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Abstract—Federated Learning (FL) enables multiple partici-
pants to collaboratively train a globally shared model without the
need of explicit data sharing. However, prior research indicates
that local model updates released during the federated training
may also jeopardize privacy of participants. To address this issue,
local differential privacy (LDP) mechanism has been applied
to FL systems. LDP provides privacy protection with rigorous
mathematical proof by introducing random perturbations, e.g.,
Gaussian noise, to the released updates, however excessive noise
compromises the utility of the updates. In this paper, we propose
a novel Correlation-aware Adaptive LDP mechanism, Fed-CAD,
for FL, which reduces the required scale of noise by leveraging
the temporal correlation between consecutive local model updates
belonging to the same participant, without increasing the privacy
budgets (risks). We theoretical prove that Fed-CAD satisfies
(ε, δ)-LDP as long as the difference between local models is
smaller than the differential bound, and analyze the noise
variance, a metric of utility. We implement Fed-CAD on image
classification FL tasks. Experimental results demonstrate that
Fed-CAD significantly outperforms the one-shot LDP baseline.

Index Terms—federated learning, adaptive local differential
privacy, Gaussian mechanism, correlation-aware

I. INTRODUCTION

Federated Learning (FL), a framework that allows a large
number of participants to collaborate in training a universal
model without exposing their local data. During each federated
training iteration, participants use their private data to train
Machine Learning (ML) models locally and only submit the
results of training, i.e., local models, to a remote coordinator,
i.e., a server. After receiving enough local models, the server
runs an aggregation protocol to calculate the current global
model, accordingly. Although the private data of participants
have never been shared, literature reports that the exposure of
local models, i.e., model parameters or gradients, may also
cause the sensitive information of participants [1]–[3] being
inferred by other participants in the same FL task or the central
server [4], [5]. Recent studies further demonstrate that an
attacker continuously collecting the global models and updates
from a victim participant is able to successfully capture the
hidden properties [6] or recover all training samples belonging
to it [7], [8].

To providing participants with stronger data privacy, it is
necessary to introduce data privacy protection techniques in
FL, which can be divided into three categories: Homomorphic
Encryption (HE), Secure Multi-party Computation (SMC) and
Differential Privacy (DP). DP protects the data privacy by
introducing randomized perturbations. Roughly speaking, it
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is hardly, if not impossible, to accurately infer the original
values of data after being perturbed. Meanwhile, DP allows
statistical analysis of randomized data, ensuring the utility
of the data. More importantly, DP provides mathematical
guarantee for the risk of privacy leakage, thus has become
one of the most popular privacy protection technology in
recent years. Compared to HE and SMC, DP requires no
expensive encryption and decryption operations, and thus is
more friendly to participants with low-end devices which are
fairly common in cross-device FL applications. Local models
in plain-text, even being randomized, allows the server con-
ducts online validation on them, providing chances to identify
those poisoned local models from malicious participants to
some extent. Consequently, applying DP to FL has received
widespread attention in both the industry and academia.

To employ DP in FL, a practical solution should meet the
following three requirements: 1) Strong privacy: according
to the definition of DP, privacy budget (or privacy risk) is
inversely proportional to the extent of perturbations. It is nec-
essary to add sufficient perturbations, i.e., introducing enough
randomness, to the data being protected so as to minimize
privacy risks. 2) High utility: it is desired that the federated
model is not affected by the perturbations introduced, in terms
of convergence and accuracy, as much as possible. 3) Low cost:
to encourage the participation of low-end devices in FL, it is
essential for such a scheme to be light-weight on computing
and storage.

In the literature, R. C. Geyer et al., approximate the
federated model, i.e., the average of local models, with a
Gaussian-based DP mechanism to hide the contribution from
a single participant within the entire FL procedure [9]. In
other words, a federated model does not reveal whether a
participant takes part in FL or not. Such centralized DP (CDP)
mechanisms assume that the server is trustworthy. The local
models submitted by participants are directly acquired by it
without being processed by privacy protection mechanisms.
Unfortunately, it is difficult to ensure the trustworthiness of
servers in practice. An honest-but-curious server may infer
privacy of participants from their local models.

Contrastively, a local DP (LDP) mechanism directly imple-
ments privacy protection for participants, i.e., adding perturba-
tions to local models to provide participant-level privacy in the
case of the server is untrusted. The LDP mechanism ensures
that the federated model aggregated from perturbed local
models is an unbiased estimate of its original version without
perturbations, ensuring the accuracy of it [10]. However,



achieving the best tradeoff between utility and privacy under
LDP mechanisms is very challenging. Large perturbations
provide strong protection on local models, however inducing
large deviations between the randomized federated model and
the original one. The larger the perturbations, the greater the
deviations, damaging the convergence as well as performance
of the federated model. On the contrary, if the perturbations
are too small, although ensuring utility, insufficient protection
places participants at risk of private disclosure. Some research
work attempts to improve utility by only disturbing relatively
important values. For example, R. Liu et al., propose FedSel,
which selects top-k dimensions of gradients to apply LDP [11].
However, a small portion of gradients can leak a considerable
amount of sensitive information about local data [12], even
leading to the leakage of original data [7]. R. Shokri et
al., [13] introduce a distributed selective SGD (DSSGD)
algorithm, where a fraction of parameters are selected for
adding noises and uploading in each iteration. DSSGD offers
an attractive trade-off between the utility and privacy on
parameters selected, however slows down convergence due
to that unselected parameters are treated as zero and their
updates are delayed. J. Liu et al., [14] present PFA, where local
models are projected to a low-rank space before adding noise,
however inducing expensive computation overhead on both the
server and participants, especially when the model architecture
is complex. As a result, to the best of our knowledge, none
of existing work satisfies all requirements of a successful DP
solution in FL.

In this work, we follow the commonly used architecture
of Fed-LDP. For each iteration, the perturbation is added to
each local model update, i.e., the difference between models
before and after local training. However, we make remarkable
modifications to the original Fed-LDP. We capture the inherent
temporal autocorrelations of the local model updates, which
has never been utilized in existing LDP-based FL solutions,
so as to enhance utilities of perturbed updates. We conduct
empirical experiments to prove that the L2 Norm of difference
between two consecutive local model updates is significantly
smaller than that of the model updates themselves, referred
as Strong Autocorrelation. Moreover, as the federated model
converges, the difference will further decrease. We propose
a Correlation-aware Adaptive LDP mechanism in FL, named
Fed-CAD, which is composed of two critical components.
First, we utilize a bound to clip the excessive change be-
tween the model updates, and employ Correlated Gaussian
Mechanism (CGM) [15] instead of general GM to generate
temporally correlated perturbations, i.e., noise. For each par-
ticipant, the noise injected in a local model update is the
linear combination of a fresh Gaussian noise and a portion
of the noise injected to the last local model update. In this
way, due to the fact that consecutive local model updates
of the same participant are not independent, the randomness
accumulated in the updates will be partially cancelled out,
leading to a smaller variance of noise and better utility,
i.e., mean square error of the perturbed updates. Second, we
propose an algorithm to adjust the clipping bound as well as
the noise scale of model updates for each iteration adaptively,
according to the privacy budget and the difference between

model updates. It helps to fine-grained determine the noise
scale, and thus further improves utility. We formally prove
that Fed-CAD satisfies (ε, δ)-LDP, and analyze its expected
utility gains compared to the baseline scheme of repeatedly
applying a one-shot Gaussian noise in each iteration. Extensive
experiments confirm the significant advantage of Fed-CAD in
terms of the federated training performance in terms of model
accuracy and convergence.

II. RELATED WORK

A. Federated learning with Central Differential Privacy
CDP was initially designed for centralized scenarios. In

such scenarios, a trusted database server can clearly see all
participants’ training samples and answer queries through ran-
domized query results or publish statistical data in a privacy-
preserving manner. R. C. Geyer et al., [16] based on this
proposed CDP for federated learning, which assumes a trusted
central server, and made two improvements: 1) A participant
terminal set is sub-sampled from all participants in each round
to participate in this round of training, and the participants who
participate in training upload model updates in plaintext form.
2) A central server is responsible for the gradient aggrega-
tion function computation and adding noise to the results to
achieve Participant-Level DP, i.e., to hide the contributions of
individual participants while maintaining high performance of
the global model, and an external attacker cannot determine
whether a particular participant participated in the distributed
training in that round. McMahan et al., [4] on the other
hand, introduced moment accounting to accurately compute
and control the privacy loss, and provided flat and layer-
wise clipping strategies for deep network structures. They
also designed two estimators based on different sensitivities
to ensure the accuracy of the model.

Since the noise is added directly to the global update, the
CDP-based global model works best under the same privacy
conditions. However, CDP requires a large number of par-
ticipants to ensure the utility of the model, and global model
convergence is problematic when the number of participants is
small, making it unsuitable for horizontal federated learning
with a relatively small number of participants. At the same
time, the assumption of a trusted server in CDP is overly
idealized in many scenarios, as it constitutes a single point of
failure for the central server, and the entire privacy-preserving
mechanism may be threatened if the server fails or if the
participant-server communication process suffers an attack.
In more distributed scenarios where the central server is not
trusted, LDP and DDP are used to protect personal privacy.

B. Federated Learning with Local Differential Privacy
Compared with CDP, LDP provides stronger privacy guar-

antees. The participant in this scenario does not trust the
central server, so the participant injects noise into its data
locally, and then sends the noisy data to the central server or
other collaborators, and the server only owns the noisy version
of the data, and all the subsequent operations are carried out
based on the noisy data, which effectively reduces the burden
of protecting private data.

Shokri et al., [13] first applied LDP to distributed machine
learning, where each participant uploads some locally updated



parameters whose changes exceed the threshold and add
Gaussian or Laplace noise before sending it to a central server,
thus ensuring LDP. Bhowmick et al., [1] designed a more
realistic attack scenario by limiting the prior knowledge of
the adversary and proposed a local differential privacy training
method based on a large-scale model, which effectively guards
against joint learning reconfiguration attacks at the cost of a
higher number of data communication rounds. Truex et al.,
[17] extend the exponential mechanisms EM and α-CLDP
to localized differential privacy federation learning, which
helps to handle high-dimensional, continuous model parameter
updates.

Methods such as randomized response and some other
typical LDP mechanisms (e.g., OUE [18] and PM [19]) can
also improve the privacy-preserving performance of federated
learning. Chamikara et al., [20] split the neural network into
two parts, with each participant locally training a convolution
neural network whose last layer is a fully connected layer,
perturbing the results of the vectors unfolded by the fully
connected layer using the RAPPOR [21] stochastic response
algorithm, and uploading the results to a central server to
complete the subsequent training process.

To further improve the accuracy of global model aggrega-
tion, some work has also proposed utilizing various privacy
amplification techniques (e.g., subsampling and shuffling) to
introduce lower model expectation variance and bypass the
curse of high-dimension parameters in deep learning mod-
els.The LDP-FL [22] approach imparts anonymity during local
model update communication through shuffling techniques,
which breaks the direct link between the central server and a
particular participant, greatly improving the privacy guarantees
of the entire framework.

More work has also begun to investigate other relevant
metrics for localized differential privacy federated learning,
such as communication overhead, convergence efficiency,
etc.In addition, Naseri et al., [10] also evaluated the impact
of localized differential privacy on the relationship between
federated learning privacy and Byzantine robustness.

Since the perturbations are executed independently by each
participant in the absence of other user data, the added noise
is independent of each other, which limits the scope of ap-
plication of local differential privacy techniques. In particular,
for cases involving a large number of participants and a large
model, without fine-grained calibration, the reduced utility of
local differential privacy techniques is unacceptable.

III. PRELIMINARIES

A. FL System

The federated learning system consists of a server and
N participants. Di denotes the private dataset of the ith
participant Pi, i ∈ {1, 2, · · · , N}, D represents the sum of
all participants’ private datasets, i.e., D =

∑N
i=1 Di. The goal

of FL is to enable individual participants to collaboratively
train a neural network model that is nearly equivalent to a
centralized machine learning model.

In FL, the server is responsible for saving, aggregating and
distributing the global model wglobal, by minimizing the global

objective function Func(w), which results in the optimal
global model w∗.

w∗ = argmax
w

Func(w)

FL progressively improves the global model through con-
tinuous iterative training, and all participants optimally update
the global model based on the local privacy dataset Di.

Func(w) =

N∑
i=1

|Di|
|D|

Funci(w)

Taking the t-th iteration as an example, the central server
sends the global model wt to the participants involved in this
iteration, the i-th participant Pi trains locally based on its
local private dataset Di, and calculates the loss and obtains
the gradient ∇Gt

i, and updates the local model wt
i based on

the gradient, and then submits the update of local model, i.e.,
the model difference before and after local training, denoted
by wt

i , to the central server.

wt
i = wt − η ∗ ∇G

(
wt, Di

)
After collecting enough number of local model uploads

from those selected participants, the central server performs
an aggregation protocol to obtain the global update and further
calculates the new global model accordingly. This global
model is validated on the central test dataset to evaluate the
performance of the model after updating.

wt+1 =

N∑
i=1

piw
t
i , s.t

N∑
i=1

pi = 1

After a number of iterations, the loss of the federated model
gradually stabilizes, and eventually both the participants and
the central server obtain a federated (global) model with good
generalization performance, i.e., high model accuracy.

Definition 1 Strong Autocorrelation. The difference between
two consecutive local model updates ∥∆iθ −∆i−1θ∥ is sig-
nificantly smaller than the corresponding local model updates
themselves ∆iθ and ∆i−1θ. Generally, we can compare the
L2 norm of them:

∥∆iθ −∆i−1θ∥ < ∥∆iθ∥ , ∥∆i−1θ∥

B. Local Differential Privacy

Definition 2 (ε, δ)-LDP. Let X be a set of possible values and
O the output of values. G is (ε, δ)-local differential private if
for all x, x′ ∈ X and for all o ∈ O:

Pr[G(x) = o] ≤ eεPr [G (x′) = o] + δ,

where ε is the privacy budget, δ represents the probability of
catastrophic failure, and Pr(·) represents the probability of
an event occurring. If δ > 0, it is called relaxed differential
privacy, and generally δ takes the value 10−5.

Definition 3 Global Sensitivity. For a function G : D → Rd,
The dataset D is the input and Rd identifies the output of
a d-dimensional vector of real numbers. Then for any two



datasets D and D′, the sensitivity of the function G is defined
as follows:

S(G) = max
D,D′

∥G(D)−G (D′)∥ ,

where ∥G(D)−G (D′)∥ denotes the paradigm distance be-
tween G(D) and G(D′), typically the L2 norm. The smaller
the distance, the smaller the sensitivity and the smaller the
gap between the two.

Definition 4 Gaussian Mechanism. Given an algorithm G
with global sensitivity S(G), privacy budget ε, for δ ∈ (0, 1),

σ >

√
2 ln(1.25/δ)S(G)

ε , and noise distribution Y ∼ N
(
0, σ2

)
,

algorithm G′ is said to be a randomized algorithm if it satisfies
G′(D) = G(D) + Y , which satisfies (ε, δ)−DP .

Proposition 1 Post-processing. For a randomized algorithm
G1, if it satisfies (ε, δ) − LDP , then for any algorithm G2

whose input is the output of G1, G2 (G1) still satisfies (ε, δ)−
LDP .

Definition 5 Rényi Divergence. Given any two random distr-
ibutions G1 and G2, the Rényi Divergence between G1 and
G2 when order α > 1 is defined as:

Dα (G1∥G2) =
1

α− 1
logEx∼G2

(
G1(x)

G2(x)

)α

.

Definition 6 Rényi Differential Privacy. For any randomiza-
tion algorithm G: D → Rd, and any two neighboring datasets
D and D′, it satisfies (α, ε)−LDP if the following condition
holds,

Dα (G(D)∥G (D′)) ≤ ε.

C. Fed-LDP
In Fed-LDP, the participant iterates multiple rounds during

the local training process, updates the local model using the
noise-added model in each round of iteration, uploads the
updated local model to the central server, and the central
server directly weights and averages the local models of
all participants to obtain a new round of the global model.
Specifically, the training process of Fed-LDP is as follows:
(1) Initializing the global model: Before federated training
starts, the server is responsible for initializing the global
model and configuring the optimizer as well as the relevant
hyperparameters, including the number of training rounds T ,
the number of local training rounds E, the clipping threshold
C, the noise scale σ, and the optimizer learning rate η.
(2) Participant selection and local model training: At
the beginning of each training cycle, the server randomly
selects K participants from the participant set to participate
in the current training round. The selected local participants
download the latest global model from the central server,
perform random sampling (Poisson sampling) in the local
dataset, and use these sample data for local training of the
initial global model. The participants perform model updating
with stochastic gradient descent to get the updated local model.
(3) Adding differential privacy perturbations: A participant
computes the difference between its local models before and
after local training in the i-th iteration, denoted by ∆iθ, and
clips it. This step aims to limit the sensitivity and ensure

that the noise addition process satisfies the sensitivity of
differential privacy. After clipping ∆iθ to a suitable size ∆iθ,
an appropriate amount of perturbation is added based on the
noise scale σ and the clipping threshold C. The local model
is then uploaded to the central server. At the same time, the
privacy budget consumed by this training round was calculated
using the Rényi Moment Accountant.
(4) Global model aggregation: The server collects the local
model updates (∆iθ after perturbation) from all participants
in the i-th iteration, and adjusts the contribution of each
participant to the global model based on its weight to form
an updated global model by means of Federal Average (Fed-
Avg) [23] or other aggregation protocols.
(5) Iterative training: Iterative training: Repeat the above
steps (1)-(4) until the privacy budget is consumed or the global
model performance reaches a predetermined target.

Since the participant adds Gaussian noise with a mean of 0
sampled from the normal distribution N(0, σ2I), then ∆̃iθ is
an unbiased estimator of ∆iθ. Therefore, by adding Gaussian
noise to the local model update through the mechanism
described above, the expected mean-square error for the first
T rounds for the i-th user is the sum of the errors on all
dimensions of the model, i.e., σ2C2d, which can be expressed
as follows by Lemma III.1.

Lemma III.1. Fed-LDP satisfies (ε, δ)−LDP , which has an
expected mean square error of σ2C2d:

1

t

t∑
i=1

E

[∥∥∥∆̃iθ −∆iθ
∥∥∥2] = σ2C2d,

where d denotes the dimension of the neural network, C
denotes the sensitivity S(G) of the model clipping, t is the
total number of iterations, and σ denotes the noise scale.

D. Problem Definition
The goal of this paper is to implement a randomization

mechanism A,which allows a federated learning participant to
publish its training results to an untrustworthy central server
while satisfying (ε, δ)− LDP . Under the federated learning
framework, the privacy publishing problem can be formalized
as follows.

Problem Definition: For a participant who takes part in t
successive rounds, and releases the corresponding local model
updates, i.e., ∆1θ,∆2θ, · · · · · · ,∆tθ. Each update satisfies
∥∆iθ∥ ≤ C(i = 1, · · · , t). Design a randomized mecha-
nism A, which takes the model update ∆1θ,∆2θ, · · · · · · ,∆tθ
as the input of G, and for the output noisy models, i.e.,
∆̃1θ, ∆̃2θ, · · · · · · , ∆̃tθ, the utility can be guaranteed by min-
imizing the mean square error of the perturbed updates, i.e.,

min
1

t

t∑
i=1

E

[∥∥∥∆̃iθ −∆iθ
∥∥∥2]

Meanwhile, G should satisfy (ε, δ)-LDP, i.e.,

Pr [G (∆1θ,∆2θ, · · · ,∆tθ) ∈ O]

≤ exp(ε) · Pr [G (∆′
1θ,∆

′
2θ, · · · ,∆′

tθ) ∈ O] + δ,

where the set of outputs O ⊆ Range(G) .



Fig. 1: The average and range of L2 norm vs. iteration

By reducing the expected mean square error between the
noised model and the original model during the training
process, it aims to make the noised model update data of the
local model reflect the changes of the model more realistically
under the premise of satisfying the privacy protection, provide
more accurate model training information, and thus accelerate
the convergence of the global model.

E. Attack Model

We assume that the server is honest-but-curious, i.e. , the
central server will collaborate with all participants to train
the model well while being curious about each participant’s
local data. In addition, the participants involved in training
can also be viewed as honest-but-curious, i.e., while actively
participating in the localized training of the global model and
uploading the training model, they also use the downloaded
model to try to infer the local data of a particular participant.

IV. OBSERVATION ON TEMPORAL CORRELATION
BETWEEN LOCAL MODEL UPDATES

A. Datasets and FL Tasks

We implement a FL system, and perform two image clas-
sification FL tasks on MNIST, FMNIST datasets, which are
standard dataset for handwritten digit recognition and clothing
classification. Each contains 60,000 training examples and
10,000 testing examples, respectively. The neural network used
for training consists of two convolution layers and two fully
connected layers, with ReLU activation between each layer.
We set 100 participants for training, each participant possesses
600 training samples, and the samples belongs to different
participants are of IID.

B. Analysis on the Autocorrelation between Local Model
Updates

We empirically examine the autocorrelation between local
model updates. In this experiment, 100 participants are in-
volved in each iteration. We calculate the average range of
L2 norm of the differences between two consecutive local
model updates in FL tasks on both MNIST and FMNIST.
Figure 1 demonstrates the experimental results. We have two
observations on the figure. First, It can be seen that, in all

iterations, the L2 norm is smaller than 1, which implies that
it is possible to find a bound Diff with small value. Second,
as the number of iterations increases, the value of the L2

norm first rapidly increases, then slowly decreases and tends
to stabilize during, which is because in the early stages of
training, the accuracy of the model improves rapidly, and thus
the local models undergo significant changes across iterations.
In the later stage of training, as the federated model gradually
converges, the changes of the local model are also become
smaller. Thus, we can make use of the variation trend of the the
L2 norm of model difference to determine Diff dynamically.

V. DESIGN OF FED-CAD

Fed-CAD is based on the procedure of Fed-LDP. According
to Lemma III.1, its trivial version (see in III-C) satisfies (ε, δ)-
LDP. However, the noise added to each model update depends
on the scale of difference between updates and the noise scale
σ. Large difference and σ imply significant noise. It is desired
to reduce the mean squared error of expected value σ, so as
to increase utility, while maintaining the privacy protection
strength.

A. Perturbing Local Model Updates with Correlated Gaussian
Mechanism

In our Fed-CAD, the server first initiates the total privacy
budget, and start the iteration. In each iteration, given a
succession of local model updates from the same participant,
indicated by ∆θ(d) = (∆1θ(d),∆2θ(d), ...,∆tθ(d)). Norm
clipping is conducted on each local model update to satisfy
∥∆iθ(d)∥ ≤ C. Suppose that the difference between adjacent
model updates satisfies ∥∆i+1θ(d)−∆iθ(d)∥ ≤ Diff < C,
where Diff is a constant pre-determined by the server. We
add Gaussian noise to ∆iθ(d) to satisfy (ε, δ)-LDP as follows:

First, Sample noise µ1, which will be applied to ∆1θ(d),
from a Gaussian distribution N(0, σ2I) using Gaussian mech-
anism. Calculate random perturbed version of ∆1θ(d), i.e.,
∆̃1θ(d) = ∆1θ(d) + µ1. Notice that directly adding ∆2θ(d)
with noise µ2 sampled in the same way of generating µ1 refers
to the trivial version of Fed-LDP. Instead, Fed-CAD utilizes
the Correlated Gaussian Mechanism (CGM) [15], which is
able to exploit the correlation between consecutive values to



reduce noise. To this end, we introduce an auxiliary function
φ2, i.e.,

φ2 = α ∗∆2θ(d)− β ∗∆1θ(d),

where α = 1 + (1 −Diff)2 and β = (1 −Diff) are coef-
ficients determined by Diff , forming the linear combination
between ∆2θ(d) and ∆1θ(d). Since Diff is publicly known,
no additional privacy budget should be consumed on it.

Second, Sample Gaussian noise µ2 from N(0, σ2I), and
calculate φ̃2 = φ2 + µ2. Then, derive ∆̃2θ(d) based on the
equation xx, i.e.,

∆̃2θ(d) =
1

α
φ̃2 +

β

α
∆̃1θ(d).

Then, we can obtain that,

∆̃2θ(d) =
1

α
φ2 +

1

α
µ2 +

β

α
∆̃1θ(d) +

β

α
µ1

= ∆2θ(d)−
β

α
∆1θ(d) +

1

α
µ2 +

β

α
∆1θ(d) +

β

α
µ1

= ∆2θ(d) +
1

α
µ2 +

β

α
µ1.

Accordingly, it can be seen that the noise added in ∆̃2θ(d)
is a linear combination of µ1 and µ2 added in φ̃2 and φ̃1,
respectively.

Adding noise through the auxiliary function φ is able to
effectively reduce the amount of noise required to be injected
into ∆̃2θ(d). The variance of ∆̃2θ(d) can be computed by,

V ar(∆̃2θ(d)) =
1

α2
σ2 +

β2

α2
σ2 =

σ2

1 + (1−Diff)2
.

It should be noticed that the trivial version directly injects
noise into ∆̃2θ(d), which is the same as the way of obtaining
noisy ∆̃1θ(d). Thus, the variance of noise in ∆̃2θ(d) is σ2,
i.e.,

V ar(∆̃2θ(d)) = σ2.

It is obvious that σ2 is larger than σ2

1+(1−Diff)2 .
We prove that such correlated noise satisfies (ε, δ)-LDP

as follows: Given a pair of adjacent inputs, i.e., local model
updates, d and d′, the following inequality holds:

|φ2(d)− φ2(d
′)|

= |α · (∆2θ(d)−∆2θ(d
′))− β · (∆1θ(d)−∆1θ(d

′))|
≤ (α− β) · |(∆2θ(d)−∆2θ(d

′)) + β · |(∆2θ(d)−∆1θ(d))|
+ β · |(∆1θ(d

′)−∆2θ(d
′))|

≤ 2 · (α− β) + β ·Diff + β ·Diff ≤ 2

Since ∆̃2θ(d) is the linear combination of noisy ∆̃1θ(d)
and φ̃2, which are unbiased noises that follow N(0, σ2I),
the average value of noises in ∆̃2θ(d) is zero. Consequently,
∆̃2θ(d) is the unbiased estimation of ∆2θ(d).

Meanwhile, we can conclude that the sensitivity of the
auxiliary function φ is the same as that of the original function

∆θ(d), and thus φ also satisfies (ε, δ)-LDP. According to the
Post-processing property of LDP, reusing noise in previous
iterations (updates) will not induce extra privacy risks. Then,
injecting Gaussian noise µ1 and µ2 into ∆1θ(d) and φ2,
respectively, the privacy risk quantified by Rényi-DP, still
satisfies (ε, δ)-LDP.

As a result, if the local model updates ∆θ(d) belonging to
a participant satisfies that the difference between two adjacent
updates is smaller than Diff , i.e., |∆i+1θ(d) − ∆iθ(d)|≤
Diff < C, it is feasible to make use of a linear combination
of noises in the two updates. In other words, reusing µi in
∆̃iθ(d) can reduce the amount of noise µi+1 actually injected
into ˜∆i+1θ(d), and thus increase model update utility.

B. Adjusting Diff Adaptively

One essential parameter in Fed-CAD is Diff . At the
beginning of a FL training, the server decides and publishes it.
Diff is relevant to the strength of autocorrelation among local
updates. According to the CGM, introducing Diff helps to
reduce the amount of noise, so as to enhance the contribution
of participants, and weaken the impact of LDP mechanism to
the performance of federated training.

It can be found in equation 2 that the variance of noise
relates to not only the factor σ but also Diff . The smaller
the value of Diff , the smaller the variance of noise. During
FL, the L2 of model updates changes with iterations. More
specifically, Diff will first increase and then decrease until it
converges. It implies that it is reasonable to change Diff dy-
namically to adapt to the variation of model update differences.
To this end, we propose a strategy to adjust Diff , which
draws inspiration from the concept of momentum in optimizer.
In each iteration, when calculating the current Diff , we
consider both the average historical values of Diff and the
difference between updates on the current and last iterations.
Formally,

E[Diff ]i = (1−γ) ·E[Diff ]i−1+γ ·∥∆iθ(d)−∆i−1θ(d)∥ ,

where E[Diff ]i−1 indicates the historical expectation of
Diff from the first to (i − 1)th iterations, γ is a hyper-
parameter, named as obsolete factor, the value of which is
between 0 and 1. The value of γ determines the importance
of historical Diff to the current one. A large value of γ
means more consideration of past model updates, making it
more stable during its updates.

Meanwhile, to avoid introducing new privacy risks caused
by using E[Diff ]i−1, it is necessary to perturb it with Gaus-
sian noise. Likewise, since Diffi is composed of E[Diff ]i−1

and ∥∆iθ(d)−∆i−1θ(d)∥, it implies that we only need to
inject noise into ∥∆iθ(d)−∆i−1θ(d)∥ as E[Diff ]i−1 is
already perturbed in the previous iterations, i.e.,

E[D̃iff ]i = E[Diff ]i−1 + γ ·N(0, σ2
Diff ),

where σDiff is small constant and relevant to the variation
range of Diff .

The procedures of Fed-CAD on the server and participant
side are described in the Algorithm 1 and 2 with pseudo-code,
respectively.



Algorithm 1 Fed-CAD: on the Participant Side

Input: Local training rounds E, sampling rate q, clipping
threshold C, noise scale σ, learning rate η

Output: Model update ∆̃θti
1: θ ← θt−1 Initializing the Local Model
2: for i = 1, 2, . . . , E do
3: (xi, yi)←batch size samples were randomly sampled

by Poisson at sampling rate q in the local dataset Di

4: gi = ∇L (θ, (xi, yi))
5: θi = θ − η · gi
6: end for
7: if i = 0 then
8: ∆θti = θi − θ
9: ∆θti = ∆θti/max (1, ∥∆θti∥ /C)

10: ∆̃θti = ∆θti +N
(
0, σ2C2I

)
11: vi = 1
12: else
13: if

∣∣∣|∆θti −∆θti−1

∣∣∣ |≤ E[Diff ] then

14: ri =
1−E[Diff ]

(1−E[Diff ])2+v

15: σi = ((1− ri) + ri · E[Diff ]) · σ
16: µi = N

(
0, σ2

i C2I
)
+ ri · µi−1

17: ∆̃θti = ∆θti + µi

18: vi =
vi−1

(1−E[Diff ])2+vi−1

19: else
20: S = max

(
1,
∥∆θt

i−∆θt
i−1∥

E[Diff ]

)
21: ∆θti = ∆θti−1 +

(
∆θti −∆θti−1

)
/S

22: goto 13
23: end if
24: end if
25: E[Diff ]i = (1− γ) · E[Diff ]i−1 + γ ·

∥∥∥∆θti −∆θti−1

∥∥∥
26: return ∆̃θti

Algorithm 2 Fed-CAD: on the Server Side

Input: training round T , local training round E, clipping
threshold C, model update difference threshold Diff ,
noise scale σ, learning rate η

Output: global model θT , privacy budget {ε1, ε2, ..., εn}
1: θ0 ← Initializing the Local Model
2: for iteration t in range T do
3: K ← Randomly select K participants
4: for each participant Pi ∈ K do
5: θti ← ParticipantUpdate(θt−1, Di, σ, · · ·)
6: εti = Rényi Moment Accountant(σ)
7: end for
8: θt = θt−1 +

∑K
i=1 ∆θti/K

9: end for
10: return θT , {ε1, ε2, ..., εn}

VI. THEORETICAL ANALYSIS

A. Privacy Guarantee

Theorem VI.1. The Fed-CAD algorithm satisfies (ε, δ) −
LDP

Proof. 1) If i = 1, i.e., for the first iteration, ∆iθ(d) =

∆iθ(d)/max
(
1, ∥∆iθ(d)∥

C

)
, and the added noise is normally

distributed Gaussian noise that satisfies the differential privacy
sensitivity C (which generally takes the value of 1.0) , and the
addition process satisfies (ε, δ)− LDP .
2) If i > 1 and

∥∥∥∆iθ(d)−∆i−1θ(d)
∥∥∥ < E[Diff ] < C = 1.0

∆iθ(d) = ∆iθ(d)− ri ·∆i−1θ(d) + ri ·∆i−1θ(d)

= (1− ri) ·∆iθ(d) + ri ·∆iθ(d)− ri ·∆i−1θ(d)

+ ri ·∆i−1θ(d)

= (1− ri) ·∆iθ(d) + ri ·
(
∆iθ(d)−∆i−1θ(d)

)
+ ri ·∆i−1θ(d)

Then the noisy version ∆̃iθ(d) of ∆iθ(d) can be represented
as follows,

∆̃iθ(d) = (1− ri) · ∆̃iθ(d) + ri ·
(
∆̃iθ(d)− ˜∆i−1θ(d)

)
+ri · ˜∆i−1θ(d)

Since ˜∆i−1θ(d) is already processed by the noise addition
in the previous round of model training, according to the post-
processing principle of differential privacy, the reuse for the
˜∆i−1θ(d) part does not cause additional privacy overhead.

Therefore, we only need to focus on the noise added to
the (1− ri) · ∆̃iθ(d) + ri ·

(
∆̃iθ(d)− ˜∆i−1θ(d)

)
. And the

sensitivity S(G) of this part can be expressed as

S(G) = (1− ri) + ri · E[Diff ] < (1− ri) + ri = 1 = C

So, adding a normally distributed Gaussian noise that satisfies
the differential privacy sensitivity of (1− ri) + ri · E[Diff ]
to this section also satisfies (ε, δ)− LDP .
3) If

∥∥∥∆iθ(d)−∆i−1θ(d)
∥∥∥ > E[Diff ], we clip ∆iθ(d) to

satisfy that the L2 norm difference is less than Diff , i.e.,

∆iθ(d) = ∆i−1θ(d) +
∆iθ(d)−∆i−1θ(d)

max

(
1,
∥∆iθ(d)−∆i−1θ(d)∥

E[Diff ]

)
The processed update satisfies case 2), and adding noise in the
way 2) satisfies (ε, δ)−LDP . In summary, Fed-CAD satisfies
(ε, δ)− LDP , and the proof is complete.

B. Variance Analysis
Theorem VI.2. The noise variance added by Fed-CAD is
Var

(
∆̃iθ(d)

)
= 2E[Diff ]−E[Diff ]2

1−(1−E[Diff ])2i · σ
2.

Proof. According to Fed-CAD, noise µi added by ∆̃iθ(d) is
represented as

µi = N(0, σ2
i I) + ri · µi−1,

where σi = ((1− ri) + ri · E[Diff ]) · σ.
Then there is

V ar(∆̃iθ(d)) = σ2
i + r2i · V ar( ˜∆i−1θ(d))

= ((1− ri) + ri · E[Diff ]) · σ2 + r2i · V ar( ˜∆i−1θ(d))



When the current round is the first training round (i = 1),

V ar(∆̃1θ(d)) = σ2, v1 = 1.

When (i = 2),

r2 =
1− E[Diff ]

(1− E[Diff ])2 + 1

v2 =
1

(1− E[Diff ])2 + 1

Var
(
∆̃2θ(d)

)
=

2E[Diff ]− E[Diff ]2

1− (1− E[Diff ])4
· σ2

When(i = 3),

r3 =
1− E[Diff ]

(1− E[Diff ])2 + 2E[Diff ]−E[Diff ]2

1−(1−E[Diff ])4

v3 =
v2

(1− E[Diff ])2 + v2

Var
(
∆̃3θ(d)

)
=

2E[Diff ]− E[Diff ]2

1− (1− E[Diff ])6
· σ2

By mathematical induction, it can be inferred that, when the
round is the i-th round,

ri =
1− E[Diff ]

(1− E[Diff ])2 + 2E[Diff ]−E[Diff ]2

1−(1−E[Diff ])2i−2

vi =
vi−1

(1− E[Diff ])2 + vi−1

Var
(
∆̃iθ(d)

)
=

2E[Diff ]− E[Diff ]2

1− (1− E[Diff ])2i
· σ2

VII. EXPERIMENTS

Fig. 2: The impact of different γ

A. Methodology
We conduct a series of comparison experiments on MNIST,

FMNIST datasets mentioned before. We use Fed-LDP as our
comparison method, which adopts fixed-norm clipping, and
applies one-shot Gaussian noise-based LDP on local model
updates. The experiments show that our Fed-CAD (constant

Diff ) and Fed-CAD (adaptive Diff ) methods outperform
the previous methods. We implements all this experiments
using PyTorch with RTX 4080Ti.

We set 100 participants for training, each participant pos-
sesses 600 training samples, including IID and Non-IID set-
tings with different Dirichlet alpha. In each iteration, a portion
of participants will be selected to join the federated training,
e.g., 10%. We use the optimizer SGD with learning rate η is
0.01. Local iteration limited to one round for participants, and
the sampling rates q is set to 0.1.

B. Impact of Obsolete Factor γ

Figure 2 gives the impact of different γ on the global model
accuracy on the MNIST dataset. The factor γ mainly affects
the correlation of model difference thresholds Diff between
past and current model paradigm difference variations. A
larger γ indicates that more attention is given to the model
paradigm difference change in the current round. When γ =
0, Diff is a constant value. We set the clipping threshold
C = 1.0, the initial Diff = 0.5 and the noise scale σ =
0.3. It can be seen that in the early stage of model training,
especially in the rapid convergence stage, the model with γ
= 0 performs better experimentally and converges faster, at
which time the actual model paradigm difference threshold
rises equally fast, because the Diff initially published by the
server is relatively large to meet the threshold requirement
of the participant most of the time, fewer model correlation
operations are performed to satisfy the correlation under a
fixed value of Diff . The model with γ > 0 triggers the
model correlation operation many times in order to minimize
the Diff value, which makes the current round of model
updating not truly reflecting the changing trend of the model,
making the convergence slower. By the model stabilization
stage, the range of threshold changes is smaller at this time,
and a larger γ can more accurately assign the noise that
needs to be added in that round of supplementation, so the
model eventually converges better. In order to improve the
final model accuracy,the factor γ is set to 0.4 in the other
experiments.

C. Impact of Noise Scale on Model Accuracy

Figures 3 to 4 investigate the performance of the global
models in Fed-LDP and Fed-CAD under different σ. As can
be seen, for the same σ and number of global iteration rounds,
Fed-LDP w. adaptive Diff and w.o adaptive Diff achieve
better accuracy with the same privacy cost. This advantage
is more obvious when σ is larger. On the MNIST dataset,
when the number of global iterations is 30 and the noise scale
is set to σ = 0.3 (ε = 2.72) and σ = 0.5(ε = 1.5), Fed-
CAD method achieve (2%, 4%) and (10%, 16%) accuracy
improvement compared to Fed-LDP, respectively. On the FM-
NIST dataset, when the number of global iterations is 60 and
the noise scale is set to σ = 0.3(ε = 3.97), Fed-CAD method
achieve (4%, 8%) accuracy improvement compared to Fed-
LDP, respectively. While the noise scale σ is small (when
σ = 0.1), the noise variance itself is small, Fed-CAD need to
perform additional model correlation operations, resulting in a
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Fig. 3: The impact of different σ on the MNIST Dataset

(a) a (b) b (c) c

Fig. 4: The impact of different σ on the FMNIST Dataset

lower convergence efficiency than LDP-Fed, the final accuracy
is basically the same.

D. Impact of the Number of Participants

In Figure 5, we analysis the impact of the numbers of
participants on the MNIST and FMNIST Dataset. We set the
noise scale σ = 0.3 and Diff = 0.5 on the MNIST. Since
the participant increase, the Fed-CAD outperform to the Fed-
LDP. On the FMNIST, we set the noise scale and Diff = 0.7.
When the number of participants is small, the constant Diff
performs better than adaptive Diff . When more participant
enlist the global training,the Fed-CAD with adaptive Diff
achieve better than constant Diff and more better than Fed-
LDP.

E. Impact of Data Heterogeneity

In Figure 6, we analyze the impact of data heterogeneity
on Fed-CAD. We can observe that the Fed-CAD express the
high tolerance of data heterogeneity. We set the noise scale σ
= 0.3 and Diff = 0.5 on the MNIST and Diff = 0.7 on the
FMNIST dataset. Under the different alpha, Fed-CAD always
outperform than Fed-LDP, especially when the α = 0.1, Fed-
LDP achieve to 84.7% on the MNIST. This is mainly because
that the data similarity provide more clear orientation for the
local model to update, therefore the noise variance could be
smaller. As the Dirichlet α increase, the Fed-CAD also achieve
(1%, 2%) and (1%, 1%) better than Fed-LDP on the MNIST
dataset and (3%, 5%) and (3%, 1%) better on the FMNIST
dataset.

VIII. CONCLUSION

In this paper, we take advantage of the strong auto-
correlation between local model updates so as to alleviate
the paradox between privacy risk and data utility, in DF-
based FL systems, with negligible computational overhead. We
introduce a Correlation-aware Adaptive Differential Privacy
mechanism, named Fed-CAD. In our Fed-CAD, a clipping
bound is adaptively selected and applied to guarantee the max-
imum difference between local model updates. The temporally
correlated Gaussian noise, i.e., a combination of the fresh
Gaussian noise and a portion of noise contained in the previous
noisy updates is injected to model updates, so as to reduce the
noise scale while maintaining the privacy protection strength.
compared to the one-shot Gaussian noise. We demonstrate the
correctness and efficacy of Fed-CAD with both formal proof
and extensive experiments.
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