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Abstract—Continuous authentication is viewed to be increas-
ingly important for mobile devices, which store a wide range
of private data and sensitive information of users. Traditional
continuous authentication methods need user inputs (e.g. typing,
sliding). In this work, we present MAUTH, a zero-effect continuous
authentication scheme for mobile devices. With the built-in motion
sensors on commercial off-the-shelf (COTS) devices, MAUTH can
continuously extract, classify and verify the unique tremor features
of users on how their body intrinsically shakes during the normal
use of such devices. As a result, it is extremely difficult if not
impossible to reproduce the same set of tremors as individuals differ
in their muscle development. We implement MAUTH as a software
on Android-based smartphones, which demonstrates that MAUTH
is light-weight and unobtrusive to its users. We conduct extensive
real-world experiments and trace-driven simulations in controlled
and uncontrolled environments on 21 volunteers. The results show
that MAUTH is difficult to counterfeit and achieves a low average
false positive rate (FPR) of 6.73% under real-world spoofing at-
tacks. Moreover, MAUTH is comfortable to use and can achieve a
low average false negative rate (FNR) of 2.2% during uncontrolled
and continuous usage of devices, leveraging isolation-forest-based
classifiers trained with only 40 training samples.

Index Terms—Biometrics, continuous authentication, mobile
devices, muscular tremors.

I. INTRODUCTION

W ITH the ever increasing capabilities of modern devices,
such as smartphones, tablets and smart watches, a rich

set of complex applications like photography, online banking,
emails, messengers, fitness tracking, and online social interac-
tions, are made possible to run on such devices. As a result, it is
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of vital importance to provide secure protection for the private
information (e.g., personal photos, bank accounts, emails and
contact list) stored on mobile devices. Conventional one-time
authentication approach, such as to input a PIN code or to
recognize the fingerprints or the face of a legitimate user via
dedicated sensors, is intrinsically insecure in two aspects: 1)
password-based schemes are vulnerable to shoulder-surfing at-
tacks [1] while biometrics-based schemes suffer from spoofing
attacks; 2) they cannot provide continuous protection during
the entire session of usage. Therefore, in order to eliminate the
potential security risk, continuous user authentication on mobile
devices has been considered as a must.

In the literature, there have been a rich set of continuous au-
thentication schemes targeting on mobile devices. One main cat-
egory of continuous authentication schemes are behavioral bio-
metrics based, requiring intensive user-device interactions, such
as keystrokes [2], [3], touching and sliding operations [4], [5] [6],
[7], and gaze patterns [8], [9]. The performance of such schemes
are therefore application-dependent, and cannot be guaranteed
when there are no sufficient and timely inputs available. Another
category of continuous authentication schemes utilize physio-
logical biometrics, such as electric pulse response [10], cardiac
motion [11], body surface vibrations caused by voice [12], and
electrical activity caused by muscle contraction [13]. Though
these schemes generally do not need users to constantly interact
with devices, they are built based on special sensors, such as
electrodes, electromyogram (EMG) sensors, high-performance
accelerometers, and electrocardiogram (ECG) sensors, which
are not readily deployed on most mobile devices. As a result,
there does not exist an effective solution, to the best of our
knowledge, that can provide continuous protection for common
commercial off-the-shelf (COTS) mobile devices, especially
when there is no operation on the devices.

Our Approach. In this article, we propose MAUTH, a zero-
effect continuous user authentication scheme that can be used in
most COTS mobile devices. MAUTH is based on a key obser-
vation that body tremors, caused by muscles when generating
active forces, are intrinsic and inevitable for human beings.
Such tremors can be perceived by most mobile devices with
a low-end build-in inertial sensor. We find that body tremors
contain a rich set of stable and distinctive frequency components,
which can be leveraged as a new physiological biometric for user
authentication on mobile devices. Inspired by the observation,
MAUTH silently extracts the unique tremor features of users
on how their body shake when they are using their devices
for two purposes: 1) to train efficient and effective classifiers
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in the training phase; 2) to constantly verify the legitimacy of
users with well-trained classifiers without being noticed in the
testing phase. In essence, MAUTH is a two-factor authentication
scheme, integrating both behavioral biometric characteristics,
i.e., arbitrary holding postures of users, and physiological bio-
metric characteristics, i.e., the associated body Tremors.

Challenges and Contributions. There are three main chal-
lenges in the design of MAUTH. The first challenge is how
to obtain reliable and distinctive tremor features from arbitrary
human body movements and noisy raw accelerometer readings.
To address this challenge, we separate user movements into three
categories. Obvious limb or body movements and small hand
movements are discarded with only subtle vibrations (referred
to as tremor-movements) remained for use. To obtain reliable
tremor features, we conduct cross fast Fourier transform (CFFT)
to remove random noises in the frequency domain.

The second challenge is how to passively characterize legiti-
mate users as they are not required to cooperate with MAUTH.
We adopt a passive mode to silently collect user tremor-
movements during the normal usage of a device. A classifier is
automatically trained when a newly identified tremor-movement
of a legitimate user cannot be recognized by all existing
classifiers.

The third challenge is how to constantly authenticate users in a
timely and computational-cost-efficient way on mobile devices
with limited resources. To tackle this challenge, MAUTH in-
corporates the cost-efficient tree ensemble models as classifiers
to minimize the computational cost with supreme performance.
Furthermore, phone attitude information is measured and used as
an efficient classifier index to significantly reduce the number of
tree ensemble models required in one authentication process. In
this way, MAUTH achieves about a 32× speedup gain compared
with using all models for authentication.

Compared with the state-of-art continuous user authentication
schemes, the novelty of MAUTH is four-fold: 1) by utilizing the
distinctive musculoskeletal structure of individuals, MAUTH is
extremely difficult if not impossible for an imposter to forge the
complex body tremors of a legitimate user; 2) MAUTH performs
unobtrusive authentication, which does not disturb how legiti-
mate users use their devices; 3) MAUTH, running as a daemon in
the background, can constantly verify the legality of a user in the
period of a few seconds throughout a long session of various ap-
plications; 4) MAUTH only needs a low-end accelerometer that
is widely available in most COTS devices, making wide deploy-
ment easy. Nevertheless, the limitation of MAUTH is also clear
that it can provide protection only when users hold their devices
in stable postures. To provide full-time protection, MAUTH
can incorporate existing behavior-biometric-based continuous
authentication schemes. We implement MAUTH on four Google
Nexus 4 phones running Android, and evaluate the performance
of MAUTH via both real-world experiments and trace-driven
simulations. The results show that MAUTH is difficult to coun-
terfeit and achieves a low average false positive rate (FPR) of
6.73% under real-world spoofing attacks. Moreover, MAUTH is
comfortable to use and can achieve a low average false negative
rate (FNR) of 2.2% during uncontrolled and continuous usage
of devices, leveraging isolation-forest-based classifiers trained
with only 40 training samples.

In summary, our major contributions made in this work
consists of: 1) human muscular tremors can be leveraged as a
new physiological biometric for continuous authentication on
mobile devices; 2) a novel unobtrusive and continuous user
authentication algorithm and a prototype implementation; 3) a
systematic evaluation that shows the high accuracy and strong
security of MAUTH.

II. DESIGN GOALS AND MODELS

A. Design Goals

In the design of MAUTH, we consider the following desirable
properties:
� Unobtrusiveness: The authentication mechanism should be

user-friendly and unobtrusive in that it should not interfere
with the normal usage, nor should it require extra action
for authentication.

� Strong security: The authentication mechanism should be
able to identify legitimate users and detect both deliberate
or unintentional attackers with precision.

� Immediate verification: The verification needs to be com-
pleted within a very short period of time and can be
constantly conducted during the whole session of usage.

� Cost and energy efficiency: The authentication mechanism
should only relies on the most available built-in sensors to
gain large-scale deployment. Moreover, given the nature of
mobile devices, it has to operate with low computational
cost and power consumption.

B. System and Threat Models

MAUTH has minimum requirements on both mobile devices
and their users. We consider the following three entities in the
system:
� Mobile devices: We require such a target device to have

a 3D accelerometer, which can constantly measure the
motion and attitude of the device. MAUTH has very limited
requirements on the computation and storage capabilities
of the device and needs no other special hardware. MAUTH
functions as long as the device is associated with the user
in some way. For example, a smartphone or a tablet held
in one hand or both hands, a virtual reality (VR) headset
worn on the head, or a smart watch worn on a wrist.

� Legitimate users: MAUTH has no special requirements
on how a legitimate user uses his/her device. Comparing
with those authentication schemes that rely on operations
conducted by the user, such as screen scrolling, keystrokes
or walking, MAUTH can deal with the situation where no
operations are performed.

� Imposters: We consider deliberate or/and unintentional
attackers attempting to access private information or con-
ducting unauthorized operations on a mobile device. Note
that we only consider the situation when the device is
stably held. For cases where an imposter keeps typing
or moving while accessing an unlocked phone, other ex-
isting behavior-biometric-based continuous authentication
schemes should be incorporated. We assume that imposters
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cannot have physical access to the device during the train-
ing stage of MAUTH. Afterwards, imposters have the
following three capabilities. First, they can have physical
access to the device when it is locked or unlocked. Second,
imposters can launch shoulder surfing attacks by spying
or even recording the owner when he/she is using the
device. Third, imposters have necessary equipment and
technologies to mount biometrics hacking attacks.

III. PRELIMINARIES

A. Rationale of Muscular Tremors

A muscle contains contractile muscle fibers that are embedded
within a network of elastic connective tissues [14], [15]. When
stretching a muscle by extending a joint, connective tissues are
elongated and generate a springlike resistance, which is referred
to as passive tension. In addition to passive tension, muscle fibers
are uniquely designed to contract in response to a stimulus from
the nervous system, generating active force. In particular, to gen-
erate active force, muscle is activated by impulses that are gener-
ated within the nervous system, specifically by alpha motoneu-
rons. Each alpha motoneuron has an axon that connects with
multiple muscle fibers, forming a motor unit. Muscle fibers con-
nected with small motoneurons, called slow motor units, have
twitch responses, that are relatively long in duration (i.e., slow
response to a stimulus) and small in amplitude (i.e., small gener-
ated force). In contrast, muscle fibers connected with large mo-
toneurons, called fast motor units, have twitch responses, that are
relatively short in duration (i.e., fast response to a stimulus) and
high in amplitude (i.e., large generated force). Moreover, there is
an entire spectrum of intermediate motor units that shows phys-
iologic features somewhere between slow and fast motor units.

With this arrangement, the nervous system can produce a
muscle force by first recruiting motoneurons and then by driving
them to higher rates of sequential stimuli, known as rate coding.
The highest rate of stimulation that the nervous system of human
beings can generate is about 50 Hz. According to the particular
demands of a task, the nervous system recruits motor units in line
with the Henneman Size Principle, where smaller motoneurons
will be recruited before larger motoneurons. Through the whole
spectrum of motor units, the nervous system is able to activate
muscle fibers that sustain stable postures over a long period
of time, and when needed, produce high and short-duration
bursts of force for more impulsive movements. During the active
force generation of a muscle, as a spectrum of different types
of motion units are recruited and modulated at distinct rates of
stimulation, muscle fibers contacts at different rates, leading to
subtle muscular tremors in a wide range of frequencies.

B. Feasibility

Considering the presence of inertial sensors readily available
on most mobile devices, we investigate muscular tremor as a
new biometric for user authentication on those devices.

We first conduct an extensive data collection campaign.
Specifically, we collect inertial sensory data with four Google
Nexus 4 smartphones, running Android 4.2 (Jelly Bean). On
each phone, raw readings along each axis of its 3D accelerometer

Fig. 1. Three example postures when using a phone.

can be recorded. The sampling frequency is 100 Hz. We recruit
21 volunteers, six females and fifteen males, aged from 20 to
45, including five undergraduate students, ten graduate students,
three faculty members, and three office staff. In general, each
volunteer helps collect their tremor data for three times a day,
i.e., in the morning, after lunch, and in the evening. For each
time, each volunteer is asked to use an experiment phone in
six postures, i.e., SLR (Sitting with the phone held Low in the
Right hand), SHR (Sitting with the phone held High in the Right
hand), SLL (Sitting with the phone held Low in the Left hand),
TLR (sTanding with the phone held Low in the Right hand),
THR (sTanding with the phone held High in the Right hand),
and TLL (sTanding with the phone held Low in the Left hand).
Fig. 1 illustrates three example right-hand postures of one male
volunteer. In each posture, each volunteer is asked to hold the
phone still for three minutes, and to run five commonly used apps
of different operational profiles, i.e., messenger, news, Quora for
sharing knowledge, Facebook for social networking, and TikTok
for viewing short videos, with each app running for three min-
utes. The data collection campaign lasted for one week from May
22 to May 28 in the year of 2018, resulting to a data set, denoted
as trace A, of 15,876 pieces of three-minute tremor records.1

After data processing (see Section V and Section VI), we plot
the normalized frequency response of tremor signals, collected
from different volunteers in the same and distinct postures. It can
be seen from Fig. 2(a) that the tremor frequency responses of the
same volunteer in the same posture are quite similar, though the
tremor records are randomly selected over time. In contrast, it
is clear to see from 2(b) and 2(c) that, when either the volunteer
or the posture is changed, the corresponding tremor frequency
response varies significantly. Therefore, it is possible to leverage
human muscular tremor in stable postures to authenticate mobile
device users.

Furthermore, to learn how people usually operate a device in
uncontrolled settings, we install our experiment app on volun-
teers’ own phones and collect the acceleration readings if their
phones are unlocked and continuously used. Data were collected
for two weeks from July 24 to August 6 in the year of 2020. We
denote the collected trace as trace B.

1The IRB of SJTU considers this research is exempt from HRP approval on
the base of the low-risk data collection process.
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Fig. 2. An illustration of tremor frequency responses of three volunteers in
the same and different postures.

Fig. 3. System architecture of MAUTH, consisting of a training phase, denoted
by solid arrowed lines, and a testing phase, denoted by dashed arrowed lines.

IV. OVERVIEW OF MAUTH

To operate a mobile device, users have to hold the device in a
stable way that lets them view its screen while providing input.
Meanwhile, for a given holding posture, particular groups of
muscles are needed to generate competing forces and inevitable
tremors. Based on this key observation, we propose and design
MAUTH, which provides two-factor continuous authentication
for mobile devices, by leveraging the holding postures of users
and the corresponding muscular tremors. As illustrated in Fig. 3,
the system architecture of MAUTH consists of two phases, i.e.,
a training phase and a testing phase, integrating the following
five components:

User Behavior Segmentation (UBS). People may carry mobile
devices when they are standing, walking, riding a bicycle, or
doing just about anything. UBS segments different types of
movements of users, and maintains those tremor-movements
related to stable holding postures for use in both phases.

Feature Extraction (FE). Forces generated by muscles are
controlled by those recruited motoneurons and the stimulus rate
acting on them. Therefore, it is natural to inspect muscular
tremors in the frequency domain. To this end, FE first conducts

Fig. 4. (a) 3D acceleration readings in the phone coordinate system can be
obtained via an onboard accelerometer; (b) human movements are segmented
into macro-movements, micro-movements and tremor-movements, based on the
windowed standard deviation of the phone acceleration magnitude.

CFFT to obtain reliable spectrum of tremors and then selects
major frequency components as features for user authentication.

Classifiers Training and Updating (CTU). For a given holding
posture, random frequency components might appear in the
spectrum of muscular tremors. As a result, an isolation-forest-
based one-class classifiers in the form of an ensemble of weak
regression trees are trained and updated along time to distinguish
legitimate users and malicious imposters.

User Legitimacy Verification (ULV). The function of ULV
is to continuously verify the legitimacy of a user who tries to
unlock or use the phone. The decision can be made based on
the classification result of one testing posture or the result of
multiple voting on individual classification results of multiple
postures.

Phone Attitude Detection (PAD). The main function of PAD is
to estimate the attitude of the device by calculating the average
acceleration components in the device coordinate system. As
users are allowed to hold a device in many and arbitrary postures,
phone attitude information is used as a classifier index to reduce
the number of required classifiers during the training phase and
to speed up the verification process during the testing phase.

V. USER BEHAVIOR SEGMENTATION

MAUTH separates various movements based on the readings
of the onboard accelerometer.

Specifically, as depicted in Fig. 4(a), the acceleration of a
phone, denoted as a, can be decomposed with respect to the
device coordinate system. Components of a along x-, y- and
z-axis, denoted as ax, ay and az , respectively, can be measured
with an onboard 3D accelerometer. In principle, a is the net
result of all forces acting on the device, including the gravity
and forces generated by a user. Given that the gravity is nearly
constant, therefore, a can reflect the activities of the user. We
calculate the measured magnitude of a as the Euclidean norm
‖a‖ =

√
(ax)2 + (ay)2 + (az)2. For instance, Fig. 4(b) plots

‖a‖ in dark color when one of our volunteers normally operates
an experiment phone, with (ax, ay, az) sampled at 100 Hz. In
this example, the volunteer picks up the phone from a desk,
inputs PIN and reads the screen; then, he puts the phone in his
pocket, takes it out and reads the screen again; finally, he puts
down the phone on the desk. It can be seen that ‖a‖ varies
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significantly during a series of movements while the variation is
relatively mild when the volunteer is in a stable posture.

To distinguish different user movements, instead of using
power of acceleration, we calculate the corrected sample stan-
dard deviation (SD) of ‖a‖ using a sliding window as follows,

σt =

√√√√ 1

W

t+W∑
i=t

(‖ai‖ − ‖a‖)2, (1)

where W is the size of the sliding window; (‖at‖, ‖at+1‖,
. . ., ‖at+W ‖) are the measured magnitude of a in the window
starting from t; ‖a‖ is the mean value within this window. We
empirically take a sliding window of 10 samples (i.e., 0.1 s at the
sampling rate of 100 Hz). Fig. 4(b) also plots the corresponding
SD of ‖a‖ in light color. According to the value of σt, MAUTH
classifies user movements into the following three categories:

1) Macro-movements. Such movements involve obvious limb
or body movements, such as lifting up or putting down the mobile
device, walking, or riding a bicycle. Macro-movements can lead
to huge SD of ‖a‖. Moreover, the posture of a user may change
before and after a macro-movement. For the example in Fig. 4(b),
the volunteer may take different postures during the first and
the second screen-reading periods. Precisely, we consider that
a macro-movement starts when σt exceeds a threshold, denoted
as ξmacro.

2) Micro-movements. Small movements, such as typing, tap-
ping or sliding on the screen of a mobile device, which only
involve palm and finger movements. In fact, though micro-
movements would hardly change the current posture of a user,
they draw extra energy into the muscular tremor observed in this
posture, and, therefore, should also be separated. Similarly, we
consider that a micro-movement starts when σt exceeds another
threshold, denoted as ξmicro, but is less than ξmacro.

3) Tremor-movements. Such movements are the target move-
ments that MAUTH tries to cope with. To operate a device, users
have to hold a device in a stable posture that lets them view its
screen, while providing input. In this case, the major power of
‖a‖ stems from muscular tremors. In particular, we consider that
a tremor-movement starts when σt exceeds a threshold, denoted
as ξstable, but is less than ξmicro. If σt is less than ξstable, the
device is considered to be still, such as being placed on a table.
It should be noted that, due to hardware noise, σt will not be
absolute zero when a device is still.

Given a device, it is easy to select appropriate (ξmacro,
ξmicro, ξstable) during an initial training phase of MAUTH (see
Subsection VII-A). For instance, in our implementation with
Google Nexus 4 smartphones, empirical values ξmacro = 0.30,
ξmicro = 0.04, ξstable = 0.01 are used.

We breakdown the phone usage status for each volunteer in
trace B and plot the average results over all volunteers in Fig. 5.
It is surprising to see that smartphones are used over nine hours
during a day, and tremor-movements account for about 21.58%
over all time or about 56.33% when phones are unlocked for
operation. Therefore, it is essential to provide security protection
when such a device is in stable postures, which however is
difficult and unsolved.

Fig. 5. Device usage status breakdown during one day.

Fig. 6. Frequency spectrums of an example tremor signal of 512 samples, (a)
using FFT and (b) using CFFT.

VI. SPECTRAL ANALYSIS OF MUSCULAR TREMORS

As posture changes lead to macro-movements, we consider
that a user and his/her associate devices should stay in a stable
posture between two consecutive macro-movements, and inves-
tigate the frequency response of muscular tremors during a stable
posture in this section.

A. Deriving Reliable Spectrum of Muscular Tremors

Given a stationary time series of ‖a‖ corresponding to a
tremor-movement, denoted as x = (‖a0‖, ‖a1‖, . . . , ‖an‖),
we conduct M -window N -point cross fast Fourier transform
(CFFT) with a stride of J samples on x. Specifically, a sliding
window of M samples starting from t, i.e., (‖at‖, ‖at+1‖, . . .,
‖at+M−1‖), are first normalized and padded with zeros to bring
it to a length of N samples, N > M , then multiplied by a
N -point Hamming window to reduce spectral leakage, and run
through a N -point FFT as follows,

X
(
ej·k·2π/N

)∣∣∣
t+M

t
=

M−1∑
i=0

hi · ‖at+i‖

·e−j·i·k·2π/N , k ∈ [0, N/2] (2)

where hi is the i-th point of the Hamming window; t ∈
[0, n−M + 1] and is a multiple of J . We take the average of
each X and obtain a reliable frequency spectrum of muscular
tremors.

The reason of conducting above CFFT is three-fold. First,
muscular tremor signals in frequency domain are quite noisy. For
example, Fig. 6 plots the spectral magnitude of a tremor signal
of 512 samples, derived by directly conducting a 512-point FFT
and conducting a 100-window 512-point CFFT with a stride of
50 samples, respectively. It is clear that CFFT can significantly
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Fig. 7. Major frequency components in spectrum of tremors.

reduce spectral noise and leads to a more stable spectrum.
Second, instead of cutting x into non-overlapping segments, we
use a sliding window to obtain more overlapping segments for
averaged FFT, which can greatly reduce the required size of
x and the response time for online user authentication. Last but
not least, a finer frequency spectrum can be obtained by padding
tremor samples with zeros before taking each FFT.

B. Extracting Effective Spectral Features

With a derived frequency spectrum of tremors, we first analyze
the major components in the spectrum and have the following
three observations.

First, breathing and heart beating have significant impact on
the vibration signal perceived by a mobile device. For example,
we let each volunteer to hold an experiment phone in the SLR and
SHR postures, respectively, and measure his/her respiration rate
by manually counting and heart rate with a COTS pulse oximeter
for three minutes in each posture. Fig. 7 plots the averaged
spectrums calculated with CFFT for an example volunteer. In
the SLR spectrum, we first find a sharp peak at 0.305 Hz, which
nicely corresponds to the measured average respiration rate of
18.3. We denote this fundamental frequency of breath asf b

1 . Next
to f b

1 , there is a weak peak at 1.440 Hz, which perfectly matches
the measured average heart rate of 86.3. We refer to the peak at
1.34 Hz as the fundamental frequency of heartbeats, denoted as
fh
1 . In addition, integer multiples of fh

1 are also found, which are
referred to as the second, third, fourth, fifth and sixth harmonic,
denoted as fh

2 , fh
3 , fh

4 , fh
5 and fh

6 , respectively. In general, for
different people, different heartbeat harmonic patterns in terms
of the number of harmonics and their amplitudes can be found,
making them valuable for authentication.

Second, muscular tremors have higher frequencies than heart-
beat harmonics and vary with different postures. For instance,
Fig. 8 illustrates the balance of internal and external torques
acting on the elbow joint. The internal torque is the product of
the force generated by biceps multiplied by the internal moment
arm; the external torque is the product of gravity and its moment
arm. When in the SLR posture, the angle-of-insertion of biceps,
denoted as α, is about 90 degrees to the bone and internal
moment arm is greatest. In contract, when changed to the SHR
posture, the internal moment arm is reduced as α is larger than
90 degrees, which needs biceps to further contract to produce

Fig. 8. Competing forces, generated by biceps and gravity, control the angle
of the elbow joint.

larger force to keep the balance. This change should be reflected
in the spectrums of both postures.

To verify this inference, we also measured the power value
of the biceps muscle electricity of three of our volunteers when
conducting the SHR and SLR postures from September 10 to
September 12 in the year of 2022, using a COTS 2-channel
surface electromyography (sEMG) module. The sEMG module,
consisting of an analog acquisition circuit associated with cables
and electrodes, an ADC and a serial communication module, is
set with a sampling rate of 1 kHz. We conduct the CFFT oper-
ation on all obtained sEMG signals and compare the frequency
analysis results of both acceleration and sEMG signals of the
same volunteers for comparison. As framed in Fig. 7, it can
be seen that there is an obvious peak at around 11-14 Hz in
the SHR EMG signal for this volunteer which is aligned with
those peaks in the same frequency range in the SHR acceleration
signal. In contrast, there is no peak in this range in both SLR
signals. We have similar observation for all three volunteers. We
consider that the major difference between the SHR and SLR
acceleration spectrums is caused by biceps.

Third, after examine all tremor records in trace A, we find
that frequencies higher than 18 Hz have small amplitude and
constitutes a relatively flat region in the spectrum of tremors. It
results from the hardware white noise of the accelerometer on
the time domain waveform.

In summary, MAUTH chooses the major frequency compo-
nents, including the fundamental frequency of breath, all har-
monics of heartbeats, and those tremor frequency components
lower than 18 Hz, as features for user authentication.

VII. CLASSIFIER TRAINING

In the training phase, tremor-movements corresponding to
one particular holding posture are collected. A set of derived
frequency spectrums are used to train a one-class classifier model
for this posture based on isolation.

A. Collecting Training Samples

MAUTH adopts both an active mode and a passive mode to
collect training tremor samples. Specifically, in the active mode,
a user is first verified through the traditional one-time authenti-
cation and then asked to hold a device in a preferred posture (e.g.,
the SLR posture as shown in Fig. 1) for two minutes, labelled as
tremor-movements. The tremor data are divided into segments of
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five seconds with each segment recorded as one training sample
of the given posture. In addition, the user is also instructed to
type and slide on the screen, labelled as micro-movements, and to
rest the phone on a table, labelled as being-still, for a few times,
respectively. With these labeled behaviors, ξmacro and ξmicro

are set to maximal and minimal SD values of micro-movement
samples, respectively. ξstable is set as the maximal SD value of
being-still samples. With these learnt thresholds, MAUTH can
divide acceleration data into different types of movements.

In the passive mode, MAUTH silently detects tremor-
movements of the user when the user is using the device as usual.
Once a tremor-movement is identified, the corresponding fre-
quency spectrum is fed into all well-trained classifiers of existing
postures for testing. If all classifiers fail in the test, MAUTH
locks the device and prompts the user to perform one-time
authentication. If the user passes the one-time authentication,
this tremor-movement and the successive tremor-movements
before a macro-movement are passively recorded for training
a new classifier of a new posture.

Initially, MAUTH collects training tremor samples of as many
postures as possible in the active mode to boost its availability.
Afterwards, MAUTH gradually collects tremor samples of more
postures in the passive mode to improve its usability.

B. Constructing Tree Ensemble Models

An effective statistical one-class classification model is re-
quired to classify such tremor spectrums. We choose isolation-
based model as classifiers for their strong capability to iden-
tify anomalies and learn the complex data dependencies. In
particular, we adopt the isolation forest (IF) [16], an anomaly
detection algorithm that explicitly isolates abnormal data, as it
achieves state-of-the art result on many standard classification
benchmarks and has a linear time complexity with a low memory
requirement.

Specifically, for a given training sample set of a partic-
ular posture with n samples of m frequency features D =
{(xi, yi)}(|D| = n,xi ∈ Rm, yi = 1), we recursively partition
D by first randomly selecting a feature and then a random split
value within the range of the selected feature to build decision
trees. In principle, as anomalies lie further away from normal
samples in the feature space, anomalies are more susceptible
to isolation under random partitioning. Hence, when a forest of
random trees collectively produce shorter path lengths for some
particular samples, then they are highly likely to be anomalies.
An anomaly score s for xi is defined based on the depth of this
sample in all trees in the isolation forest as follows,

s(xi, n) = 2−
E(h(xi))

c(n) , (3)

where h(xi) is the path length of sample xi in an isolation tree,
E(h(xi)) is the average of h(xi) from a collection of isolation
trees, and c(n) is the average path length of unsuccessful search
in an isolation tree with n external nodes. c(n) can be calculated
as 2H(n− 1)− (2(n− 1/n)), where H(i) is the harmonic
number and it can be estimated by ln(i) + 0.5772156649.

It can be seen that 1) when E(h(xi)) → c(n), s → 0.5, the
sample xi does not really have any distinct anomaly; 2) when
E(h(xi)) → 0, s → 1, the sample is definitely an anomaly; 3)

when E(h(xi)) → n− 1, s → 0, the sample is quite safe to be
regarded as a normal sample. Given the training sample set D, a
threshold of s is automatically set so that 95% training samples
are considered normal.

VIII. USER AUTHENTICATION

In MAUTH, user authentication is implicitly conducted in the
passive training mode. Specifically, when a user is using a device,
the frequency spectrum of a newly detected tremor-movement,
referred to as a testing sample, is fed into pre-trained classifiers
for verification.

We have observed that if the user takes a similar posture
when using the device, the phone attitude is also similar. There-
fore, MAUTH adopts an efficient attitude indexing method,
where the phone attitude information is used as the classi-
fier index to reduce the number of classifiers required in the
verification. Specifically, given the time series of accelerom-
eter readings corresponding to a tremor-movement, denoted
as (a0,a1, . . . ,an−1), the phone attitude is represented by a
triple (ax, ay, az), where ax = 1

n

∑n−1
i=0 axi , ay = 1

n

∑n−1
i=0 ayi ,

and az = 1
n

∑n−1
i=0 azi . Such phone attitude information is used

in both the training phase and the testing phase. In the training
phase, the phone attitude of a training sample is measured and
stored when a new classifier is trained. In the testing phase,
the phone attitude of a testing sample is first compared with
the phone attitude of each classifier. If the attitude difference
measured with root mean square (RMS) error is less than a given
threshold2, the frequency spectrum of the testing sample is fed to
those corresponding classifiers for verification. Otherwise, the
testing sample is considered to be associated with a new phone
attitude. In this case, the passive training mode as described in
Section 7.1 is activated, i.e., the user is required to conduct the
traditional one-time authentication and a new classifier would
be trained if the user is legitimate.

IX. EVALUATION

We evaluate the performance of MAUTH through both trace-
driven simulations and real-world experiments. We consider the
following two metrics:
� Accuracy (ACC): It is the percentage of correct classifica-

tion results, defined as TP+TN
TP+TN+FP+FN where TP , TN ,

FP and FN denote the number of true positive samples,
the number of true negative samples, the number of false
positive samples and the number of false negative samples,
respectively. We balance the number of positive samples
and negative samples in testing data so that ACC can well
measure the accuracy of the authentication system.

� EER: It refers to the error rate when false positive rate
(FPR) equals false negative rate (FNR) with FPR and FNR
defined as FP

FP+TN and FN
FN+TP , respectively. The lower

the equal error rate value, the higher the accuracy of the
authentication system.

For each setting, we repeat that experiment for ten times and
present the average ACC and the average EER.

2According to our empirical study on trace A, 0.11 is an appropriate RMS
threshold over all phone attitudes.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 27,2024 at 11:40:04 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: MAUTH: CONTINUOUS USER AUTHENTICATION BASED ON SUBTLE INTRINSIC MUSCULAR TREMORS 1937

TABLE I
PERFORMANCE OF DIFFERENT CLASSIFICATION ALGORITHMS

A. Classifier Comparison

In this experiment, we compare the performance of IF-based
one-class classifier with that of the following three candidate
classification algorithms commonly used on mobile devices
through trace-driven simulations:
� Random forest (RF): We train a random forest classifier

consisting of ten decision trees by repeatedly resampling
training data with replacement. A consensus prediction is
made by voting the trees. A RF classifier is a specific type of
bootstrap aggregating that can achieve good classification
accuracy at very low computational cost.

� Support vector machine (SVM): We train a one-class SVM
classifier with the Radial Basis Function (RBF) kernel
function for each holding posture of each volunteer using
the libSVM [17]. The most appropriate configuration of
the two key parameters, i.e., the penalty parameter c and
the gamma parameter g, in the RBF kernel function is
identified through a grid search [18].

� Convolutional neural networks (CNN): Considering the
limited computational capability of mobile devices, we
adopt a typical CNN structure consisting of one input
layer, two one-dimensional convolution layers, one fully
connected layer and one output layer with ReLu as the ac-
tivation function and the cross entropy as the loss function.

Specifically, we divide the tremor data collected when exper-
iment phones are hold still in trace A into two parts, i.e., train-
ing set T = {D1, D2, . . . , D5} and testing set S = {D6, D7},
where Di is the set of tremor records collected on the ith day
since May 22. For each holding posture of each volunteer,
we randomly select 40 five-second tremor segments from T
as positive samples and randomly generate the same number
of negative samples to train classifiers, using IF, RF, SVM
and CNN, respectively. In the testing, we randomly select 100
five-second tremor segments from S for each holding posture
of each volunteer and treat each volunteer as a legitimate user
once and treat the rest volunteers as imposters for the current
legitimate user. To be fair, we do authentication 100 times for
a legitimate user and 5 times for each imposter, which makes
the number of tests from the legitimate user and that from all
imposters balanced.

Table I lists the average ACC and the average EER over all
postures and over all volunteers for each classification algorithm.
It can be seen that IF achieves the best performance with an
average ACC of of 96.13% and an average EER of 6.68%.
Meanwhile, given the same number of training samples, IF
also consumes the minimum CPU time for training one single
classifier and verifying one single testing sample on a Nexus 4
with a quad-core 1.5 GHz CPU and 2 GB memory.

Fig. 9. Impact of history training data.

Fig. 10. Impact of training data size.

B. Training Data Age and Size

In this experiment, we first study how human tremors evolve
along time. The experiment setting is similar to the above experi-
ment except that we set T = {D1} and S = {D2, D3, . . . , D7}.
For each holding posture of each volunteer, we build an IF classi-
fier using 40 tremor training samples randomly selected from T .
In the testing, we randomly select 100 tremor samples from each
Si for each holding posture of each volunteer with i denoting
the age of the training data and the corresponding classifiers.
Fig. 9(a) and (b) plot the average ACC and EER as a function of
the data age, respectively, calculated by taking the average over
all postures and all volunteers. It can be seen that, in general,
the performance decreases as the training data ages, especially
when the training data are older than three days. In contrast,
as shown in Fig. 7, though sEMG signals were measured more
than four years later than the acceleration signals from the same
volunteer, the frequency peaks in both acceleration and sEMG
signals corresponding to the biceps muscle are well aligned,
indicating that using tremor frequency peaks as features is stable
over time. The reason for this performance drop may lies in
the gradual posture changes when collecting tremor data over
time, which leads to tremor spectrum changes. This implies that
MAUTH can silently collect positive tremor samples for three
days before a new classifier is trained for a given posture.

We then study how much tremor data is sufficient to profile
a user. From above results, we set T = {D3, D4, D5} and S =
{D6, D7} and vary the number of training tremor samples from 3
to 40 with an interval of one sample. Fig. 10(a) and (b) depict the
average ACC and the average EER as a function of the number
of training samples, respectively. It can be seen that the average
EER drops as the training size increases and gradually stabilizes.
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Fig. 11. Different mobile Apps have distinct user interaction patterns, affecting
authentication accuracy.

When there are more than 40 training samples, the average ACC
and the average EER are 99.06% and 1.47%, respectively. As
more training samples cannot bring obvious gain in performance
but can increase the computation cost for training classifiers, we
choose to train tree ensemble models with 40 tremor samples.

C. Impact of Mobile Applications

It should be noted that users are continuously authenticated
with MAUTH during tremor-movements. In this experiment, we
examine the impact of mobile applications to the authentication
accuracy. Different applications have distinct user interaction
patterns, which may affect the performance of MAUTH in two
aspects: 1) frequent user interactions slightly vary a posture and
therefore the extracted frequency features of tremor-movements
also change, which harms the authentication accuracy; 2) in-
teractions also interrupt tremor-movements so that it may take
longer for MAUTH to collect sufficient tremor data for verifica-
tion.

The experiment setting is similar to the above experiment
except that we use the tremor data in trace A collected when
volunteers are using five popular apps, i.e., Messenger, news,
Quora for sharing knowledge, Facebook for online social net-
working, and TikTok for viewing short videos. We set T =
{D1, D2, · · · ., D5} and S = {D6, D7} and train classifiers for
each app and for each posture of each volunteer.

Fig. 11(a) and (b) depict the average ACC and the average
EER as a function of five apps, respectively, calculated by taking
the average over all postures and all volunteers. It can be seen
that MAUTH achieves supreme authentication accuracy in terms
of both ACC and EER for all apps. The average ACC and the
average EER over all apps are 96.85% and 5.61%, respectively.
However, compared with the accuracy results using tremor data
collected when phones are held still, the average ACC drops a
little and the average EER also increases slightly. This may be
due to posture changes caused by frequent user interactions as
mentioned above.

Fig. 12 shows the average duration of a tremor-movement ob-
tained when volunteers are using the five apps on the experiment
phones. The results of four volunteers are depicted for illustra-
tion. It can be seen that, in general, long tremor-movements are
easier to find when users are browsing news or viewing videos
while short tremor-movements are mostly seen in Messenger
app in that users type messages to friends. In addition, it can
also be seen that different volunteers have different content
preferences and interaction patterns and therefore have different
tremor-movement durations. In any case, MAUTH can provide

Fig. 12. Tremor-movement duration in different Apps.

Fig. 13. The impact of two aerobic exercises and two anaerobic exercises is
examined.

constant protection for common apps in mobile devices by taking
tremor-movement segments of five seconds for verification.

D. Impact of Physical Exercises

MAUTH basically leverages the biometric characteristics of
human muscles for authentication. We investigate whether phys-
ical exercises and workouts would affect the performance of
MAUTH.

In specific, we randomly select five male volunteers and
train classifiers for two postures, i.e., TLR and TLL, for each
volunteer using tremor data collected when the volunteers are
calm. Then, we collect tremor data of each volunteer in each pos-
ture immediately after they have done exercises for five times,
deriving a data set denoted asS ′. We also collect tremor data half
an hour after exercises, deriving another data set denoted as S ′′.
The following four types of exercises are considered: 1) jogging
for 2 km at a speed of 8 km/hour; 2) standing 20 lb dumbbell
curl for two sets of 12 repetitions; 3) pushing up for two sets
of 15 repetitions; 4) walking for 1 km at a speed of 5 km/hour.
In the testing, for each holding posture of each volunteer, we
randomly select 40 five-second tremor samples fromS ′ and from
S ′′, respectively, and treat each volunteer as a legitimate user
once and treat the rest volunteers as imposters for the current
legitimate user. To be fair, we do authentication 40 times for
a legitimate user and 10 times for each imposter to make the
number of positive samples and the number of negative samples
even.

Fig. 13 plots the average ACC and average EER of authentica-
tion just after and half an hour after doing different exercises. It
can be seen that MAUTH generally performs steadily before and
after doing exercises. For all the exercises examined, MAUTH
achieves better authentication accuracy when testing data in
S ′′ are used. Meanwhile, the EER witnesses a slight increase
in S ′′. We explain that as the breath and heartbeats get faster
after exercising, the relation among their harmonics and the
main tremor features would be slightly changed and they will
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Fig. 14. The average occurrence for the ten most-preferred phone attitudes
over all volunteers.

Fig. 15. The average FNR for the ten most-preferred phone attitudes over all
volunteers.

get restored once the user calms down (i.e., after 30 minutes).
MAUTH achieves good authentication accuracy even for testing
data in S ′. On the other hand, muscles like biceps and chest
muscle get tired just after doing dumbbell curl or push-ups and
relieved after half an hour. As MAUTH updates classifiers in
three days, it can capture the long-term muscle improvement for
fitness enthusiasts.

E. User Experience

We study whether MAUTH may work well in practical set-
tings, where a phone is in continuous usage, by conducting
trace-driven simulations using trace B. Specifically, for each
volunteer, we randomly select a window of three days from
his/her trace as training data and the trace of the next day from the
window as testing data. Given that we do not know the ground
truth of holding postures of volunteers when collecting the trace,
we re-train a new classifier for each volunteer when one tremor-
movement of a particular phone attitude is identified in trace B.
We then use all identified tremor-movements of the same phone
attitude in the testing data to verify the corresponding volunteer.
For each volunteer, we repeat the experiment for ten times and
examine the FNRs.

Fig. 14 plots the average number of occurrences per day for
the ten most-preferred phone attitudes over all volunteers. It
can be seen that in general the occurrence of phone attitudes
follows a power law distribution. Fig. 15 plots the average FNRs
for the ten most-preferred phone attitudes over all volunteers.
The average FNR over all identified attitudes and all volunteers
is about 2.2%. The results demonstrates that MAUTH would
hardly disturb normal operations of users and has a good user
experience. Moreover, with the phone-attitude indexed authen-
tication method, the average number of classifiers involved in an
authentication process is significantly reduced from 729 tremor-
movements to 23 attitudes, achieving about a 32× speedup gain.

Fig. 16. Spoofing attacks against MAUTH.

F. Real-World Spoofing Attacks

We examine whether MAUTH can defend spoofing attacks
via real-world experiments, following the suggestions proposed
in [19]. In specific, we randomly select five volunteers, two
females and three males, as legitimate users, and nine volunteers,
three females and six males, as imposters. For each legitimate
user, we first let him/her choose three most comfortable holding
postures, and train corresponding tree ensemble models for each
posture on one smartphone. Then, we ask each legitimate user
to hold the phone in their customized postures for one minute
and record the whole process on tape. For imposters, they are
allowed to perform live observations on how a legitimate user
holds the phone. In addition, they are allowed to watch the
taped video as many times as they want as well. We then let
imposters rehearse before requiring them to perform twenty
authentication attempts.

Fig. 16 shows bar plots of the average FPR of each imposter
over all five users. The average FPR over all nine imposters
turned out to be 6.73%. The results show that MAUTH is very
resilient to spoofing attacks. The human tremors containing a
rich set of dynamic features are more complex than most used
static biometrics (e.g., face, fingerprint, and iris) and therefore
more difficult to forge or reproduce.

G. Power Consumption

In our implementation, UBS adopts a short sliding window of
10 samples to calculate standard deviation over the acceleration
signal. FE conducts 100-window 512-point CFFT with a stride
of 50 samples over a tremor-movement of 512 samples (i.e., nine
512-point FFTs conducted on acceleration signal of about five
seconds) to obtain a reliable frequency spectrum. CTU trains
a tree ensemble model using 40 frequency features for one
posture. Compared with FE and CTU, the computational cost
of UBS can be negligible. The CPU time on the experimental
phone with a quad-core 1.5 GHz CPU and 2 GB memory for
FE and CTU is 18.06 ms and 110.22 ms, respectively. As CTU
is conducted once every three days for a particular posture and
the total number of postures are quite limited, the computational
cost and power consumption of CTU is low. Therefore, MAUTH
does not require mobile devices to have a powerful CPU and has
a low power consumption.

H. Limitations

Two main limitations of MAUTH are learnt from above
experiments as described in below. First, MAUTH can provide
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protection only when users hold/wear their devices in stable
postures. However, It is often the case that users may slightly
change their habitual postures over time. For instance, from
the training data age experiment, it can be seen that the au-
thentication accuracy has a huge drop with more than over
13% EER on average when using the data collected after four
days. As shown in Fig. 7, though sEMG signals were measured
more than four years later than the acceleration signals from
the same volunteer, the frequency peaks in both acceleration
and sEMG signals corresponding to the biceps muscle are well
aligned, indicating that using tremor frequency peaks as features
is stable over time. The reason for this performance drop lies in
the gradual posture changes when collecting tremor data over
time, which leads to tremor spectrum changes. To deal with
this issue, MAUTH tries to train models for stable postures as
many as possible and keeps updating models with latest training
samples.

Second, in the current stage, MAUTH cannot deal with back-
ground vibrations (e.g., walking, jogging, in a car or on a train).
The reason is that we need to divide user activities into macro-,
micro-, and tremor movements, and only utilize tremor segments
for continuous user authentication. One remedy for this is to
detect the mobility mode of a user and incorporate existing
behavior-biometric-based continuous authentication schemes
for full-time protection.

X. RELATED WORK

One-Time Authentication. The conventional user verification
scheme is one-time authentication, which is to only verify the
user at the start of a session. Common identification mechanisms
on mobile devices include using PIN, fingerprint, facial, and iris
recognition. Some recent studies also explored other authenti-
cation methods. GEAT by Shahzad et al. used the distinguishing
features (e.g. finger velocity, device acceleration, stroke time)
obtained at the input of password to verify the user [18]. Bichler
et al. Mayrhofer et al. and Zhu et al. utilize user’s hand shaking
features to do user authentication [20], [21], [22]. Also, gait
features are explored for authentication [23], [24]. However,
these conventional one-time authentication schemes would give
adversaries chances to access the system before the user logs
out, which leaves much security flaws.

Continuous Authentication. More secure continuous authen-
tication mechanisms are explored to overcome the security flaws
of one-time authentication. They mainly fall into two categories.

One is to utilize behavioral biometrics. Keystroke dynamics,
namely timing patterns on key pressing and releasing, have
been used for continuous authentication by Pinto et al. [2] and
Shepherd [3]. Touchpad behaviors have also been explored to
continuously verify the user (e.g. Ali et al. [4], Frank et al. [5],
Chan et al. [6], Feng et al. [7]). Studies on multi-modal features,
which incorporates a set of behavior features (e.g. movement,
keystroke, linguistic analysis) have also been carried out by
Sitová et al. [25] and Saevanee et al. [26]. Some works utilized
eye movement features for continuous authentication (e.g. Eberz
et al. [8], Mock et al. [9], Song et al. [27]). However, these
methods all require the user to be engaged in the system, either

continuously interacting with it via keyboard or touchscreen or
watch it.

The other category leverages physiological biometrics. Ras-
mussen et al. utilized human body’s response to an electric pulse
for continuous authentication [10]. However, it requires the user
to make direct contact with electrodes, which is inpractical and
not user-friendly. Feng et al. matched body surface vibration
with voice to continuously verify the user [12]. Cardiac Scan
by Lin et al. is based on the unique cardiac motion [11].
There are also some work utilizing human muscle information,
specifically Electromyogram (EMG, electrical activity caused
by human muscle contraction), to realize identification. Venu-
gopalan et al. fused EMG signals with keystroke dynamics for
a spoof-resistant authentication system [28]. Belgacem et al.
integrated both EMG and electrocardiogram (ECG) to authen-
ticate users [29]. Yang et al. used EMG obtained from user’s
wrist to generate a secret key and securely authenticate nearby
devices [13]. Ataş utilized leap motion devices to capture hand
tremor for user authentication [30]. However, these methods
mentioned above all require external devices, which is inconve-
nient, not user-friendly and is limited in real-world application.

XI. CONCLUSION

In this article, we find that human muscular tremors can
be leveraged as a new physiological biometric for continuous
authentication on mobile devices. We have proposed an unob-
trusive continuous user authentication scheme, called MAUTH,
based on human intrinsic muscular tremors. MAUTH relies
on a minimum hardware configuration and can be deployed
on most COTS mobile devices. By incorporating efficient and
effective classifier training and user identity verification algo-
rithms, MAUTH is lightweight and can continuously protect
mobile devices at a period of a few seconds, especially when
there is no input from the user available. We have implemented
MAUTH and conducted intensive trace-driven and real-world
experiments. The results demonstrate that MAUTH is accurate
and hard to counterfeit in various usage environments.
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