature vectors, which are combined with their
corresponding presence proximity features to train a hidden-
friendship prediction model. The prediction results lead to a
more accurate social graph, containing cyber-space friends and
avoiding mis-identified real-world friends.

B. Real-world Friends Inference

The objective of this stage is to learn compressed rep-
resentations of pairwise spatial-temporal proximity features,
and to fully exploit them for real-world friends inference,
simultaneously.

1) Identifying Joint Occurrences: we first construct a
spatial-temporal division defined formally as follows:

Definition 8. (Spatial-Temporal Division) We divide a geo-
graphical region of interest (represented as ranges of latitude/
longitude) into I grids, and a time interval concerned into J
slots. The resulting cube is a spatial-temporal division (STD)
of size I × J . A cell, denoted as c

(j)
i (1 ≤ i ≤ I, 1 ≤ j ≤ J),

refers the i-th grid, and the j-th time slot, respectively. An STD
cell is the finest granularity we use for extracting presence
proximity features.

In FriendSeeker, time domain is partitioned into equal slots
of length τ . One simple division of space is to uniformly parti-
tion the space into equal size grids, which is however inflexible
and inefficient due to that the density of POIs varies greatly
across geographic area. For example, in downtown area, the
POI density is much higher compared to a countryside area.
To satisfying different grids contain a similar number of POIs,
we recursively divide a region of interest into four equal grids,

Real-world Friends Inference Iterative Hidden Friends Inference

Joint Occurrence Identification
k-hop Reachable Subgraph

Construction

Joint occurrence
cuboids

Presence Proximity Feature

Extraction

 Presence
proximity
features

Encoder Decoder

Check-in data

Presence
proximity
features

 Social
proximity
features

pairwise social
subgraph

Social Proximity Feature

Extraction

 Real-world Friendship

Prediction
Hidden Friendship Prediction

Initial social graph Updated social graph

Fig. 2: Architecture of FriendSeeker, consisting of two phases, i.e.,
Real-world Friends Inference and Iterative Hidden Friends Inference.

until the number of POIs in each grid is smaller than an
empirical threshold σ.

Definition 9. (Joint Occurrence Cuboid: JOC) Let Tua
and

Tub
be two trajectories of users ua and ub, respectively. Given

an STD of size I × J × M , we cast Tua
and Tub

into it
simultaneously, and each check-in falls in one certain cell
c
(j)
i . For each cell, we calculate three indicators: the total

number of check-ins of ua and ub, denoted by na and nb

and the number of POIs visited by both ua and ub, denoted
by na,b. Let o

(ua,ub)
i,j = (na, nb, na,b) belong to c

(j)
i . Then

the corresponding joint occurrence cuboid of the user pair
(ua, ub) is an I × J cuboid, where each cell is o

(ua,ub)
i,j , i.e.,

O(a,b) = {o
(ua,ub)
i,j |1 ≤ i ≤ I, 1 ≤ j ≤ J}.

The JOC is designed to capture presence proximities among
user pairs within each cell. Fig. 3 illustrates a JOC generated
from two trajectories. The size of STD used to build JOCs can
be adjusted through turning parameters σ and τ . For a large
and diverse set of trajectories, large σ and τ can be used. The
two parameters should be decreased for a small trajectory set,
avoiding over-fitting. Appropriate values of σ and τ can be
selected empirically according to experimental results on the
specific dataset.

2) Presence Proximity Feature Extraction: Noticing that
the JOCs are usually highly sparse, we feed the JOCs into
an autoencoder, denoted as A, to compress each of them into
a dimensional vector representation. An autoencoder consists
of two components: an encoder and a decoder. The objective of
an encoder is to compress the JOCs, such that the compressed
representations can reconstruct the original inputs with a
significantly small error by the decoder [17]–[20].

Given an input O(a,b), autoencoder first encodes it to an
encoding network with R hidden layers (i.e., the encoder)
through R encoding processes, then the output of the encoder
is passed through the decoder (usually the same network
structure as encoder but in opposite orientation) to obtain an
output O′

(a,b), giving the best closest match to O(a,b). The

Latitude

Longitude

Joint Occurrence Cuboid

cell

check-in of b
check-in of a

Three types of indicators

 i1 i3i2

j1

j2

 i1 i3i2

j1

j2

0

0

1

0

0

1

0

0

0

0

0

1

1

0

1

1

0

2

1

0

0

1

1

0

0

0

1

0

1

1

3

0

0

1

0

1

0

0

1

1

2

0

1 0 0 2 0 0

2

0

0

1

0

0

0

0

0

1

1

0

0 0 0 1 0 0

0 0 0 0 1 0

2

0

0

0

0

0

0

0

0

1

0

0

0 0 0 1 0 0

0 0 0 0 0 0

POIs visited by a

POIs visited by b

POIs visited by

both a and b

Indicators
 of a cell

+

Distribution of check-ins in a time slot

co-locations

user a

user b
Trajectories of user a and b

Latitude

Longitude

Fig. 3: An example of constructing the JOC relevant to users a and b.

a b

d

c

e

f

g h

a b

d

c

e

f

g h

a b

d

c

e

f

g h

a b

d

c

e

f

g h

Fig. 4: An example of constructing a 3-hop reachable subgraph G3
(a,b)

between a and b.

output of the γ-th hidden layer of the autoencoder can be
summarized as:

h
(r)
(a,b) = ϖ

(
W

(r)
A h

(r−1)
(a,b) + b

(r)
A

)
, r = 1, ..., 2R

where ϖ a non-linear activation function,W (r)
A and b

(r)
A are

weight matrix and bias vector of theare weight matrix and
bias vector of the γ-th hidden layer. Notice that, h

(0)
(a,b) is

the input O(a,b), the output of the encoder and decoder are
h
(R)
(a,b), and h

(2R)
(a,b) (also denoted as Ô(a,b)), respectively. The

final layer of the encoder has the smallest number, denoted as
d, of hidden units, and h

(R)
(a,b) is the d-dimensional compressed

representation of O(a,b). The number of hidden units on the
final layer of the decoder equals to the size of the input, such
that Ô(a,b) is the reconstructed input.

The encoder and decoder are trained together. The training
objective is to learn the weight matrices W (r)

A and bias vectors
b
(r)
A by minimizing the reconstruction error Lauto as follows:

Lauto =
∑

ua,ub∈U

∥∥∥Ô(a,b) −O(a,b)

∥∥∥2
2
.

W
(r)
A and b

(r)
A denote the latent variables, measuring the

significance of each cell in the input JOC, i.e., o
(ua,ub)
i,j .

The value of d also impacts the performance of our attack,
and we empirically decide the appropriate value of it in our
experiments, by turning the number of units on hidden layers.

3) Real-world friendship Prediction: the training of au-
toencoder is unsupervised, which means it only learns the
input structure, and the learned model is blind to the nature
of the supervised tasks. Thus, the compressed representations
extracted by hidden layers only retain information of the
original JOCs, but provide no guarantees to be useful in
classification tasks. To circumvent this issue, we leverage
friendship labels in the training dataset to extract reconstruc-
tive and discriminative representations. More specifically, we

add a classification network, i.e., real-world prediction model,
to supervise the autoencoder. The compressed representations
generated by the encoder, i.e., h(R)

(a,b), are fed into a classifier
C, and the prediction results will be compared with the labels.
The training objective is to learn the weight matrices and bias
vectors (W (.)

C and b
(.)
C) by minimizing the the cross-entropy

loss, shown as follows:

Lcla = − 1

N
∑
N

(y log ŷ + (1− y) log(1− ŷ))

where y and ŷ are the labels and the outputs of the classifier
C on compressed representations, respectively, and N is the
number of JOCs in the training dataset. Notice that the addition
of the supervised loss to the autoencoder better directs h

(R)
(a,b)

towards effective for friendship prediction.
Aiming at obtaining more discriminative representations, we

form a unified loss function for training the autoencoder, which
combines the reconstruction and classification errors, and we
introduce a weight α to balance retraining underlying struc-
ture, as well as providing accurate classification performance,
shown as follows:

L = Lauto + αLcla

To minimize L with respect to W
(.)
A , W (.)

C , and b
(.)
A , b(.)C ,we

adopt the gradient descent method to derive the solution. The
autoencoder and the classifier are trained simultaneously. The
details of the proposed training algorithm are summarized
in Algorithm 1. Once training is terminated, the encoder is
taken out from the autoencoder network and will be used
for extracting reconstructive and discriminative representations
from input, and the classifier will be used for friendship
prediction.

In this way, given a set of trajectories TU, for each pair of
users (ua, ub) in U , we can obtain a compressed representation
of the corresponding JOC, i.e., h(R)

(a,b) from the encoder, and a
prediction f (ua, ub) about their friendship from the classifier
C. Consequently, an initial social graph of G(0) = (U,E(0))
can be derived. If users ua and ub are predicted as friends,
there exists an edge between ua and ub, e(0)(a,b) ∈ E(0).

C. Iterative Hidden Friends Inference

This stage aims at correctly identifying hidden friends
whose presence proximities provide no evidence of being
friends.

Algorithm 1 Autoencoder and Classifier Training

Input: a set of JOCs relevant to N user pairs, denoted by
O = [O1; ...;ON], and the corresponding friendship
labels, i.e., yi ∈ {0, 1}, learning rate β, the architectures
of an autoencoder A and a classifier C, where the
numbers of hidden layers of A and C are 2R and H,
respectively, and the dimension of layer R in A is d,
and the balance weight α between A and C.

Output: well trained A and C, JOC embeddings, i.e., the
output of layer R on A, denoted by h(R).

1: /* Apply gradient descent to train the network: */
2: Randomly initialize the weight matrix WA and bias vector

bA of A together with the weight matrix WC and bias
vector bC of C.

3: for epoch = 1 to m do
4: for each batch in O do
5: /* batch size is n. */
6: Lauto ← −

1

n

∑n
i=1

(
Ôi −Oi

)2

;

7: /* Ôi: the reconstructed JOCs, i.e.,
8: the output of A. */

9: Lcla ← −
1

n

∑n
i=1 (yi log ŷi + (1− yi) log (1− ŷi));

10: /* ŷi ∈ {0, 1}: the prediction result of C. */
11: for r = 2R to 1 do
12: W

(r)
A ←W

(r)
A − β

∂

∂W
(r)
A

Lauto;

13: b
(r)
A ← b

(r)
A − β

∂

∂b
(r)
A

Lauto;

14: end for
15: for r = H to 1 do
16: W

(r)
C ←W

(r)
C − β

∂

∂W
(r)
C

Lcla;

17: b
(r)
C ← b

(r)
C − β

∂

∂b
(r)
C

Lcla;

18: end for
19: for r = R to 1 do
20: W

(r)
A ←W

(r)
A − α · β ∂

∂W
(r)
A

Lcla;

21: b
(r)
A ← b

(r)
A − α · β ∂

∂b
(r)
A

Lcla;

22: end for
23: end for
24: end for
25: return WA, bA, WC, bC.

1) k-hop Reachable Subgraph Construction: we aim to
extract graph structure features from G(0), which reflect so-
cial proximities (connections) among users, and utilize those
features to re-estimate friendship. The basic idea is two users
who are close enough but not yet connected on the initial social
graph G(0) may have a higher likelihood of being friends.

Thus, we adopt a local eyeshot on the network proximity,
and extract a k-hop reachable subgraph for each user pair,
which describes the pairwise “k-hop achievability” between

10
0

10
1

10
2

10
3

10
4

10
5

of length k paths

0

0.2

0.4

0.6

0.8

1

%
 o

f
u

s
e

r
p

a
ir
s

k=2 frie. k=2 non-f. k=3 frie. k=3 non-f.

k=4 frie. k=4 non-f. k=5 frie. k=5 non-f.

Fig. 5: The CDFs of the number of friends and non-friends with
different numbers of k length paths

users. For a given graph G = (U,E), we describe the
procedure for extracting the k-hop reachable subgraph between
ua and ub , denoted by Gk(a,b), in the following steps:

Step 1: set path length (i.e., the number of edges con-
tained) l as 2, and initialize Gk(a,b) as an empty graph;

Step 2: find all length l paths between (ua, ub) in G, and
include all paths found into Gk(a,b), then update G by
excluding all nodes and edges in Gk(a,b) from it;

Step 3: increase path length l by one and repeat step 2
until path length exceeds k.

Theorem 1. Consider Gk(a,b) is the k-reachable subgraph
between user pair (ua.ub), it satisfies:

1. All paths in Gk(a,b) are induced paths of length l (2 ≤
l ≤ k);

2. Paths with different lengths share no common edges.

Proof. 1. If a non-induced path P belongs to Gk(a,b), repre-
sented as a sequence of vertices (..., ui, ui+1,...), there must
exist two nonadjacent vertices ui and uj (∥j − i∥ > 1) on
P which are connected by an extra edge outside the path. It
means that we can find a shorter path P ′ by deleting the sub-
sequence of vertices (ui+1, ..., uj−1) from P , and include P ′

in Gk(a,b) before P . Thus, all vertices in P ′ will be excluded
from the following procedure. Therefore, P must not be in
Gk(a,b). 2. If two paths P and P ′ are with different lengths,
then they are included in Gk(a,b) in different turns, thus the
vertices and edges of them are mutually exclusive.

For any edge e in Gk(a,b) , if there exist multiple paths on
G whose lengths are smaller than k containing it, only the
shortest path is included in Gk(a,b). For example, in Fig. 4,
paths a− c− e− b, a− f − h− b and a− f − g− h− b will
be removed during constructing G3(a,b). Above properties bring
two advantages. First, give priority to short paths, considering
short paths are more informative. Second, any edge will not
be reused in extracting structure features with different orders,
since an edge will not occur on two paths of different lengths.

Selecting appropriate k is important, one may think a large
k implying more topological information will lead to a better
feature. Surprisingly, we find that 3 is the optimum value of

k-hop reachable

subgraph

a b
c

f

a bc

a b

d
c

e

f

g hi

k=2

Path 1

k=3

k=4

2d-dimensional vector

a b

d

c

e

f

a bd e

a hg i b

Path 2 a bf

5d-dimensional vector

d-dimensional

a b

d
c

e

f
g h

i

..
.

j l...

Fig. 6: An example of extracting social proximity feature vectors
from k-hop reachable subgraphs.

k according to our analysis on real datasets. Fig. 5 depicts the
CDFs of the number of friends and non-friends with different
numbers of k length paths, it can be seen when k is larger
than 3, the number of paths between friends and non-friends
exhibits no obvious differences. The reason is that human
societies are small-world-type networks characterized by short
path-lengths [21]. It implies even strangers can be linked by
a short chain of acquaintances. Thus, only those really short
paths are meaningful of supporting friendship between user
pairs.

2) Refining Social Graph with Social Proximity Features:
Given the graph G(0), we perform the following two proce-
dures to train a classifier C′ to decide whether two users are
friends or not:

• Social Proximity Feature Extraction: first, for each pair
of users ua and ub in U, extract the k-reachable subgraph
G(0),k(a,b) of ua and ub. Then, extract the social proximity

features s
(0)
(a,b) by utilizing both G(0),k(a,b) , and the com-

pressed spatial-temporal feature vector h(R)
(i,j) of each edge

e
(0)
(i,j) in G(0),k(a,b) obtained in stage 1. Specifically, we first

add vectors of same length paths, and then concatenate
resulted vectors of different lengths. We emphasize that
we don’t necessarily use learning-based methods such as
graph embedding, to extract social proximity features,
because in a k-hop reachable subgraph between ua and
ub, the degree of any vertex is 2 (excepting ua and ub)
and k is set as 3 in practice, which imply the subgraphs
are simple and small. Fig. 6 illustrates the extraction of
social proximity features from k-hop reachable subgraph.

• Hidden Friendship Prediction: first, concatenate the pres-
ence and social proximity features, i.e., h(R)

(a,b) and s
(0)
(a,b),

to obtain the composite feature vector v
(0)
(a,b). Then, use

each v
(0)
(a,b) and the corresponding label to learn C′. After

finishing training C′, according to the decision of C′,
derive a new social graph G(1).

The above processes are repeated until the difference be-
tween G(i) and G(i−1) is small enough. Then C′ is considered
a well-trained model.

In procedure of testing, the same procedures are performed
iteratively, except using C′ directly without training, and thus
the final social graph G(i) is obtained when the stopping
criterion is reached.

IV. EVALUATIONS

A. Experimental Setup
We use the datasets described in Subsection II-C to conduct

experiments. We use 70% and 30% data to train and to test.
Baseline models. We compare our method with the follow-

ing methods which are proposed in related literature inferring
social ties by mobility data.

• Co-location based. H. P. Hsieh et al. extract heuristic
features about co-locations and build a co-location graph,
to capture both direct and indirect social linkages among
users [22].

• Distance based. We calculate the center location of a
user based on the check-in frequencies of POIs [12], and
use the Euclidean distance among users to identify social
ties.

• Walk2friend. Walk2friend [10] applies random-walk-
based graph embedding on a user-location bipartite graph
to infer social ties.

• User graph embedding. Y. Yu et al. [11] adopt graph
embedding method on a user graph (edges represent
meeting frequencies among users) with additional POI
category information.

Metric. We use the F-measure accuracy (F1-Score) as the
evaluation metric, which is non-sensitive to class distribution
and can avoid misleading accuracy measurement when the true
class distribution is unbalanced.

B. Parameter Sensitivity
In our experiments, we adopt fully connected topology of

autoencoder networks. In the structure of the encoder, we
set consecutive layers with half the number of nodes as in
the preceding layer, excluding the last layer (which is set
according to the dimension of the spatial-temporal proximity
feature d). On the other hand, in the structure of a decoder,
we use the same network structure as encoder but in opposite
orientation. According to the size of the joint occurrence
Cuboid fed into the encoder, we adjust the number of layers
in it. We use a simple KNN and SVM as the classifier C and
C′, respectively. We use RBF as the kernel function of the
SVM. The learning rate of all networks is set as 0.005, and
the weight α which balances the loss of the autoencoder and
the classifier C is set as 1.

We emphasize that the purpose of this work is to investigate
the feasibility of our friendship inference attack rather than to
design better network structures. For this reason, we select
the simplest autoencoder and supervised classifiers. We claim
that the proposed approach is independent from the type of
autoencoder and classifiers used and can be applied to other
more complex variations of autoencoders.

We examine how the different choices of the three hyper-
parameters., the number of POIs in a grid σ, length of time
slot τ , and the dimension of spatial-temporal proximity feature

500 750 1000 1250 1500

Number of POIs in a grid

30

40

50

60

70

80

P
e
rc

e
n
t
(%

)

Recall

Precision

F1-Score

Brightkite

500 750 1000 1250 1500

Number of POIs in a grid

30

40

50

60

70

80

P
e
rc

e
n
t
(%

)

Gowalla

Recall

Precision

F1-Score

Fig. 7: Attack performances with respect to the maximum number
of POIs in a grid.

1 7 14 30 60

Size of time slot (day)

30

40

50

60

70

80

P
e
rc

e
n
t
(%

)

Brightkite

Recall

Precision

F1-Score

1 7 14 30 60

Size of time slot (day)

30

40

50

60

70

80

P
e
rc

e
n
t
(%

)

Gowalla

Recall

Precision

F1-Score

Fig. 8: Attack performances with respect to the size of time slot.

16 32 64 128 256

Dimension of feature vector d

20

30

40

50

60

70

80

P
e
rc

e
n
t
(%

)

Brightkite

Recall

Precision

F1-Score

16 32 64 128 256

Dimension of feature vector d

20

30

40

50

60

70

80

P
e
rc

e
n
t
(%

)

Gowalla

Recall

Precision

F1-Score

Fig. 9: Attack performances with respect to the dimension of
presence proximity feature vectors.

0 1 2 3 4 5 6

Number of rounds

55

60

65

70

75

P
e
rc

e
n
t
(%

)

Recall

Precision

F1-Score

Brightkite

0 1 2 3 4 5

Number of rounds

55

60

65

70

75

P
e
rc

e
n
t
(%

)

Recall

Precision

F1-Score

Gowalla

Fig. 10: Attack performances with respect to the number of itera-
tions.

vector d, affect our attack performance. When testing each
parameter, the two remaining ones are kept to their default
settings, i.e., τ=7 (days) , d = 128, and σ=1000. The iteration
of social graph refinement will be terminated if the number of
edges changed in a new graph is less than 1% compared with
the last graph.

First, we vary σ from 500 to 1,500 with an interval of 250.
Fig. 7 plots the F1-Score, recall and precision as functions of
σ for both datasets. It can be seen from Fig. 7 that, for the
Brightkite dataset, the accuracy achieves a 4.56% gain when
σ increases from 500 to 1,000 and then declines gradually
with the growth of σ. Similar trend can also be seen for the
Gawalla dataset as shown in Fig. 7 except that the maximum
appears when σ is equal to 750. The reason is that POIs in
the Gawalla dataset are more dispersed than in the Brightkite
dataset, which implies that the geographical area of one grid
in Gawalla is larger than in Brightkite. As a result, the best
value of σ in Gawalla is smaller than Brightkite, which avoids
distant check-ins falling into in a large grid.

Second, we vary τ from one day to 60 days with an interval
of 7 days. Fig. 8 plots the F1-Score, recall and precision as
functions of τ for both datasets. F1-Score reaches the peak in
both datasets when τ is set as 7 days. It is very reasonable,
since the activities of human being tend to show periodicity
on a weekly basis.

In general, the parameters of σ and τ have an effect on
the spatial-temporal matrix of user pairs, and further influence
the eigenvector, i.e., spatial-temporal vector. Intuitively, the
undersized or oversized values of σ and τ would result in
poor performance of the attack because large values may inject
much noise into spatial-temporal vectors, and small values
might lose many useful features in vector. By comparing Fig.

7 and Fig. 8, it can be seen that the parameter τ has a greater
impact on the F1-Score, recall and precision, than parameter
σ does.

Third, we further examine the impact of the dimension
of spatial-temporal proximity feature vector d to the attack
performance. We double increase d from 16 to 256. Fig. 9
plots F1-Score, recall and precision as functions of d for both
datasets. It can be seen that in Fig. 9. On one hand, it is
easy to understand that the higher the dimension of spatial-
temporal relation vectors is, the more information such vectors
can contain, leading to better attack performance. On the other
hand, higher dimension spatial-temporal proximity vectors
also cause too much noise, which degrades the accuracy of
an attack.

C. Social Relation Inference Results

According to above studies on parameters, we use the best
value of each parameter, i.e., τ=7, d = 128, and σ =750 and
1000 in Gowalla and Brightkite, respectively. The iteration of
social graph refinement will be terminated if the number of
edges changed in a new graph is less than 1% compared with
the last graph.

Fig. 10 depicts how the number of iterations affects the
accuracy of our inference, in both datasets. It can be seen that
iteration always improves the F1-Score, recall and precision.
Moreover, we can see that the total number of iterations
required to satisfy the termination criterion is 4 and 5, in
Gowalla and Brightkite, respectively.

We compare our inference attack against all the baseline
models, Fig. 11 shows that our attack outperforms all the
baseline models significantly. For the best performing baseline
model, i.e., embedding, we achieve a 5% performance gain

Brightkite

Recall Precision F1-Score
0

20

40

60

80

100

P
e
rc

e
n
t
(%

)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

Gowalla

Recall Precision F1-Score
0

20

40

60

80

100

P
e
rc

e
n
t
(%

)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

Fig. 11: Comparison of FriendSeeker against baseline models.

Brightkite

25 50 100 200 400 800 3000

Number of check-ins

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t
(%

)

0

10

20

30

40

50

60

70

80

90

100

F
1

-S
c
o

re
 (

%
)

Proportion

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

4 8 12 16 20 24
Check-ins

0

1

2

3

4

P
e

rc
e

n
t

(%
)

0

5

10

15

20

25

F
1
-S

c
o
re

 (
%

)

Gowalla

25 50 100 200 400 800 3000

Number of check-ins

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
t
(%

)

0

10

20

30

40

50

60

70

80

90

100

F
1

-S
c
o

re
 (

%
)

Proportion

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

4 8 12 16 20 24
Check-ins

0

1

2

3

4

P
e

rc
e

n
t

(%
)

0

5

10

15

20

F
1
-S

c
o
re

 (
%

)

Fig. 12: The accuracy vs. different numbers of check-ins.

0 1 2 3 4 5

Number of co-locations

10

20

30

40

50

60

70

80

F
1
-S

c
o
re

 (
%

)

Brightkite

Dist. based Walk2vector

Embedding FriendSeeker

0 1 2 3 4 5

Number of co-locations

10

20

30

40

50

60

70

F
1
-S

c
o
re

 (
%

)

Gowalla

Dist. based Walk2vector

Embedding FriendSeeker

Fig. 13: The F1-Score vs. different numbers of co-locations.

10 20 30 40 50

Proportion of check-ins (%)

0

20

40

60

80

100

F
1
-S

c
o
re

 (
%

)

Brightkite (hiding)

Co-lo. based Dist. based

Walk2vector Embedding

FriendSeeker

10 20 30 40 50
Proportion of check-ins (%)

0

20

40

60

80

100

F
1
-S

c
o
re

 (
%

)

Gowalla (hiding)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

Fig. 14: The F1-Score vs. different proportions of hiding check-ins.

in Brightkite, and a 10% gain in Gowalla. This shows that
our attack is more effective than the existing state-of-the-art
attacks.

We compare our attack against baseline methods on pairs
of users with less than five common locations. Fig. 12 plots
F1-Score as a function of the number of common locations in
both datasets. It can be seen that two learning-based baselines
indeed achieve better accuracy compared with the knowledge-
based method as reported in the original papers, but our attack
still outperforms the best baseline model around 10% in both
datasets. Notice that we cannot calculate F1-Score of co-
location method, since the denominator in formula of F1-Score
will be zero when the number of common locations is zero.

Fig. 13 illustrates the F1-Score of our attack against baseline
methods as functions of the number of check-ins owned by a
pair of users, and the probability distribution of the number
of check ins. The purpose of this experiment is to explore
whether our method is robust for users with different numbers
of check-in records. Obviously, the more users check in, the
more accurate the behavior pattern of users can be modeled.
Although, all methods show poor performance if few check-ins
are available, our method performs best regardless the numbers
of check-ins.

D. Countermeasure Effects

1) Obfuscation Mechanisms: Adding perturbations on orig-
inal data is the most common way to conceal location in-
formation. We apply the following two kinds of obfuscation
mechanisms on both datasets, and launch our attack as well as
baseline attacks to check if these attacks still work effectively.

• Hiding. In this mechanism, we randomly remove a certain
proportion of check-in records. Consider that removing
more than half data will significantly reduce the utility of

mobility data, we vary the proportion of removed check-
ins from 10% to 50% at in interval of 10%. To prevent
check-ins of partial users from being removed totally (this
could happen frequently, especially under a high hiding
rate), before removing a check-in, we first check if this
is the last check-in left over for its owner, if no, remove
it, otherwise, skip this check-in.

• Blurring [23]. In this mechanism, we randomly select
some check-ins, and replaces the locations with other
locations. Again, we vary the proportion of replaced
check-ins from 10% to 50% at in interval of 10%.
Particularly, the blurring of locations can be divided into
two cases: in-grid and cross-grids, which refer to that
the location in a check-in data is randomly replaced with
another location (POI) in the same grid, and in a different
grid, respectively. To retain the utility of dataset as much
as possible, in cross-grids blurring, first, we randomly
select one of the four neighborhoods of the target grid,
then randomly select another POI in the grid to replace
the original one.

2) Attack Evaluation: We evaluate the impact of obfusca-
tion mechanisms against FriendSeeker and all baseline meth-
ods. Fig. 14, 15 and 16 depict the F1-Score as a function
of the proportion of perturbed check-ins. Experimental results
show that, in all attacks, the inference accuracies decrease
when increasing the proportion of perturbation. However, in
all settings, FriendSeeker is robust to obfuscations compared
with baseline methods. For example, in perturbed Brightkite, it
can be seen that the F1-Score of FriendSeeker, embedding and
walk2vector, decrease 20.9%, 28.78% and 23.8% respectively
when concealing ratio of check-ins increases from 10% to
50%. Although, a high proportion of obfuscations will lead to a
relatively low inference accuracy, for all settings, FriendSeeker

10 20 30 40 50

Proportion of check-ins (%)

0

20

40

60

80

100

F
1

-S
c
o

re
 (

%
)

Brightkite (in-grid blurring)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

10 20 30 40 50

Proportion of check-ins (%)

0

20

40

60

80

100

F
1

-S
c
o

re
 (

%
)

Gowalla (in-grid blurring)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

Fig. 15: The F1-Score vs. different proportions of in-grid
blurring check-ins.

10 20 30 40 50

Proportion of check-ins (%)

0

20

40

60

80

100

F
1

-S
c
o

re
 (

%
)

Brightkite (cross-grids blurring)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

10 20 30 40 50

Proportion of check-ins (%)

0

20

40

60

80

100

F
1

-S
c
o

re
 (

%
)

Gowalla (cross-grids blurring)

Co-lo. based

Dist. based

Walk2vector

Embedding

FriendSeeker

Fig. 16: The F1-Score vs. different proportions of cross-grid blurring
check-ins.

always outperforms baseline methods. In addition, for all ob-
fuscation mechanisms, the F1-Score of FriendSeeker remains
around 40% even half check-ins are obfuscated.

On perspective of countermeasure efficacy, we can see
the both obfuscation mechanisms can defend against two
knowledge-based methods, i.e., co-location based and distance
based, effectively. When half data are perturbed, the F1-Score
of both methods decreases to around 10%. However, these
obfuscation mechanisms show low performances on defending
against the three learning-based attacks. It is worth mentioning
that cross-grids blurring is more effective than hiding and in-
grid blurring. This is because that, in cross-grids blurring,
an POI will be replaced with another far distant POI, which
however brings significance noise into original datasets.

V. RELATED WORK

We divide the related literature into two categories based
on their methodologies on feature extractions, i.e., knowledge-
based and learning-based methods.

A. Knowledge-based Methods

Li et al. predict friends by mining the geographical sim-
ilarity among individuals, which considers the sequence of
human activities and extracts geographical features hierar-
chically [3] . Xiao et al. calculate mobility similarity using
semantic of locations [4]. Crandall et al. infer friendship based
on geographical coincidences estimated by Bayesian model
[24]. Wang et al. infer social ties by considering personal,
global and temporal factors of mobilities [5]. Personal factor
measures the significance of co-locations for each individual.
They assume that if two people meet at locations which
they seldom visit, they are more likely to be friends. Global
factor concentrates on the popularity of locations measured by
location entropy. The authors of reference [25] take meeting
frequency, location popularity, meeting duration and time into
consideration of relationship inference. Cheng et al. [26] also
adopt co-occurrence as an indicator of friendship. Yang et
al. construct a co-visitation matrix of user pair to predict
social connection by machine learning [6]. This work also
suggests that distance from co-location to user home is also
an important factor, because people’s activities are limited
to a few kilometers around their homes. All above feature
selection schemes are based on co-locations or co-visitations
and do not work well for those friends without check-ins

at same places. Furthermore, this type of methods cannot
automatically learn the importance of different places and
time. Although some of them quantify the impact of different
locations and moments heuristically, e.g., using entropy, these
methods fail to distinguish the predictive power of different
locations/moments for different users.

B. Learning-based Methods

Two learning-based methods published recently apply
graph-embedding to extract individual features. Backes et al.
propose a feature learning technique to summarize users’
mobility features automatically [10]. The basic idea is a user’s
mobility neighbors reflect his mobility profile in a large part.
They adopt random walking on the user-location bipartite
graph to obtain traces, which contain user’s neighbors in the
mobility context. Then, they learn the feature vector of each
user from these traces by skip-gram model. If the similarity
between two users’ vectors is high, they are more likely
to be friends. Yu et al. come up with a new definition of
neighbors or context of a user based on the work of Backes.
To put it another way, they are no longer random walk on
the user-location bipartite but on the user mobility interaction
graph i.e., a meeting graph which if two users appear at the
same time, there is an edge between them on graph, and
the weight of the edge is the meeting frequency of them
[11]. Furthermore, they consider the attributes of the meeting
location, but assign different weights to the meeting frequency
of different locations only through prior knowledge. In such a
way as to affect the result of random walks, and thus the
representation vector of each user. Both methods generate
mobility of individual through a series of random walking on
a graph of users constructed based on meeting events. In the
graph, there exists an edge between two users if they share
the same check-in places, or share the same check-in places
with the same user. Several link prediction methods utilize
heuristic structures of social graph, e.g., common neighbors,
shortest path etc., to infer friendship [27]–[29]. The premise of
these methods is that a majority of the graph is available, and
they utilize the graph to infer a small number of missing links
or to predict future links. How to learn structure features of
anonymized social networks without any previous knowledge
about friendship is a critical challenge.

The social proximity among users provides an opportunity
to identify cyber friends. Several link prediction methods

utilize heuristic structures of social graph, e.g., common neigh-
bors, shortest path etc., to infer a small number of missing
links or to predict future links on a given social graph (or the
majority of the graph), such prior knowledge is however not
available in practice.

VI. CONCLUSION

In this work, we have proposed a friendship inference
attack, called FriendSeeker, based on meticulously estimated
spatial-temporal and social proximities among individuals.
FriendSeeker is able to discover not only real-world friends
who demonstrate presence similarities, but also those hidden
cyber friends who are always geographically far away from
each other. Extensive evaluations on two real-world datasets
show that FriendSeeker consistently outperforms four state-
of-the-art baseline methods, particularly when the number of
check-ins and co-locations are small. Experimental results also
demonstrate that none of the commonly used data perturbation
schemes can provide enough protection on friendship privacy
under FriendSeeker. In future work, we plan to apply our
FriendSeeker to more datasets, and design an obfuscation
mechanism to effectively protect friendship from being un-
veiled by inference attacks.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (Grant No. 61972081),
and the Natural Science Foundation of Shanghai (Grant No.
22ZR1400200), the RGC RIF grant under the contract R6021-
20, and RGC GRF grants under the contracts 16209120,
16200221 and 16207922.

REFERENCES

[1] James P Bagrow, Xipei Liu, and Lewis Mitchell. Information flow
reveals prediction limits in online social activity. Nature human
behaviour, 3(2):122–128, 2019.

[2] Ratan Dey, Zubin Jelveh, and Keith Ross. Facebook users have become
much more private: A large-scale study. In Proceedings of the IEEE
International Conference on Pervasive Computing and Communications
Workshops, pages 346–352. IEEE, 2012.

[3] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and
Wei-Ying Ma. Mining user similarity based on location history. In
Proceedings of the ACM International Conference on Advances in
Geographic Information Systems, pages 1–10. ACM, 2008.

[4] Xiangye Xiao, Yu Zheng, Qiong Luo, and Xing Xie. Finding similar
users using category-based location history. In Proceedings of the Inter-
national Conference on Advances In Geographic Information Systems,
pages 442–445. ACM, 2010.

[5] Hongjian Wang, Zhenhui Li, and Wang-Chien Lee. Pgt: Measuring
mobility relationship using personal, global and temporal factors. In
Proceedings of the IEEE International Conference on Data Mining,
pages 570–579. IEEE, 2014.

[6] Guolei Yang and Andreas Züfle. Spatio-temporal prediction of social
connections. In Proceedings of the International ACM Workshop on
Managing and Mining Enriched Geo-Spatial Data, pages 1–6. ACM,
2017.

[7] Cheng He, Chao Peng, Na Li, Xiang Chen, and Lanying Guo. Exploiting
spatiotemporal features to infer friendship in location-based social
networks. In Proceedings of the Pacific Rim International Conference
on Artificial Intelligence, pages 395–403. Springer, 2018.

[8] Wenbin Tang, Honglei Zhuang, and Jie Tang. Learning to infer social
ties in large networks. In Proceedings of the Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages
381–397. Springer, 2011.

[9] Xiangye Xiao, Yu Zheng, Qiong Luo, and Xing Xie. Inferring social
ties between users with human location history. Journal of Ambient
Intelligence and Humanized Computing, 5(1):3–19, 2014.

[10] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang.
walk2friends: Inferring social links from mobility profiles. In Proceed-
ings of the ACM Conference on Computer and Communications Security,
pages 1943–1957. ACM, 2017.

[11] Yanwei Yu, Hongjian Wang, and Zhenhui Li. Inferring mobility
relationship via graph embedding. In Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, pages 1–
21. ACM, 2018.

[12] Hsun-Ping Hsieh and Cheng-Te Li. Inferring social relationships from
mobile sensor data. In Proceedings of the International Conference on
World Wide Web, pages 293–294. ACM, 2014.

[13] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network
embedding. In Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining, pages 1225–1234. ACM, 2016.

[14] Sogol Haghani and Mohammad Reza Keyvanpour. A systemic analysis
of link prediction in social network. Artificial Intelligence Review,
52(3):1961–1995, 2019.

[15] Xiaoyi Li, Nan Du, Hui Li, Kang Li, Jing Gao, and Aidong Zhang.
A deep learning approach to link prediction in dynamic networks. In
Proceedings of the SIAM International Conference on Data Mining,
pages 289–297. SIAM, 2014.

[16] Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link predic-
tion in social networks: the state-of-the-art. Science China Information
Sciences, 58(1):1–38, 2015.

[17] Fang Du, Jiangshe Zhang, Nannan Ji, Junying Hu, and Chunxia Zhang.
Discriminative representation learning with supervised auto-encoder.
Neural Processing Letters, 49(2):507–520, 2019.

[18] Mohammad Mehdi Keikha, Maseud Rahgozar, and Masoud Asadpour.
Deeplink: a novel link prediction framework based on deep learning.
Journal of Information Science, 47(5):642 – 657, 2021.

[19] Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders:
Improving generalization performance with unsupervised regularizers. In
Proceedings of the Advances in Neural Information Processing Systems,
pages 107–117, 2018.

[20] Abhinav Mehrotra and Mirco Musolesi. Using autoencoders to au-
tomatically extract mobility features for predicting depressive states.
In Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, pages 1–20. ACM, 2018.

[21] Ashwin S Dharmadhikari. Six degrees of separation: use of social net-
work analysis to better understand outbreaks of nosocomial transmission
of extensively drug-resistant tuberculosis. The Journal of Infectious
Diseases, 207(1):1–3, 2013.

[22] Hsun-Ping Hsieh, Rui Yan, and Cheng-Te Li. Where you go reveals
who you know: Analyzing social ties from millions of footprints. In
Proceedings of the ACM International Conference on Information and
Knowledge Management, pages 1839–1842. ACM, 2015.

[23] Dapeng Zhao, Yuanyuan Jin, Kai Zhang, Xiaoling Wang, Patrick CK
Hung, and Wendi Ji. Epla: efficient personal location anonymity.
GeoInformatica, 22(1):29–47, 2018.

[24] David J Crandall, Lars Backstrom, Dan Cosley, Siddharth Suri, Daniel
Huttenlocher, and Jon Kleinberg. Inferring social ties from geographic
coincidences. In Proceedings of the National Academy of Sciences,
volume 107, pages 22436–22441, 2010.

[25] Justin Cranshaw, Eran Toch, Jason Hong, Aniket Kittur, and Norman
Sadeh. Bridging the gap between physical location and online social
networks. In Proceedings of the ACM International Conference on
Ubiquitous Computing, pages 119–128. ACM, 2010.

[26] Ran Cheng, Jun Pang, and Yang Zhang. Inferring friendship from
check-in data of location-based social networks. In Proceedings of the
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015, pages 1284–1291. ACM, 2015.

[27] Linyuan Lü, Ci-Hang Jin, and Tao Zhou. Similarity index based on
local paths for link prediction of complex networks. Physical Review
E, 80(4):046122, 2009.

[28] Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and
Albert-Laszlo Barabasi. Human mobility, social ties, and link prediction.
In Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining, pages 1100–1108. ACM, 2011.

[29] Hsun-Ping Hsieh and Cheng-Te Li. Inferring online social ties from
offline geographical activities. ACM Transactions on Intelligent Systems
and Technology, 10(2):17, 2019.

