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Abstract—Point cloud registration (PCR) can significantly
extend the visual field and enhance the point density on distant
objects, thereby improving driving safety. However, it is very
challenging for vehicles to perform online registration between
long-range point clouds. In this paper, we propose an online
long-range PCR scheme in VANETs, called LoRaPCR, where
vehicles achieve long-range registration through multi-hop short-
range highly-accurate registrations. Given the NP-hardness of the
problem, a heuristic algorithm is developed to determine best reg-
istration paths while leveraging the reuse of registration results
to reduce computation costs. Moreover, we utilize an optimized
dynamic programming algorithm to determine the transmission
routes while minimizing the communication overhead. Results
of extensive simulations demonstrate that LoRaPCR can achieve
high PCR accuracy with low relative translation and rotation
errors of 0.55 meters and 1.43◦, respectively, at a distance of
over 100 meters, and reduce the computation overhead by more
than 50% compared to the state-of-the-art method.

Index Terms—point cloud registration, cooperative sensing,
multi-hop relay, VANETs

I. INTRODUCTION

Due to its precise panoramic view and nighttime adapt-
ability, Light Detection and Ranging (LiDAR) sensors are
installed on newly manufactured vehicles to perform tasks
such as object detection [1] [2] and semantic segmentation
[3], significantly improving driving safety. However, LiDAR is
also accompanied by insufficient long-range resolution as illus-
trated in Figure 1(a) and occlusion by obstacles as illustrated
in Figure 1(b). With vehicle-to-vehicle (V2V) communications
in the Vehicular ad hoc networks (VANETs), sharing and
registering point clouds between vehicles become possible
[4], which enhances the perception capability of vehicles [5]
[6]. For example, Figure 1(c) demonstrates that a car, which
is hard to recognize in each individual point cloud, can be
identified after two of such point clouds are registered. We
refer to the online long-range point cloud registration (PCR)
problem as the problem that distant vehicles can accurately
register their point clouds through one- or multi-hop V2V
communication. Promisingly, if long-range point clouds of
significant difference in terms of point cloud density and
perspective can be well registered, it will greatly improve the
performance of downstream tasks.

A feasible scheme for online long-range PCR problem
in a vehicular scenario, however, has to meet four rigid
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Fig. 1: Motivation of long-range PCR. (a) The resolution
of a point cloud decreases with the distance to the LiDAR
sensor. (b) The perception field of LiDAR is blocked by
obstacles. (c) Point clouds collected on two vehicles with
different viewpoints can be registered (aligned), enhancing the
perception capability of both vehicles.

requirements as follows: 1) the scheme should be able to deal
with long-range registration (e.g., tens of meters) to facilitate
downstream perception tasks; 2) due to the rapid movement of
vehicles, the scheme should achieve online registration with
low response time to ensure the timeliness of the registration
results; 3) given the limited resources on a vehicle, such
a scheme should be efficient in terms of computation and
communication costs; 4) such a scheme should achieve high
accuracy as the registered point clouds may be utilized in
critical driving safety applications.

In the literature, most PCR work focuses on short-range
point cloud alignment (e.g., within 10 meters), where they reg-
ister point clouds with similar density and significant overlap.
In these methods, feature extractors aim to improve the quality
of extracted representations, while outlier rejection methods
[7] [8] attempt to distinguish erroneous responses. However,
these methods fail to address long-range PCR challenges.
While [6] [9] address the long-range problem by training a
distance-insensitive feature extractor, these approaches lack
optimization for communication overhead. EMP [5] enhances
vehicles using point clouds from roadside infrastructure, but
it does not consider utilizing multi-hop V2V communication



to achieve long-range registration. As a result, to the best
of our knowledge, there is no cost-efficient scheme which
can accurately register long-distance point clouds in vehicular
settings.

In this paper, we propose LoRaPCR, an online long-range
PCR scheme particularly designed for VANETs. The main idea
of LoRaPCR is to utilize previous short-range PCRs of high
accuracy to establish a superior multi-hop registration path for
present long-range PCRs between each pair of vehicles. To this
end, a base station (BS) or a roadside unit (RSU) first collects
the information about the location, previous PCR records,
and the current PCR requests of vehicles in its vicinity, and
then makes the best multi-hop registration and transmission
strategies, with the goal of guaranteeing a low accumulative
PCR errors while optimizing the global computation and
communication overheads.

Two main challenges are encountered. First, determining
registration paths for the registration requests is challenging.
Due to its NP-hardness and the enormous search space,
obtaining an optimal solution in an online system is difficult.
To address this challenge, we propose a heuristic algorithm
based on the shortest path breadth-first search (BFS). More
specifically, LoRaPCR prioritizes the simplest and most effi-
cient one-hop requests. Then, when dealing with hard requests,
it maximizes the reuse of previously used PCRs to reduce
computational costs. For each hard request, we utilize a queue-
optimized BFS algorithm to accelerate the search process and
ensure the discovery of all feasible solutions, achieving the
highest request satisfaction ratio.

Second, it is challenging to determine globally optimal
transmission routes for registration requests. This issue is
equivalent to the Graphical Steiner Minimal Tree (GSMT)
problem [10], also known to be NP-hard. Although the scale
of this problem is smaller than the previous one, existing
solutions are far from meeting online requirements. To tackle
this challenge, we propose a novel reduction algorithm based
on dynamic programming. In this algorithm, we leverage the
locality of the communication network to reduce the problem’s
scale. Specifically, we utilize the connectivity between target
nodes to simplify the problem’s scale, reducing it from the
number of target nodes to the number of connected compo-
nents. Moreover, we apply pruning techniques for two com-
mon special cases to further enhance the algorithm efficiency.

We generate intensive vehicle traces in three typical driving
scenarios (i.e., town, highway, and village) using the CARLA
simulator [11] to validate the performance of LoRaPCR.
We examine three different registration request preferences
(i.e., near, far, and uniform) and observe an average request
satisfaction ratio (RSR) of approximately 66% under the most
challenging preference (i.e., far). In comparison, the state-of-
the-art (SOTA) method achieved an RSR of only 4%. Ex-
tensive simulations are conducted and the results demonstrate
that LoRaPCR significantly reduces the computation overhead
by more than 50% compared to the SOTA method. To the
best of our knowledge, LoRaPCR is the first PCR system in
VANETs that achieves registration with point clouds separated
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Fig. 2: Illustration of the system model

over 100 meters, obtaining a high PCR accuracy with low
relative translation and rotation errors of 0.55 meters and
1.43◦, respectively.

We highlight the main contributions made in this work as
follows: 1) A multi-hop PCR path selection algorithm based on
a heuristic shortest path approach is proposed, effectively re-
ducing the computational costs; 2) An online optimal transmis-
sion path selection algorithm is proposed, integrating locality-
based reduction and the dynamic programming techniques; 3)
extensive experiments are conducted and results demonstrate
the efficacy of LoRaPCR, achieving SOTA performance for
long-range PCRs.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

In the long-range PCR problem, we consider the following
two types of entities as shown in Figure2.

• Vehicles: are peers with equal capabilities as follows:
1) vehicles are capable of performing neural network
computations to accomplish PCR tasks; 2) vehicles are
capable of high-speed (e.g., more than 750Mb/s) V2V
communication with a communication range of tens of
meters, such as via millimeter-wave (mmWave). Addi-
tionally, vehicles can communicate with a BS or an RSU
via longe-range communication links; 3) vehicles are
equipped with LiDAR sensors that are capable of gener-
ating and storing point cloud data; 4) vehicles can obtain
rough distance estimations of nearby vehicles but do not
require precise localization. During online registration,
we do not require any side channel information of vehicle
position.

• BS: has the capability to utilize vehicle-to-roadside
(V2R) communication for obtaining the information
about the location of nearby vehicles, previous registra-
tion results and new PCR requests. The BS has basic com-
putation and storage capabilities to make PCR strategies,
which can be sent to vehicles for execution.

B. Problem Definition

We denote the sequence {Xvi
1 , Xvi

2 , ..., Xvi
t } as the time

series of t point cloud frames of vehicle vi ∈ V , where
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Fig. 3: The system architecture of LoRaPCR

Xvi

k = {pn ∈ R3|n = 1, 2, ..., N} for k ∈ [1, t] is the k-th
point cloud frame of N points. At time t, vehicle vi generates
registration requests Rvi

t ⊆ {(vi, vj)|vj ∈ Ivi}, where Ivi

represents the interest region of vi. A PCR request (vi, vj)
is satisfied if there is a registration result (i.e., the transform
matrix Mi,j that aligns X

vj
t MT

i,j with Xvi
t ) and the target

point cloud data X
vj
t is transmitted to vi. For registration

request set Rt =
⋃

vi∈V Rvi
t , the long-range multi-vehicle

PCR problem is to find registration paths Pt and transmission
paths Tt such that after they are executed, the registration
requests are satisfied while the resulting computational and
communication costs are minimized. The computational cost
is determined by the number of registration tasks required,
while the communication cost is determined by the number of
transmissions needed along the transmission routes to satisfy
each registration request.

III. DESIGN OF LORAPCR

A. Overview

The core idea of LoRaPCR is to achieve long-range PCR
through short-range PCR. Instead of rejecting long-range
registration requests or obtaining an unreliable registration
result, LoRaPCR searches for a high-quality registration path
Xvi

t ↔ Xvk
t′ ↔ ... ↔ X

vj
t to satisfy the long-range

registration requests. The relay nodes in the registration path
can be nearby point clouds of other vehicles (Xvk

t ) or even
nearby point clouds from previous time instances (Xvk

t′ ).
In each round of registration, each vehicle reports the neigh-

bor information to the base station, enabling the base station to
construct the registration graph GR

t and communication graph
GC
t . Then base station determines the registration paths Pt and

transmission routes Tt and decomposes them into individual
registration tasks and transmission tasks for each vehicle.
After every vehicle finishes its respective registration tasks
and transmission tasks, the registration requests are satisfied,
which means X

vj
t is transmitted to vi, and vi has Mi,j to

align X
vj
t Mi,j with Xvi

t for every (vi, vj) ∈ Rt. As depicted
in Figure 3, LoRaPCR consists of two main components as
follows:

connect

connect

potential
completed

𝓖𝒕
𝑹𝓗𝐭

Fig. 4: Illustration of the integrated registration graph It,
which is integrated by the registration graph GR

t and the
registration history Ht

Registration Task Scheduler. The registration task sched-
uler takes the registration requests and the registration graph as
input, then combine the registration graph with the registration
history and utilizes a shortest-path-based search algorithm
to find registration paths for the registration requests. The
registration task scheduler then sends the registration paths
to the transmission task scheduler as well as vehicles.

Transmission Task Scheduler. The transmission task
scheduler decomposes the registration paths into transmission
tasks and searches for transmission routes for registration re-
quests within the communication graph. Then the transmission
task scheduler sends the transmission routes to vehicles.

B. Registration Task Scheduler

The registration task scheduler is used to determine regis-
tration paths Pt = {Path(Xvi

t , X
vj
t )|(vi, vj) ∈ Rt} and it

achieves this goal by three steps:
1) Registration Graph Integration: As shown in Figure4,

in the registration graph GR
t and registration history Ht, each

node denotes a point cloud Xvi
t while each edge (Xvi

t , X
vj
t′ )

denotes a potential registration (e.g., in GR
t ) or a completed

registration (e.g., in Ht). We define the weight of edges as the
computation cost, i.e., wedge = 1 for a potential registration
while wedge = 0 for a completed registration. We can estimate
the quality of registration using an empirical model and define
it as the attribute of the corresponding edge. The registration
task scheduler combines GR

t and Ht into one integrated
registration graph It, and connect GR

t and Ht by the temporal
edges like (Xvi

t , Xvi
t′ ). The temporal edge (Xvi

t , Xvi

t′ ) means
vi can perform a registration computation between those two
point clouds generated and stored by itself. The integrated
registration graph represents all available registration edges to
find registration paths for registration requests.

2) Registration Path Solution: After obtaining the inte-
grated registration graph, the registration task scheduler de-
termines the Minimum Request Satisfaction Graph(MRSG)
for Rt on It. The MRSG is defined as a subgraph with
minimal computational cost, in which each request can identify
a path if there exists a path in the original graph. The
computational cost of MRSG equals the computational cost to
implement Pt, which can be represented as

∑
wedge(edge ∈⋃

Path, Path ∈ Pt). By solving the MRSG problem, the
registration task scheduler can derive Pt, which is the output
of this module.



Algorithm 1: BFS-based Algorithm for MRSG Prob-
lem

Input : Rt, It
Output: Pt

1 Initialize Pt as an empty set
2 for each X

vi
t in It do

3 path lists[X
vi
t ] = ConstrainedSPFA(Xvi

t , It)
4 for each X

vj
t such that (Xvi

t , X
vj
t ) ∈ Rt do

5 Path(X
vi
t , X

vj
t ) is minimum cost path in

path lists[X
vi
t ][X

vj
t ]

6 Add Path(X
vi
t , X

vj
t ) to Pt

7 return Pt

8 Function ConstrainedSPFA(Xstart, It)
9 Initialize a list path lists[X] for every node X in It

10 Initialize a queue and add Xstart to it
11 while the queue is not empty do
12 Take the front node Xf out of the queue
13 for each neighbor Xn of Xf do
14 Try to add new path to path lists[Xn]
15 if quality of new path ≥ quality of any path in

path lists[Xn] and cost of new path < cost of that
path then

16 Update the path lists[Xn]
17 If Xn is not in the queue, add it to the queue

18 return path lists

3) Registration Database Update: The registration task
scheduler updates Ht → Ht+1 according to Pt and the
registration results returned by vehicles.

The MRSG problem is NP-hard, which can be proven by
establishing a reduction from the Graphical Steiner Minimal
Tree (GSMT) problem [10] with unit weight, as known to be
NP-hard. To address the MRSG problem, one of the most
straightforward approximate algorithms is to use the BFS
method to find a shortest path for each request. BFS can
achieve a high request satisfaction ratio by considering every
possible path for each request, but it may not achieve the
global minimum cost as it only considers local optimality.
The pseudocode for the BFS-based algorithm is shown in
Algorithm 1.

Considering the practical application requirements, we add
the following two constraints to the registration paths:

• The registration recall of the registration path, which is
the product of the registration recalls of each edge, must
exceed a lower bound of 95%.

• The number of hops in the registration path is limited
by an upper bound, which restricts the error range of the
registration result obtained from the registration path.

Specifically, we employ the Shortest Path Faster Algorithm
(SPFA), a queue-optimized BFS algorithm, to solve MRSG
problem, given that the constraint conditions prevent infinite
loops.

One way to optimize the BFS algorithm is by utilizing the
overlap between different paths to reuse registration edges as
much as possible. A feasible approach is to record the edges
used in the determined paths and to reuse them as much as
possible. In this approach, the order in which the paths for
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Fig. 5: Illustration of registration paths.(a)Three types of
registration paths.(b)Effective reductions on one-hop paths can
decrease the number of registrations.

different requests are determined becomes crucial to achieve
efficient path reuse. As shown in Figure5(a), the registration
paths can be categorized into three types: 1) the one-hop path,
which indicates a single hop registration 2) the spatial path,
which involves using extra nodes at the same time instance
as a relay. 3) the temporal path, which involves using extra
nodes from a previous time instance as a relay. Among the
three types of paths, one-hop paths are the most efficient
and intuitive. If a request has an one-hop path available,
then there is high probability that the registration path for
this request in the global optimal solution will indeed be an
one-hop path. Hence, we propose a novel algorithm called
One-Hop Request First (OHRF). The core idea of the OHRF
algorithm is to reuse the one-hop paths when making decisions
for other requests. More specifically, we first check whether
each registration request can be satisfied by a one-hop path. If
so, we directly use the one-hop path as the solution. Then, we
create a duplicate graph, denoted as I ′

t, and set the weight
of all edges used in the one-hop solutions to 0 in I ′

t. For
the other requests, referred to as hard requests, we employ the
BFS in I ′

t to search for the shortest path as their solutions.
By adopting this approach, we effectively reuse one hop paths
when searching for the shortest path for hard requests, thereby
saving computational costs.

In addition, we discover that there is also a substantial
amount of redundancy among one-hop paths. As depicted
in Figure5(b), the blue edges represent paths corresponding
to one-hop requests, while the orange edges represent paths
corresponding to hard requests. In original case, the hard
request reuses one edge from the one-hop request, resulting
in a global cost of 4. Under the premise of ensuring that
requests are satisfied, we can perform reduction on one hop
paths. Reduction A removes some edges while still ensuring
the satisfaction of all requests. Unfortunately, this approach
may not necessarily reduce the global computation cost, as



Algorithm 2: OHRF-based Algorithm for MRSG
Problem with Reduction

Input : Rt, It
Output: Pt

1 Initialize Pt as an empty set
2 Initialize hard requests as an empty list
3 Initialize one hop paths as an empty list
4 for each (X

vi
t , X

vj
t ) in Rt do

5 if (Xvi
t , X

vj
t ) is one-hop reachable in It then

6 Path(X
vi
t , X

vj
t ) = (X

vi
t , X

vj
t )

7 Add Path(X
vi
t , X

vj
t ) to one hop paths

8 Set cost of edge (X
vi
t , X

vj
t ) in It to 0

9 else
10 Add (X

vi
t , X

vj
t ) to hard requests

11 for each X
vi
t in It do

12 path lists[X
vi
t ] = ConstrainedSPFA(Xvi

t , It)
13 for each (X

vi
t , X

vj
t ) in hard requests do

14 Path(X
vi
t , X

vj
t ) is minimum cost path in

path lists[X
vi
t ][X

vj
t ]

15 Mark the reused path in one hop paths

16 Add Path(X
vi
t , X

vj
t ) to Pt

17 Construct a graph, Ghop, using one hop paths
18 Compute the MST, Thop, of Ghop while trying to retain marked

paths
19 for Path(X

vi
t , X

vj
t ) in one hop paths do

20 if Path(X
vi
t , X

vj
t ) is in the MST Thop then

21 Add Path(X
vi
t , X

vj
t ) to Pt

22 else
23 Set cost of edge (X

vi
t , X

vj
t ) in It to 0

24 path lists[X
vi
t ] = ConstrainedSPFA(Xvi

t , It)
25 Path(X

vi
t , X

vj
t ) is minimum cost path in

path lists[X
vi
t ][X

vj
t ]

26 Add Path(X
vi
t , X

vj
t ) to Pt

27 return Pt

the removed edges could be reintroduced in the paths of hard
requests.

Based on the above observations, we propose a novel
reduction method. The core idea is to record edges used by
hard requests and constructs the minimum spanning tree to
reduce one-hop paths while preserving the recorded edges. It
can be seen that in Reduction B the global computation cost is
3. The pseudocode for the OHRF-based algorithm with reduce
is shown in Algorithm 2.

C. Transmission Task Scheduler

The transmission task scheduler is used to determine trans-
mission paths Tt and it achieves this goal by two steps:

1) Transmission Task Decomposition: The transmission
task scheduler takes Pt as input, and for every Path ∈ Pt, it
can be decomposed into several transmission tasks. As shown
in Figure 6, Path(XvC

t , XvA
t ) consists of 4 edges. For edge ①,

there is a transmission task of vA transmitting XvA
t to vB . For

edge ② and ④, there is no transmission task since the point
cloud pair belongs to the same vehicle. For edge ③, there
is no transmission task as the registration has already been
completed at time t′. The completed registration result can
be directly obtained from the Registration Network Database.

𝑣𝐴

𝑣𝐵

𝑣𝐶

𝑣𝐷
𝑡′ 𝑡

①
②

③
④

Fig. 6: The procedure of decomposing registration path into
transmission tasks
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Besides, there is another transmission task of transmitting XvA
t

to vC to satisfy the registration request (XvC
t , XvA

t ). Then we
can partition the transmission tasks based on the content of
the data being transmitted. Each partition consists of a list
of transmission tasks of transmitting Xvsrc

t from the source
vehicle vsrc to the target vehicle vtgt.

2) Transmission Tree Solution: After partitioning the trans-
mission tasks, the transmission task scheduler processes each
partition sequentially, as they do not interfere with each other.
For each partition, the transmission task scheduler needs to
determine an optimal transmission route for each transmission
task, aiming to minimize the overall communication overhead.
This problem is referred to as the Minimum Transmission
Graph(MTG) problem and its NP-hardness can be proven by
establishing a reduction from the GSMT problem.

For the MTG problem, there exists a dynamic programming
algorithm [12] with a time complexity of O(nc∗2m), where n
represents the number of nodes, and m denotes the number of
special nodes in the graph. While we may not be able to reduce
the computational complexity, we can improve the algorithm’s
efficiency by reducing the problem size. For our specific
application scenario, we have the following observation: Since
the target nodes are all within the interest region of the source
node, the distances between the target nodes are not likely
to be too long. Consequently, there is a high probability that
the target nodes are directly connected in the communication
graph. In order to leverage this locality of the communication
graph, we try to simplify the GSMT problem by organizing
the special nodes into several connected components, which
we refer to as ”Connected Components Reduction”.

As shown in Figure 7(a), there are 5 target vehicles for
vsrc: 2 one-hop transmission task to vt1 , vt2 and 3 transmis-



Algorithm 3: Optimized Dynamic Programming Al-
gorithm with Reduction for GSMT Problem

Input : Undirected graph G = (V,E), special node set Q ⊆ V
Output: GSMT T

1 Construct subgraph QG = (Q,QE), where
QE = {(q1, q2) | q1, q2 ∈ Q}

2 Find connected components of QG, store MSTs of each connected
component

3 Merge nodes within each connected component of QG to form new
graph G′, Q′

4 if number of connected components in QG = 1 then
5 return the MST of the single connected component

6 else if number of connected components in QG = 2 then
7 TMST1 ← MST of the first connected component in QG
8 TMST2 ← MST of the second connected component in QG
9 u, v ← special nodes representing the two connected

components
10 TSP ← ShortestPath(G′, u, v)
11 T ← Merge TMST1, TMST2, and TSP

12 else
13 TDP ← DP(Q′, G′)
14 TMST ← Merge MSTs of all connected components in QG
15 T ← Merge TDP and TMST

16 return T

sion task to vt3 , vt4 , vt5 . First, we can transform the above
problem into a GSMT problem, as illustrated in Figure 7(b).
Furthermore, we can organize the special nodes into two
connected components in Figure 7(c). The reduced GSMT
problem is depicted in Figure 7(d).Consequently, the algo-
rithm’s complexity reduces from O(nc · 2m) to O(nc · 2m′

),
where m′ represents the number of connected components. In
conclusion, through the Connected Components Reduction, we
achieve an exponential speed improvement. The pseudocode
for the Optimized Dynamic Programming Algorithm with
Reduction is shown in Algorithm 3.

To further optimize the algorithm’s performance, we apply
pruning techniques for the cases where m′ = 1 and m′ = 2.
The former is equivalent to finding the minimum spanning
tree, while the latter corresponds to computing the shortest
path between two connected components.

IV. EVALUATION

A. Methodology

We conduct extensive simulations using the CARLA sim-
ulator to evaluate the performance of LoRaPCR concerning
various vehicle spatial distributions and different registration
request scenarios. Specifically, we select three different maps
in the CARLA simulator due to their distinct road character-
istics, which may affect the spatial distribution of vehicles.
We set the number of vehicles in the scene to be from 10 to
100 at an interval of 10 to test LoRaPCR’s performance under
different vehicle densities.

To generate vehicle registration requests, each vehicle se-
lects up to REQmax vehicles from the interest region (i.e.
within a range of 100 meters) based on their preferences. We
test the cases where REQmax is set to 5, 10, 15, and 20, and
we define three different preference as follows: 1)uniform:

TABLE I: Ablation Study

Preference Algorithm RSR RCPR CCPR RTE(m) RRE(◦)

Far

LoRaBFS 0.66 0.72 1.99 0.53 1.41

LoRaOHRF 0.66 0.71 1.99 0.52 1.40

LoRaPCR 0.66 0.49 2.01 0.53 1.42

Uniform

LoRaBFS 0.81 0.68 1.36 0.38 1.29

LoRaOHRF 0.81 0.56 1.36 0.36 1.28

LoRaPCR 0.80 0.35 1.39 0.39 1.32

Near

LoRaBFS 0.91 0.81 1.27 0.25 1.17

LoRaOHRF 0.91 0.67 1.27 0.23 1.17

LoRaPCR 0.90 0.33 1.45 0.25 1.23

refers to evenly assign the probability of being selected to
all vehicles. 2)near: refers to assign a weight of e(100−d)/20

to vehicles d meters away from the interest region and then
normalized to obtain the probability. 3)far: refers to assign a
weight of ed/20 to vehicles d meters away from the interest
region and then normalized to obtain the probability.

We collect point clouds from vehicle-mounted LiDARs at
various distances in the CARLA simulator. A pre-trained GCL
model is used for registration to fit the quality of single-hop
point cloud registration (i.e. recall, RTE and RRE) across
different distances and to analyze the error accumulation in
multi-hop point cloud registration. For each PCR task, we
estimate the registration success probability and error based on
the distance between point cloud pairs using the registration
quality estimation model fitted in the aforementioned process.

We define four metrics as follows:

• Request Satisfaction Rate (RSR): refers to the ratio of
the number of requests for which registration both path
and transmission route are successfully found to the total
number of requests.

• Registration Cost Per Request (RCPR): refers to the
average number of registrations performed for each reg-
istration request, indicating the average computational
overhead.

• Communication Cost Per Request (CCPR): refers
to the average number of point cloud transmissions
performed for each registration request, indicating the
average communication overhead.

• RTE & RRE: refers to the average estimated upper
bound of RTE and RRE for the registration results of
each satisfiable registration request.

We compare our method with two candidate methods as
follows:

• Traditional direct registration methods(DRCT): refers
to the approach of determining whether each request
can be directly registered in one hop. If feasible, the
registration and transmission are executed; otherwise, the
request is rejected directly.

• BFS-based registration methods (LoRaBFS): refers
to using BFS to find a shortest path for each request
without considering the reuse of duplicate edges, which
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is a straightforward method for implementing multi-hop
registration.

B. Parameter configuration

1) Ablation Study: First, we evaluate the effectiveness
of OHRF strategy and reduction on one-hop paths. We
select the Town scenario in the CARLA simulator with
vehiclenumber = 80 and REQmax = 10. The maximum
number of hops for registration paths is set to 7. We test the
performance of LoRaBFS, LoRaOHRF, and LoRaPCR under
three different registration request preferences.

Table I lists the performance of LoRaBFS, LoRaOHRF
and LoRaPCR under three different registration request pref-
erences. It can be seen that LoRaOHRF reduces RCPR to a
certain extent, while improving CCPR, RTE, and RRE slightly.
This is likely because determining the one-hop request paths
first helps in finding better registration paths and transmission
routes for hard requests. Furthermore, reduction on one-hop
paths further decreases RCPR while slightly reducing the other
metrics, which still remain within an acceptable range.

2) Impact of communication range: In the experiments,
we assume that vehicles could engage in direct high-speed
V2V communication with other vehicles within their commu-
nication range to support point cloud transmission tasks. The
communication range of vehicles can influence the completion
of point cloud transmission tasks. We define the delivery ratio
as the ratio of the number of satisfied registration requests
to the total number of registration requests that have feasible
registration paths. We measure the delivery ratio of registration
requests under different communication ranges, and the results
are shown in Figure 8. When the communication range equals
the interest region radius(i.e. 100 meters), all point cloud
transmission tasks can be completed through one-hop trans-
mission. As the communication range decreases, some point
cloud transmission tasks may require multi-hop transmission
or may become unreachable, leading to a decrease in the
delivery ratio. It can be observed that the delivery ratio con-
tinuously increases as the communication distance expands.
When the communication distance reaches 45m, the delivery
ratio reaches 95%. Therefore, in the subsequent experiments,
we set the communication distance to 45m.

3) Impact of the Connected Component Reduction: To eval-
uate the effectiveness of the Connected Component Reduction
in the Transmission Task Scheduler, we conduct experiments
under the same conditions as in the ablation study and record
the cumulative distribution of the problem size. As shown
in Figure 9, the Connected Component Reduction effectively
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Fig. 10: Performance of DRCT, LoRaBFS and LoRaPCR with
different maximum number of hops
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Fig. 11: Performance of DRCT, LoRaBFS and LoRaPCR with
different vehicle density

reduces the problem size, and in most of the cases(i.e. >80%),
the problem size (the value of m) does not exceed 5, which
is acceptable for the DP algorithm with a time complexity
of O(nc2m). In most of the cases, the reduced algorithm can
complete the computation within 1 ms, achieving a speedup of
more than 1000 times compared to the non-reduced version.

4) Impact of maximum number of hops: We control the
error of registration paths by limiting the maximum number
of hops. We vary the maximum number of hops from 1 to
10 while keeping the remaining conditions consistent with the
ablation study. We test the performance of DRCT, LoRaBFS
and LoRaPCR under far preference.

Figure 10 shows that LoRaPCR demonstrates significant ad-
vantages in RCPR, while performing comparably to LoRaBFS
in other metrics. Although DRCT demonstrates good per-
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Fig. 12: Performance of DRCT, LoRaBFS and LoRaPCR in
different scenarios

formance in CCPR and RTE & RRE, its low RSR shows
that it falls short of meeting the desired requirements. The
results of the above experiments also validate our theoretical
findings. When HOPmax = 1, both LoRaBFS and LoRaPCR
degenerate into the DRCT algorithm. When HOPmax = 2,
the system uses neighboring point cloud registration results
for multi-hop registration, but it does not use previous time
step results (which would require at least 3 hops). As a
result, edge reuse starts to occur, leading to a decrease in
RCPR. However, multi-hop registration paths introduce ad-
ditional one-hop transmission tasks, resulting in an increase
in CCPR. As HOPmax gradually increases, the system relaxes
the requirements on the quality of registration paths, leading to
an increase in RSR as more requests can be satisfied. Although
more requests are fulfilled, the number of registration tasks in
the system reaches saturation, meaning the total registration
number and the additional transmission tasks do not increase.
Consequently, RCPR increases with the growth of RSR, while
CCPR remains stable (the impact of additional transmission
tasks gradually becomes negligible in the overall transmission
task).

From Figure 10(d), we can observe that when HOPmax is
less than 8, the average RTE is below 0.6m, and the average
RRE is below 1.5◦. Therefore, we set HOPmax = 7 in the
following experiments.

C. Impact of Vehicle Density

To demonstrate the impact of different vehicle densities on
the performance of LoRaPCR, we vary the number of vehicles
from 10 to 100 at intervals of 10 and test the performance of
LoRaPCR in the Town scenario with REQmax = 10 under
three different registration request preferences.

As shown in Figure 11, when the vehicle density is low, the
advantages of multi-hop registration are not very prominent.
However, as the vehicle density increases, the RCPR of multi-
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Fig. 13: Performance of DRCT, LoRaBFS and LoRaPCR in
different REQmax

hop registration exhibits a significant improvement. It should
be noted that when the vehicle density is very low, the number
of vehicles within the interest region of a vehicle may not
reach the threshold of REQmax, invalidating the registration
request preference and leading to relatively easy requests. As
the vehicle density increases, the far preference begins to
take effect, making the requests more challenging, resulting
in an increase in CCPR, RTE and RRE. Meanwhile, RSR also
shows a slight increase because of the increase of potential
relay vehicles, but due to the aforementioned factors, the
improvement is relatively small. Throughout these conditions,
LoRaPCR consistently maintains a considerable advantage in
RCPR, while its growth in CCPR remains within an acceptable
range.

D. Impact of Scenarios

The distinct characteristics of different scenarios’ roads can
impact the spatial distribution of vehicles. We test the perfor-
mance of LoRaPCR in three different scenarios while keeping
the other conditions consistent with the ablation study. The
results in Figure 12 show that multi-hop registration methods
(LoRaBFS and LoRaPCR) can maintain a high RSR across
various scenarios. LoRaPCR exhibits a significant advantage
in RCPR compared to LoRaBFS, and the increased overhead
in CCPR remains within an acceptable range. Both methods
have similar registration errors.

E. Impact of maximum number of requests

The maximum number of requests for single vehicle affects
the overall number of requests in the VANETs. We test the
performance of LoRaPCR under different values (5, 10, 15,
20) of REQmax, while keeping the other conditions consistent
with the ablation study. Figure 13 shows that LoRaPCR
maintains a significant advantage in RCPR compared to the
other two methods while the disadvantage of CCPR remains



within an acceptable range. As REQmax gradually decreases,
the far preference becomes more effective, making the reg-
istration requests more challenging. Despite this, LoRaPCR
still maintains a significant advantage in RCPR and performs
roughly on par with LoRaBFS in other metrics.

V. DISCUSSION

A. Low Vehicle Density

When the vehicle density is low, it is possible that there
may be no relay vehicle between two distant vehicles, making
it hard to satisfy the registration request. In such cases,
LoRaPCR attempts to utilize temporal point cloud data as
a relay. If in a previous time instance the two vehicles are
close enough to perform PCR or there is a relay vehicle in
between, the current registration request can still be satisfied
by multi-hop registration. In practical scenarios, if vehicles
are very sparse and the distance between them is large, we
can consider it relatively safe, and there may not be a strong
demand for PCR.

B. Individual Communication Load Optimization

LoRaPCR is aiming to minimize the global communication
load while overlooking the individual communication load of
each vehicle. If a particular vehicle serves as a central node
in the communication network, its communication load may
become excessively high. To address this issue, we can intro-
duce an algorithm to adjust the communication routes. In the
MTG problem, the optimal transmission tree can have multiple
solutions, which means that if a node’s communication load is
high, we can choose an alternative optimal transmission tree
to avoid selecting that node while ensuring a constant global
communication load remains unchanged.. If there is no other
viable route for a specific transmission task, we can only use
a ”best-effort” strategy to satisfy the registration request to the
best of the systems’ communication capacity.

VI. RELATED WORK

We classify the existing relevant work into two categories:
indoor PCR and outdoor PCR.

Indoor PCR. Indoor PCR can be further categorized based
on the matched features into two groups: patch-based features
and fully convolutional features. 3DMatch [13] extracts lo-
cal features by employing 3D convolutions on local areas.
PPF-Net [14] utilizes robust point-pair features extracted by
PointNet for registration. PerfectMatch [15] adopts a voxelized
smoothed density value (SDV) representation to obtain robust
features. DIP [16] develops an effective method to register
point clouds without initial alignment using distinctive 3D
local deep descriptors. The latest advancements in SpinNet
[17] and BUFFER [18] integrate cylindrical features that are
equivalent under SO(2) rotations with backbones that are
entirely convolutional. However, all these methods are local
patch-based, which incurs significant computational overhead
and cannot accomplish online registration of large-scale out-
door point clouds.

Outdoor PCR. Outdoor PCR can be further divided into
two categories: pairwise V2V registration and multi-vehicle
registration with infrastructure.

Pairwise V2V registration aims to optimize registration
methods to improve registration performance. FCGF [19]
introduces metric learning and utilizes sparse convolutions
to accelerate computation. D3Feat [20] proposes a keypoint
selection strategy to overcome inherent density variations.
Predator [21] uses an overlap attention module to address
the low overlap problem in PCR. APR [6] leverages an
autoencoder to reconstruct a denser aggregated point cloud,
allowing the encoder to extract features with rich local geom-
etry information, thereby enhancing PCR accuracy. However,
the aforementioned methods face difficulties in achieving PCR
with distance exceeding 30m, which fails to meet the demands
of autonomous driving.

Multi-vehicle registration with infrastructure methods en-
hances registration quality by constructing registration systems
in VANETs. VI-Eye [22] leverages regular geometries in
driving scenes to extract saliency points and efficiently achieve
registration, enabling real-time PCR. However, the perception
range of vehicles is still limited. VIPS [23] recognizes objects
and utilizes their lean representations to construct a graph
for matching, effectively extending the vehicle’s perception
range. However, the application scope of VIPS is limited
due to the fact that vehicles do not share raw point cloud
data. Both of the above methods require point cloud overlap
between vehicles and infrastructure, which limits the coverage
of infrastructure and leads to high deployment costs. EMP [5]
utilizes Voronoi diagrams [24] and bandwidth considerations
to partition regions for point cloud fusion. It can significantly
enhance the perception range of vehicles. However, this system
relies on infrastructure as an intermediary for point cloud
transmission and depends on high-precision GPS to solve
position relationships.

VII. CONCLUSION

In this work, we have developed an online long-range multi-
vehicle PCR system called LoRaPCR. In LoRaPCR, vehicles
can achieve long-range registration through multi-hop short-
range high-quality registration. By collecting vehicle position
information and registration history, the base station can assign
efficient registration and transmission strategies for every
registration request, reducing computation and communication
overhead in VANETs. To the best of our knowledge, LoRaPCR
is the first solution to achieve multi-vehicle point cloud
long-range registration. We have implemented a prototype of
LoRaPCR and conducted extensive simulations. The results
demonstrate the effectiveness of LoRaPCR.
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