
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Novas: Tackling Online Dynamic Video Analytics
with Service Adaptation at Mobile Edge Servers

Liang Zhang, Student Member, IEEE, Hongzi Zhu, Senior Member, IEEE, Wen Fei, Student Member, IEEE,
Yunzhe Li, Student Member, IEEE, Mingjin Zhang, Student Member, IEEE,

Jiannong Cao, Fellow, IEEE, Minyi Guo, Fellow, IEEE

Abstract—Video analytics at mobile edge servers offers signif-
icant benefits like reduced response time and enhanced privacy.
However, guaranteeing various quality-of-service (QoS) require-
ments of dynamic video analysis requests on heterogeneous edge
devices remains challenging. In this paper, we propose a scalable
online video analytics scheme, called Novas, which automatically
makes precise service configuration adjustments upon constant
video content changes. Specifically, Novas leverages the filtered
confidence sum and a two-window t-test to online detect accuracy
fluctuations without ground truth information. In such cases,
Novas efficiently estimates the performance of all potential
service configurations through a singular value decomposition
(SVD)-based collaborative filtering method. Finally, given the
NP-hardness of the optimal scheduling problem, a heuristic
scheduling strategy that maximizes the minimum remaining
resources is devised to schedule the most suitable configurations
to servers for execution. We evaluate the effectiveness of Novas
through extensive hybrid experiments conducted on a dedicated
testbed. Results show that Novas can achieve a substantial
over 27× improvement in satisfying the accuracy requirements
compared with existing methods adopting fixed configurations,
while ensuring latency requirements. Moreover, Novas improves
the goodput of the system by an average of 37.86% compared
to existing state-of-the-art scheduling solutions.

Index Terms—video analytics, edge computing, adaptive con-
figuration, task scheduling

I. INTRODUCTION

RECENT years have witnessed advances in Artificial In-
telligence of Things (AIoT), a new computing paradigm

seamlessly integrating AI and IoT technologies. Many ad-
vanced AIoT applications, such as autonomous driving, un-
manned aerial vehicles (UAVs), virtual reality (VR), and
surveillance cameras, pose a huge surge of online dynamic
video analysis requests, such as object detection with deep
neural network (DNN) models on each frame of a video,
with stringent accuracy and latency requirements. Addition-
ally, such requests may involve privacy concerns, rendering it

Manuscript received 2 December 2023; revised 2 April 2024; accepted 18
May 2024. This work was supported in part by National Key Research and
Development Program of China under Grant No. 2022YFB4501400, Hong
Kong RGC General Research Fund under Grant No. 15204921 and Innovation
and Technology Fund - Mainland-Hong Kong Joint Funding Scheme under
Grant No. MHP/013/21. (Corresponding authors: Hongzi Zhu.)

Liang Zhang, Hongzi Zhu, Wen Fei, Yunzhe Li, Minyi Guo are with the De-
partment of Computer Science and Engineering, Shanghai Jiao Tong Univer-
sity, Shanghai, China (e-mail: zhangliang@sjtu.edu.cn, fw.key@sjtu.edu.cn,
yunzhe.li@sjtu.edu.cn, hongzi@cs.sjtu.edu.cn, guo-my@cs.sjtu.edu.cn).

Mingjin Zhang and Jiannong Cao are with the Department of Comput-
ing, The Hong Kong Polytechnic University, Hong Kong, China (e-mail:
csmzhang@comp.polyu.edu.hk, csjcao@comp.polyu.edu.hk)

time# 
O

bj
s

Diverse resourcesDynamic requests 

Clients Edge Servers

time# 
R

eq
s

Scheduler

Service Configurations

..
..

Resolution

DNN model

Exe. server

𝑠𝑠1

𝑠𝑠𝑖𝑖
𝑠𝑠𝐼𝐼

Fig. 1. An illustration of dynamic video analytics executed on heterogeneous
edge servers. The service configuration specifying the required video reso-
lution, the selected DNN model and the execution server should adaptively
change based on the content of one video to meet QoS requirements.

imperative to conduct video analysis locally at mobile edge
servers (MESs) [1], referred to as the online edge video
analytics problem. These MESs comprise a combination of
dedicated and non-dedicated heterogeneous devices, such as
base stations (BSs) or roadside units (RSUs) [2], and onboard
computing units on smart vehicles [3]. Such a trend of online
edge video analytics is further reinforced with the soaring de-
velopment of hardware and wideband wireless communication
technology.

As illustrated in Fig. 1, a practical online edge video
analytics scheme should fulfill three essential requirements
as follows. First, the scheme should guarantee various end-
to-end latency requirements; otherwise, results may be out
of date for time-sensitive applications. Second, the scheme
should incorporate adaptive configuration mechanisms to guar-
antee analysis accuracy of dynamic requests whose video
content dramatically varies over time. Last, the scheme should
achieve scalable scheduling for video requests, aiming to
maximize system throughput and resource efficiency, even
in the presence of multi-dimensional heterogeneous resources
and diverse requirement distributions.

In the literature, existing online edge video analytics solu-
tions mainly focus on either video preprocessing at clients
or elastic resource allocation at edge servers to guarantee
quality of service (QoS) at the minimized cost. The main-
stream of video preprocessing methods [4]–[10], relying on of-
fline performance profiling for resolution and frame sampling
rate adjustment, may lead to unsatisfied analysis accuracy
or intolerable delays when dealing with fast-changing video
contents. Another direction of preprocessing methods selects
crucial frames or key regions within each frame [11]–[14],
requiring substantial computing power on client devices to
execute filtering models. In contrast, elastic resource allocation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

methods like [5] and [7] adjust the resource usage based
on the difference in demand between video analytics tasks.
Moreover, these methods often assume a fixed number of video
requests with pre-determined QoS requirements, limiting their
capability to handle unknown dynamic video analysis requests.

In this paper, we propose a scalable online edge video
analytics scheme, called Novas, which is devoted to dynamic
video analytics on a group of interconnected heterogeneous
edge servers. The core idea of Novas is to online adapt
the service configuration (e.g., a triple of the selected video
resolution, the DNN inference model to use, and the des-
ignated server of execution) to the video content to meet
the QoS requirements of each video analysis request, while
preserving the diversity of resources as much as possible for
future unknown requests. More specifically, to accommodate
the dynamic nature of mobile videos, Novas simultaneously
detects significant content changes that may be mismatched
with the current service configuration. When such changes
occur, or new video requests arrive, Novas online predicts the
performance of all service configurations based on a small
amount of configuration profiling on the following a few
frames. The predicted performance information is then used by
the scheduler to make the best service configuration decision.

Three main challenges are encountered. First, it is not
straightforward to perceive an out-of-date service configura-
tion for a dynamic video, due to the lack of ground truth
information. To deal with this challenge, we leverage the sum
of filtered inference confidence of detected objects on each
frame as an indication of inference accuracy of the corre-
sponding DNN model. We have one key observation that the
filtered confidence sum is positively correlated with accuracy.
Furthermore, both the accuracy and the filtered confidence sum
of frames with similar contents follow a Gaussian distribution.
Therefore, we develop a simple yet effective two-window t-test
method to identify severe accuracy fluctuations and promptly
notify the scheduler to adjust service configuration to prevent
any potential accuracy violations.

Second, it is challenging to online obtain the performance
of vast service configurations regarding the ever-changing
video contents. It is computationally infeasible to measure
the performance of each service configuration for each video
frame. To tackle this challenge, Novas incorporates both an
offline profiling and an online sampling methods to derive a
sparse performance matrix. Particularly, only a small number
of sampled service configurations are measured on a few
new frames. Then, the singular value decomposition (SVD)-
based collaborative filtering and the stochastic gradient descent
(SGD) techniques are employed to estimate the missing values
in the matrix, obtaining the complete performance information
about all configurations for the new video contents.

Last, it is hard to achieve the maximized system through-
put in scheduling video analysis requests with diverse QoS
requirements on heterogeneous edge servers. This schedul-
ing problem can be formulated as an NP-hard optimization
problem with discrete constraints and variables. To handle this
challenge and optimize the system’s scalability for unknown
incoming requests, we propose a heuristic scheduling strategy
that prioritizes preserving resource diversity. Specifically, this

strategy groups all servers according to their heterogeneity
and allocate requests to servers that maximize the minimum
remaining resources across all groups. The scheduling process
does not rely on specific heterogeneous characteristics, which
contributes to the stability and robustness of this strategy in
various heterogeneous environments.

We implement Novas on a testbed consisting of five edge
devices, i.e., one desktop, two Jetson NX boards, and two
Jetson Nano boards, and evaluate it on three representative
video analytics workloads. The results show that the aver-
age service configuration prediction error is less than 10%,
and the recall value of online anomaly detection can reach
above 90% in experiments with different accuracy fluctuation
ranges. Compared with existing solutions, Novas improves
system throughput up to 37.86% on average and achieves 27×
improvement in satisfying the accuracy requirements while
ensuring latency requirements of all requests.

We highlight the main contributions made in this paper as
follows: 1) A neat two-window t-test mechanism is devised
to online detect video content change with no ground truth
information. 2) A novel service configuration performance
prediction method is proposed, using SVD-based collaborative
filtering techniques. 3) A heuristic scheduling algorithm is
proposed to maximize system throughput and scalability by
preserving the diversity of heterogeneous resources.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider three types of entities in
an online edge video analytics system as follows:

• Clients: are end devices, ranging from battery-powered
mobile devices such as drones, smartphones, and VR/AR
devices to fix-deployed devices such as surveillance
cameras. Clients submit video analysis requests to the
system via wired/wireless links of various bandwidth.
Such requests arrive at different times and have different
end-to-end latency and inference accuracy requirements.

• Scheduler: is an algorithm that resides on a dedicated
edge server. The scheduler collects the global information
of all video analysis requests and the running-time status
of all servers, and determines the most proper service
configuration for each video.

• Servers: are heterogeneous edge devices, such as ded-
icated servers deployed at BSs or RSUs and voluntary
servers like laptop computers and vehicular computa-
tional units. Voluntary servers are free to join or leave
the system. These servers are connected to the system
via high-bandwidth backbone connections or wireless
networks, and are equipped with different amount of
memory and computational resources. Moreover, servers
download a rich set of pre-trained DNN models of
different structure and size before service.

B. Problem Formulation

Our problem focuses on scheduling dynamic video analysis
requests to heterogeneous edge servers to guarantee QoS



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

requirements and maximize resource efficiency. Specifically,
for each video analysis request i ∈ I , where I is the set
of video analysis requests to be served, let qi = (ai, li)
denotes the QoS requirement of request i, where ai and li
are the accuracy and latency requirements, respectively. We
aim to find the best service configuration si = (ri,mi, ni)
for each request i to maximize the number of requests in
service (i.e., the goodput of the system) while meeting their
QoS requirements, where ri ∈ R, mi ∈M and ni ∈ N are the
video resolution, the DNN model, and the allocated execution
server selected from the resolution set R, the DNN model
set M , and the edge server set N , respectively. We define an
indicator function I(i)→ {0, 1} to represent if request i is put
in service by the system. The edge video analytics problem
can be formulated as the following optimization problem:

max

|I|∑
i=1

I(i) (1)

s.t. Lnet(i, si) + Lcom(i, si) ≤ li,∀i ∈ I (2)
A(i, si) ≥ ai,∀i ∈ I (3)∑
∀i,ni=n

Fi · Lnet(i, si) ≤ 1,∀n ∈ N (4)∑
∀i,ni=n

Fi · Lcom(i, si) ≤ 1,∀n ∈ N (5)∑
∀i,ni=n

C(i, si) ≤ Cn,∀n ∈ N (6)

where Lnet(i, si) denotes the latency of transmitting each
frame of video i with resolution ri to server ni; Lcom(i, si),
A(i, si) and C(i, si) denote the latency, the accuracy and the
memory cost of conducting model inference using model mi

on that frame, respectively; Fi is the required frame rate of
video i and Cn is the memory capacity of server n. Constraint
(2) and (3) represent the latency and accuracy QoS require-
ments, respectively. Constraint (4), (5) and (6) represent the
network, the computing, and the memory resource constraints.
Particularly, constraint (4) and (5) practice the concept of
offered load in queuing theory [15]. The total transmission
load and the total computational load for each server n must
be less than one to avoid the extra delay caused by queuing.

The above problem is NP-hard in the strong sense, which
can be proved by the following deconstruction. First, we need
to determine feasible resolution and model configurations for
each video request on all servers based on constraints (2)
and (3). Then, for a specific feasible resolution and model
configuration combination across all videos, the remaining
constraints (4)-(6) and the objective construct a scheduling
problem. This scheduling problem can be deduced as a mul-
tiple multidimensional knapsack problem, where n servers
represent n knapsacks; the network, computing, and memory
are three dimensions for each knapsack. This problem is non-
trivial to solve due to its NP-hardness [16]. Our problem needs
to traverse all feasible resolution and model configuration
combinations across all videos and solve their corresponding
scheduling problems. Therefore, it is even harder. This con-
cludes the proof.

0 5 10 15 20 25 30 35 40
Time(min)

0.30
0.35
0.40
0.45
0.50
0.55

m
AP

traffic building

(a) Accuracy fluctuates over time

0.3 0.4 0.5
mAP

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

traffic
building

(b) CDFs of inference accuracy

Fig. 2. Examples of accuracy fluctuation observed on different datasets.

In addition to the inherent NP-hardness of the problem,
there are two reasons that hinder the solution of the problem.
First, it is challenging to obtain real-time parameter informa-
tion (e.g., Lcom, Lnet and A) for all videos and configurations
due to their complex relationships. We discuss video content
change and service configurations effects on these performance
parameters in Section III and propose a performance predictor
in Section IV to estimate these parameters. Second, consid-
ering our online scenario where video requests arrive one by
one rather than in bulk, we have to make service decisions in
a serialized manner. This motivates us to propose a heuristic
strategy to obtain an approximate solution in Section IV.

III. EMPIRICAL STUDY

In this section, we study the relationship between different
service configurations and the performance of video analytics
on three real-world dynamic video datasets as follows:

• MOT16 [17]: contains twelve 1920×1080@30fps video
clips recorded from both static and handheld moving
cameras at shopping malls, intersections, and squares.

• Argoverse [18]: contains multiple 1920 × 1200@30fps
video clips recorded from in-vehicle cameras in diverse
urban outdoor scenes from two US cities.

• Ekya [19]: contains traffic video clips recorded from five
pole mounted fish-eye cameras at 1280×720@30fps in
the city of Bellevue, WA and 24 hours of video clips
recorded from a PTZ public camera with a non-stationary
view in Las Vegas.

We run three versions of YOLOv8 [20] model of small,
medium and large sizes, i.e., YOLOv8n, YOLOv8s and
YOLOv8m, respectively, on a Nvidia Jetson NX and a Nvidia
Nano devices connected a WiFi AP to detect two types of
target objects, i.e., pedestrians and vehicles, on each frame of
each video clip.

A. Impact of Video Content Change

When the video content dramatically changes over time,
such as varying density of target objects or illumination con-
dition, constantly happened in mobile settings, the analysis ac-
curacy of using the same service configuration will inevitably
fluctuate. For example, Fig. 2(a) depicts the fluctuation of
inference accuracy observed on a 960p Ekya building video
and a 640p traffic video over a duration of 40 minutes,
respectively. The large YOLOv8m model is used. It can be
seen that accuracy severely vibrates on both videos. Moreover,
no recognizable pattern regarding the frequency or the ampli-
tude is identified. Furthermore, Fig. 2(b) plots the cumulative



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

320p 640p 960p
1280p

1920p
Resolution

sm
al

l
m

ed
iu

m
la

rg
e

M
od

el

0.21 0.37 0.50 0.59 0.70

0.25 0.47 0.63 0.66 0.77

0.31 0.55 0.65 0.73 1.00
0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

(a) Pedestrian detection

320p 640p 960p
1280p

1920p
Resolution

sm
al

l
m

ed
iu

m
la

rg
e

M
od

el

0.03 0.11 0.20 0.34 0.43

0.05 0.22 0.26 0.38 0.41

0.14 0.21 0.46 0.48 1.00
0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

(b) Vehicle detection

Fig. 3. Accuracy achieved in different configurations.

l_1
92

0p
l_9

60
p

l_3
20

p
m_1

92
0p

m_9
60

p
m_3

20
p

s_
19

20
p

s_
96

0p
s_

32
0p

0

50

100

No
rm

al
ize

d 
la

te
nc

y

Compute (Nano)
Network (Nano)
Compute (NX)
Network (NX)

(a) Latencies

l_1
29

0p
l_9

60
p

l_3
20

p
m_1

92
0p

m_9
60

p
m_3

20
p

s_
19

20
p

s_
96

0p
s_

32
0p

0

50

100
No

rm
al

ize
d 

m
em

or
y

Model Data

(b) Memory usage

Fig. 4. Latency and memory usage caused in different configurations, e.g.,
“l 1920p” represents the large model (YOLOv8m) and a resolution of 1920p.

distribution functions (CDFs) of inference accuracy obtained
on both videos. Suppose that the accuracy requirement is
0.4, only 20% of frames in the traffic video and 50% of
frames in the building video can meet the requirement, using
this service configuration. As for a dynamic video, using a
service configuration with high video resolution and large
DNN model would improve accuracy when dealing with hard
content scenarios but leads to huge resource waste when facing
simple content scenarios. We have the following observation:

Observation 1: Inference accuracy of a specific DNN model
varies with changes in video content scenarios. It is optimal
for the system to automatically adapt the service configuration
to the video content.

B. Effect of Service Configurations

We measure the average accuracy and latency of detect-
ing pedestrians and vehicles across different configurations
in terms of video resolution, DNN model, and execution
device. Fig. 3 shows the normalized detection accuracy when
detecting pedestrians and detecting vehicles, respectively, both
of which show a clear upward trend as the model size and the
video resolution increase. In addition, different analysis tasks
and different video content scenarios correspond to different
performance for the same service configurations. We have the
observation as follows:

Observation 2: Given a particular video analysis task, a
performance model of service configurations can be built with
linear regression methods. However, such a model cannot be
directly applied to another distinct video analysis task.

Fig. 4 plots the normalized latency and the memory usage
in different service configurations. It can be seen that the
Nano costs 3× more time on average to execute model
inference than the NX. Due to the large number of service
configurations and the diverse computing power of edge
servers, it is prohibitive to measure the performance of all
service configurations on dynamic videos with fast-changing

content scenarios. Moreover, in the scenario where every video
analysis request is processed by a YOLOv8m model with a
320p input size, the Nano device can manage 4 video requests,
while the NX device can handle 12 video requests, given
sufficient network bandwidth and memory. Nonetheless, if the
NX device experiences a subpar network connection or has
limited memory, it may result in a system throughput reduction
even below that of the Nano device. Therefore, we have the
observation as follows:

Observation 3: The system throughput of the edge video
analysis workload is constrained by multi-dimensional re-
sources, such as device computing power, network and mem-
ory, and such heterogeneous environment should be fully
considered when designing scheduling algorithms.

IV. DESIGN OF NOVAS

A. Overview

Based on the empirical study in Section III, we design
three components for the core scheduler of Novas: a predictor
to perform performance estimations, a detector to identify
severe accuracy fluctuations, and a controller to make service
configuration decisions. In addition, Novas also includes the
client handler and the server handler to assist the scheduler in
gathering information and performing service configuration.
Fig. 5 shows the system architecture of Novas.

Scheduler. When new video analysis requests arrive, the
scheduler of Novas performs the following process to make
service configuration decisions to meet their performance
targets. 1⃝ Select a few configurations and collect their per-
formance data from the client handler and server handler.
2⃝ Call the configuration performance predictor to predict
performance information on other configurations and generate
performance matrices as the input of the service configuration
controller. 3⃝ Call the service configuration controller to make
service configuration decisions according to a heuristic algo-
rithm and inform the client/server handler to execute them. 4⃝
Call the content change detector periodically to identify severe
accuracy fluctuations. Once the accuracy violation occurs, the
above process 1⃝- 3⃝ will be repeated to generate new service
configurations to meet all QoS requirements.

Client / Server Handler. The client handler adjusts the
video resolution of a video analysis request, establishes a
connection with the allocated server according to the service
configuration specified for this request, and monitors whether
the results meet the QoS requirements. The server handler
loads the designated DNN model and performs model infer-
ence on the requested video according to the specified service
configuration and monitors the task execution information
including the inference confidence of results, the computation
latency, and the resource usage at this server.

B. Configuration Performance Predictor

Instead of executing performance profiling over all service
configurations, the performance predictor combines an offline
profiling and an online prediction methods to quickly and
accurately obtain performance estimates for all configurations.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Video Request 
Service config. 

Adjustment
Video Analytics

Config. Performance Predictor

Offline 
profiling

Online 
prediction

Content Change Detector
Service Config. Controller

Remaining resource 
balancing algorithm

Confidence

𝑠𝑠𝑖𝑖 = (𝑟𝑟𝑖𝑖 ,𝑚𝑚𝑖𝑖 ,𝑛𝑛𝑖𝑖)

𝑞𝑞𝑖𝑖 = (𝑎𝑎𝑖𝑖 , 𝑙𝑙𝑖𝑖) P
PRT

Performance matrices
Novas scheduler

P Performance Monitor
R Resource Monitor T Task MonitorData Flow

Control Flow

…… …
…

Confidence sum-based 
t-test method

Client Handler

Server Handler

Client
Server

Net. 
Links

Fig. 5. System architecture of Novas.

1) Offline profiling: Novas offline constructs three perfor-
mance matrices, denoted as Pnet

|T |×|S|, P
com
|T |×|S| and Pacc

|T |×|S|, to
respectively profile the network latency, the computing latency
and the inference accuracy over the service configuration set
S on a training set of representative video clips T , with each
entry τi,s, for each i ∈ T and each s ∈ S, represents the mea-
sured value Lnet(i, s), Lcom(i, s) and A(i, s), respectively.

2) Online prediction: Novas updates the above three per-
formance matrices online as new video requests are received or
content changes of in-service videos are detected. Specifically,
it appends new rows in each performance matrix for such
videos and for each row, it executes a few randomly-selected
service configurations to obtain a few performance samples on
the row. Then, the SVD-based collaborative filtering technique
is used to predict missing performance values in performance
matrices. The collaborative filtering technique has been shown
to be effective in predicting workload performance [21], [22].
More specifically, SVD is first used to decompose a perfor-
mance matrix P = U ·Σ·V T , where Σ is the matrix of singular
values, U and V are the matrices of left and right singular
vectors. Let PT = ΣV T and Q = U . Then, SGD iteration
is performed over all entries of the reconstructed matrix
P = QPT until converged. Subsequently, the performance
value τi,s is modeled as the inner product of latent factor
vectors qs and pi, i.e., τ̂i,s = qTs pi (qs ∈ Q and pi ∈ P ). The
latent factor vectors are learned by minimizing the regularized
squared error ϵ on the measured performance matrices:

min
q∗,p∗

ϵ =
∑

τi,s ̸=0

(
τi,s − qTs pi

)2
+ λ

(
∥qs∥2 + ∥pi∥2

)
(7)

The minimization is performed by a SGD method. For each
τi,s, the SGD update rules are as follows:

ei,s
def
= τi,s − qTs pi

qs ← qs + γ (ei,spi − λqs)

pi ← pi + γ (ei,sqs − λpi)

(8)

until ϵ converges. Given p∗, q∗ are output vectors of above
process, the performance estimation of a new video request
i′ on a configuration s′ will be calculated as ˆτi′s′ = qTs′pi′

(qs′ ∈ q∗ and pi′ ∈ p∗).

C. Content Change Detector

The content change detector proactively detects signifi-
cant inference accuracy fluctuations caused by video content

5 10 15 20 25
Confidence Sum

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

5 10 15 20 25
Average Confidence Sum

0.2

0.4

0.6

0.8

Av
er

ag
e 

Ac
cu

ra
cy

yolov8n
yolov8s

yolov8m
320p

640p
960p

1280p
1920p

Fig. 6. Left: scatter plot of the inference accuracy and the filtered confidence
sum of each frame in an example video clip, analyzed using YOLOv8n in
five resolutions. Right: average results of these frames in each resolution using
different models.

0 0.2 0.4 0.6 0.8 1
|PCC|

0

0.2

0.4

0.6

0.8

1

CD
F

Moderate / 
 Strong Corr.

(a) MOT16

0 0.2 0.4 0.6 0.8 1
|PCC|

0

0.2

0.4

0.6

0.8

1

CD
F

Moderate / 
 Strong Corr.

(b) Argoverse

0 0.2 0.4 0.6 0.8 1
|PCC|

0

0.2

0.4

0.6

0.8

1

CD
F

Moderate / 
 Strong Corr.

(c) Ekya

yolov8m_1280p_10 yolov8m_1280p_20 yolov8m_960p_10 yolov8s_1280p_10

Fig. 7. Pearson correlation coefficients (PCC) between the inference accuracy
and the filtered confidence sum across various datasets and configurations.
0.4 < |PCC| ≤ 0.6, 0.6 < |PCC| ≤ 0.8, 0.8 < |PCC| ≤ 1 indicates a
moderate, strong, and very strong correlation, respectively.

changes to trigger reconfiguration with QoS guarantee. Due to
the lack of ground truth information, it is hard to efficiently
identify such content changes. We first introduce an indicator
of content change and then present our two-window t-test
based detection algorithm.

1) Filtered Confidence Sum: Given the inference output of
DNN models on a frame j, we calculate the filtered confidence
sum as

Sj =
∑
o∈Oj

zo (9)

where Oj is the set of detected objects obtained by removing
duplicated objects and those objects with a confidence smaller
than a threshold from all detected objects using non maximum
suppression (NMS) operations on frame j. zo is the confidence
score of a detected object o. As illustrated in Fig. 6, we identify
an approximately proportional relationship between the filtered
confidence sum of each frame and the inference accuracy
over a large number of video clips without scene switching
and density changes. We calculate the Pearson correlation
coefficient between the accuracy and the confidence sum
across numerous video clips sourced from various datasets and
under different configurations. The results depicted in Fig. 7
validate the proportional relationship between accuracy and
the confidence sum in most cases. For video clips where this
relationship is not met, we plan to address them in future work.

Moreover, as shown in Fig. 8, the filtered confidence sum
and the accuracy distributions of all frames in a video clip
with similar content follow Gaussian distributions. Fig. 9
emphasizes that when the number of frames in a video clip
(i.e., the video length) is below 200, over 80% of the video
clips exhibit a Gaussian distribution of the filtered confidence
sum. These observations imply that the filtered confidence
sum is an ideal indicator for identifying varying video content
scenarios.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

0.3
5
0.4

1
0.4

7
0.5

3
0.5

9
0.6

5 0.7 0.7
6
0.8

2
0.8

8

Accuracy

0
20
40
60
80

Fr
eq

ue
nc

y

0.00
0.05
0.10
0.15
0.20

Frequency
Density

(a) Distribution of inference accuracy

5.5 6.0
7
6.6

3
7.1

9
7.7

5
8.3

1
8.8

7
9.4

3
10

.0
10

.56

Confidence Sum

0

25

50

75

100

0.1

0.2

Pr
ob

ab
ilit

y 
de

ns
ityFrequency

Density

(b) Distribution of confidence sum

Fig. 8. Gaussian distribution of accuracy and filtered confidence sum on
frames with similar content.

30 50 100 150 200
Video Length

60%

70%

80%

90%

100%

# 
Ga

us
sia

n 
di

st
. /

 #
 To

ta
l

YOLOv8m
YOLOv8s

YOLOv8n

Models

60%

70%

80%

90%

100%

# 
Ga

us
sia

n 
di

st
. /

 #
 To

ta
l

1920p
1280p

960p
640p

320p

Resolutions

60%

70%

80%

90%

100%

# 
Ga

us
sia

n 
di

st
. /

 #
 To

ta
l

MOT16 Argoverse Ekya

Fig. 9. A considerable percentage of video clips exhibit a Gaussian distribu-
tion in the filtered confidence sum. Identification of this Gaussian distribution
is based on the Kolmogorov–Smirnov test, where a p-value exceeding 0.05
is considered. The results’ generalizability was confirmed across various
configurations derived from the base configuration—YOLOv8n model, 960p
resolution, and 30 frames in length.

2) Accuracy Fluctuation Detection: Given the Gaussian
distributions of the filter confidence sum, we adopt a two-
window t-test method to detect accuracy anomaly. Specifically,
assume that jth frame is being processed at a server, a
sliding detection window of w frames, denoted as Wd =
{Sj−w+1, ...,Sj}, and a sliding reference window of the same
size, denoted as Wf = {Sj−2w+1, ...,Sj−w}, are used to
compare the Gaussian distributions corresponding to these two
windows, i.e., Nf (µf , σ

2
f ) and Nd(µd, σ

2
d), respectively. Thus,

the problem to detect a significant content change is convert
to test whether µf is not equal to µd when variances σf and
σd are unknown, which is a Behrens-Fisher problem [23] in
statistics. We adopt the t-test method to solve this problem.

First, we define the null hypothesis H0 and alternative
hypothesis H1 as follows:

H0 : µf = µd

H1 : µf ̸= µd

(10)

We use Welch’s approximate solution [23] to construct a t-
statistic to test the null hypothesis that the two populations
have equal means. The t-statistic is calculated as follows:

t =
s̄f − s̄d√
η2
f

wf
+

η2
d

wd

(11)

where s̄f and s̄d are the means of Wf and Wd; ηf and ηd are
their standard deviations; and wf = wd = w.

The degrees of freedom of the above t statistic is calculated
as:

ν ≈

(
η2
f

wf
+

η2
d

wd

)2

η4
f

w2
fν1

+
η4
d

w2
dν2

(12)

where ν1 = wf −1, ν2 = wd−1. Null hypothesis H0 (i.e., the
video content changes) is rejected when |t| > tα/2,ν , where

tα/2,ν is the critical value of t-test with degrees of freedom as
ν and level of significance as α and can be obtained from a
given t-distribution table. The above t-test process continues
as two windows slide along the video stream until the analysis
of the entire video request is complete. If the null hypothesis
H0 is rejected and the alternate hypothesis stands, the detector
will inform the service configuration controller that the current
service configuration is out of date. Fig. 10 shows the core idea
of the above two-window t-test mechanism.

…
Video 
stream

𝑗 − 𝑤 + 1 𝑗

𝑊d𝑊f

Time

…

𝑗 − 2𝑤 + 1

𝜇f = 𝜇d?

p

Fig. 10. Two-window t-test method for accuracy anomaly detection.

D. Service Configuration Controller

When a new video request arrives or the video content
changes, the controller makes service configuration decisions
by solving the optimization problem defined in Section II.
Initially, we introduce an exact algorithm tailored to identify
the optimal solution when the requirement distribution and
performance data for all video requests are pre-known. Subse-
quently, we present a heuristic algorithm designed to solve the
problem promptly, particularly suited for handling unknown
and dynamic video analytics requests online.

1) Exact Algorithm: Our exact algorithm assumes that
the performance requirements distribution for all forthcoming
video requests is pre-known and that the number of service
configurations and edge servers is small enough to allow it
to solve the problem effectively within an acceptable time.
Let I,R,M,N be the set of all video requests, all available
resolutions and models, and all edge servers, respectively.
K = R×M is the set of all service configurations. We calcu-
late the exact solution of the problem through the following
steps:

Step 1: Select feasible configurations and construct config-
uration combinations for all video requests. Assume that the
video request i ∈ I has Ui feasible configurations, where each
feasible configuration κ ∈ K satisfies accuracy and latency
requirements of i. As a result, there are

∏|I|
i=1 Ui potential

configuration combinations for all video requests.
Step 2: Utilize existing solvers like Gurobi [24] and SCIP

[25] to solve a scheduling problem for each configuration
combination and find the optimal one that maximizes system
throughput. The scheduling problem is an integer linear pro-
gramming (ILP) problem with |I||N | zero-one variables; the
branch-and-cut algorithm can solve it. The time complexity
for solving this ILP problem is 2|I||N |.

Although the above algorithm can find the optimal solu-
tion, its efficiency diminishes when confronted with larger
problem sizes, primarily due to its high time complexity



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

O(2|I||N | ∏|I|
i=1 Ui). Besides, it is impractical when the re-

quirement distribution and performance information for video
requests are unknown. Therefore, a heuristic algorithm should
be proposed to make configuration decisions online efficiently.

2) Heuristic Algorithm: In online dynamic video analytics
scenarios, due to the unpredictable and sporadic nature of the
incoming requests, we cannot gather all requirement distribu-
tion and performance data required by the exact algorithm.
Therefore, we propose the following heuristic objective:

maxmin
g

Θg

Θg = min{|g| −
∑
n∈g

Unet
n , |g| −

∑
n∈g

Ucom
n , |g| −

∑
n∈g

Umem
n }

(13)
where g ∈ G is a resource group that consists of servers
that have same network bandwidth, memory capacity, and
computing power; G is the resource group set; |g| represents
the number of servers in the resource group g; Unet

n , Ucom
n , and

Umem
n are the network, computing, and memory utilization of

server n, respectively; and Θg represents remaining capacity of
bottleneck resource in the group g. This heuristic objective is
to maximize the minimum remaining resource of all resource
groups. The intuition is to preserve the diversity of remaining
resource groups to improve the ability to service future video
requests with unknown resource demands.

Based on the above heuristic objective, we propose a
remaining resource balancing (RRB) based scheduling algo-
rithm. The algorithm first obtains all available resource groups
and service configurations according to performance matrices
of new video requests. Then it sorts all available resource
groups according to their remaining capacity in descending or-
der and prioritizes the resource group with the most remaining
resources to analyze the incoming video request. Inside each
resource group, the algorithm assigns each request to the server
with minimum load on the bottleneck resource to achieve load
balancing. The remaining details are shown in Algorithm 1.
The time complexity of the algorithm is O(|N | |G| |M | |R|).

3) Scalability Comparison: We compare the scalability of
the exact algorithm and the heuristic algorithm in terms of
time complexity. The exact algorithm has a time complexity of
O(2|I||N | ∏I

i=1 Ui) ≈ O((2|N ||M ||R|)|I|), while the heuristic
algorithm has a time complexity of O(|I| |N | |G| |M | |R|)
for all incoming video requests. The time cost of the exact
algorithm increases exponentially with the number of video
requests |I|. In contrast, the heuristic algorithm has better
scalability due to its linear time complexity with respect to |I|.
Therefore, the heuristic algorithm is more suitable for online
dynamic video analytics scenarios.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Implementation. We implement Novas on a testbed consist-
ing of five edge devices (software and hardware specifications
are described in Table I). A desktop machine with 16GB
memory and Intel i7-8700 CPU (6 × 3.2GHz) runs some client
simulators to generate vide analysis requests. The remaining
four machines, comprising two Jetson Xavier NX devices

Algorithm 1 RRB-based scheduling algorithm
Input:

Request set I , Service configuration set S,
Resource group set G, Edge server set N ,
Performance matrices Pnet, Pcom and Pacc

Output:
Optimal configurations {si|I(i) = 1, i ∈ I}

1: for all request i ∈ I do
2: Obtain available resource group set Λi and configura-

tion set Γi according to Pnet, Pcom and Pacc;
3: Obtain remaining resource Θg for all g ∈ Λi;
4: Sort all groups in Λi according to Θg in descending

order, denoted as Λ
′

i;
5: for all g ∈ Λ

′

i do
6: Try to assign the request i to resource group g;
7: Obtain available configs of i in g, denoted as Γig;
8: Find the best configuration s∗ ( ∈ Γig) that minimizes

resource utilization (denoted as Us∗ );
9: if Us∗ > 1 then

10: Try to assign the request i to next group g
11: continue
12: else
13: si = s∗; I(i) = 1
14: end if
15: end for
16: end for
17: return {si|I(i) = 1, i ∈ I}

TABLE I
HARDWARE AND SOFTWARE SPECIFICATIONS.

Specification

Hardware

1 × Desktop, 6 Intel(R) Core(TM) i7-8700 CPUs @3.2GHz
NVIDIA GeForce GTX1060 3GB; 16GB memory
2 × NVIDIA Jetson Xavier NX module with Jetpack 5.0.2
6 CPU cores; 6GB memory,
2 × NVIDIA Jetson Nano module with Jetpack 4.6.1
4CPU cores; 4GB memory

Software Ubuntu 18.04, CUDA 10.2+, TensorRT 8.2+,
Triton Server v2.19.0+, Python 3.6+, EMQX 4.3.10

and two Jetson Nano devices, serve as servers to execute
DNN models using Triton Inference Server v2.8.0 with the
TensorRT backend. These servers host preloaded models with
different input sizes, including 1920p, 1280p, 960p, 640p,
and 320p. All machines are connected to a 450 Mbps TP-
LINK Router via network cable or Wifi to form a local area
network. Data exchanges between client and server utilize the
HTTP protocol, while control messages are transmitted via the
MQTT protocol to minimize network costs.

Workloads and metrics. We use three real-world dynamic
video datasets as described in Section III. Specifically, MOT16
[17] and Argoverse-HD [18] datasets are used to evaluate
pedestrian detection and vehicle detection workloads. Ekya
urban dataset [19] is used to evaluate accuracy anomaly
detection and overall performance of Novas.

• Normalized Root Mean Square Error (NRMSE): indi-
cates the error in performance prediction, calculated as

NRMSE = 1
ȳt

√∑T
t=1(ŷt−yt)

2

T .
• Precision and Recall: evaluate the accuracy of content



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

change detection.
• Goodput: refers to the maximum number of video re-

quests served by all servers.
• Accuracy gain: reflects normalized accuracy performance

of all served video requests, calculated as Aserved
i −Agoal

i

Agoal
i

.
• Latency gain: reflects normalized latency performance of

all served video requests, calculated as Lgoal
i −Lserved

i

Lgoal
i

.

Baselines. We compare our SVD-based collaborative fil-
tering method with other estimation methods including KNN
[26], Slopeone [27], and Co-clustering [28]. Meanwhile, we
compare our RRB-based scheduling algorithm with two base-
line scheduling algorithms:

• Best-Fit firstly selects the resolution and model with the
least resource usage on each server for each video re-
quest; Then it computes a score S(i, si) for each available
configuration si of the request i and select the configu-
ration corresponding to the lowest score. S(i, si) is com-
puted by

∑
j wj (aj(i, si)− dj(i, si)), where aj(i, si) is

the proportion of free resources j (i.e., network, comput-
ing, and memory) in the server ni(∈ si), dj(i, si) is the
proportion of required resources if the request i, and wj

is the weight of the resource (it is set as 1/3 in our paper).
This heuristic has been used for many similar scheduling
problems [29], [30].

• First-Fit traverse the configuration list and select first
configuration s′ that can meet the resource requirements,
i.e., dj(i, s′) ≤ aj(i, s

′) meets for all resource types j.
This heuristic is used by the work [7].

Besides, we compare the overall performance of Novas with
four video analytics schemes:

• Fix-FF/Fix-BF: scheme uses offline measured perfor-
mance data and the First-Fit/Best-Fit algorithm to deter-
mine service configurations.

• Ada-FF/Ada-BF: scheme updates performance data on-
line based on predictor and detector of Novas, but calls
the First-Fit/Best-Fit algorithm to adjust configurations.

B. Accuracy of Service Configuration Performance Prediction

We conduct offline performance profiling on 20 video clips
from MOT16 and Argoverse datasets over 30 configurations (5
resolutions, 3 models, and 2 devices). The initial performance
matrices consist of performance measures for 10 video clips,
and the remaining 10 video clips form a test set. For each
video clip in the test set, we randomly select performance
data of three configurations and use all candidate methods to
estimate missing performance data. We perform performance
prediction ten times, record their execution times, and calculate
NRMSE errors of all 100 prediction samples relative to the
actual performance measures.

The experimental results are summarized in Fig. 11. It is
clear to see that the error of the SVD-based collaborative
filtering method is significantly lower than other methods both
for accuracy, network latency, and compute latency estima-
tion. Specifically, its average error for accuracy is 9.36%,
for compute latency is 7.69%, and for network latency is
7.74%. Moreover, the average execution time of SVD, KNN,

SV
D (O

urs
)

KN
N

Slo
pe

One

Co-C
lus

ter

(a) Accuracy

0

20

40

60

NR
M

SE
 (%

)

SV
D (O

urs
)

KN
N

Slo
pe

One

Co-C
lus

ter

(b) Compute latency

0

20

40

60

NR
M

SE
 (%

)

SV
D (O

urs
)

KN
N

Slo
pe

One

Co-C
lus

ter

(c) Network latency

0

20

40

60

NR
M

SE
 (%

)

Fig. 11. NRMSE of different performance estimation methods

Slopeone, and co-cluster methods are 6.04ms, 0.24ms, 0.37ms,
and 3.55ms, respectively. In practice, a delay of 6.04ms does
not significantly affect overall performance.

C. Accuracy of Video Content Change Detection

We conduct multi-object detection using the YOLOv8m
model on a 45 min-long building video clip in 960p and a
one-hour-long traffic video clip in 640p, and calculate the
accuracy and confidence sum of each frame based on the
ground truth obtained by the YOLOv8m model on raw video
clips with 1920p. Then we use the two-window t-test method
to detect accuracy anomalies in the video that the fluctuation
range exceeds the threshold (0.05, 0.1, or 0.15). We vary the
window length, ranging from 5 to 20, and the confidence level
α of the t-test, ranging from 0.001 to 0.5, to find the optimal
configuration for the content change detector.

Fig. 12 plots precision-recall curves of detection results.
The solid bold curves represent the optimal window size,
as they have the maximum area under the precision-recall
curve (AUC). For these two videos, a window size of 10 is
optimal for a 0.05 fluctuation threshold, while a size of 5
is best for thresholds of 0.1 and 0.15. Moreover, we should
carefully select the value of significance level α due to a
trade-off between precision and recall. As α increases, the
rejection region expands, the method classifies more instances
as positive, and the recall value increases. Yet, this also
elevates false positives, reducing precision. The recall is more
critical for Novas if we want to report any accuracy anomalies,
where the t-test method takes it more than 90% across all
fluctuation thresholds.

D. Scheduling Efficiency

We evaluate the scheduling efficiency and scalability of
Novas on our testbed and a trace-driven emulated cluster
comprising 100 simulated edge servers.

1) Goodput and resource utilization on diverse request
distributions: We randomly select 90 video clips from MOT16
and Argoverse datasets as video requests and assign them
one of three QoS requirement targets: R1 = (1000ms, 0.6),
R2 = (500ms, 0.5), and R3 = (200ms, 0.4). Four video
analysis request distributions are considered in our experiment,
i.e., (R1 ∗ 30, R2 ∗ 30, R3 ∗ 30), (R1 ∗ 15, R2 ∗ 30, R3 ∗ 45),
(R1 ∗ 15, R2 ∗ 45, R3 ∗ 30), and (R1 ∗ 45, R2 ∗ 15, R3 ∗ 30).
Similarly, we consider four different resource distributions
described in note 1 of Table II. All requests are sent to the
system in order after shuffle operation. We call all candidate
algorithms to schedule these requests as they arrive until the
system can not meet the required performances.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE II
RESOURCE UTILIZATION ON DIFFERENT SERVER AND VIDEO DISTRIBUTIONS (%).

Resource Utilization Algorithm Resource Distribution 1 1 Resource Distribution 2 Resource Distribution 3 Resource Distribution 4
VD-1 2 VD-2 VD-3 VD-4 VD-1 VD-2 VD-3 VD-4 VD-1 VD-2 VD-3 VD-4 VD-1 VD-2 VD-3 VD-4

Network
First-Fit (FF) 79.5 88.2 78.6 78.8 79.3 85.9 85.0 77.6 79.8 85.4 78.6 79.2 86.1 86.9 85.3 77.3
Best-Fit (BF) 79.7 79.0 94.2 79.0 78.5 92.0 93.9 77.8 79.5 94.2 94.5 78.1 79.2 78.8 93.1 79.8
RRB (ours) 83.7 97.5 76.2 83.9 85.5 82.9 97.5 82.0 88.8 86.8 86.0 81.9 77.0 89.1 85.7 90.8

Computing
First-Fit (FF) 59.8 57.5 55.8 64.9 57.5 56.4 55.5 63.2 60.0 56.3 57.5 62.0 57.9 55.8 56.3 60.9
Best-Fit (BF) 62.1 57.4 55.5 64.2 56.6 54.3 55.1 62.5 59.8 55.5 55.6 59.5 59.0 56.6 55.3 61.3
RRB (ours) 66.5 59.9 62.7 73.0 63.8 63.2 54.8 74.4 68.4 59.6 62.6 73.0 65.2 55.1 62.5 70.9

Memory
First-Fit (FF) 59.7 58.6 42.5 52.0 49.8 48.7 49.8 51.0 42.6 50.3 42.6 43.7 58.6 48.7 57.9 59.7
Best-Fit (BF) 49.9 40.9 42.3 41.6 40.4 58.6 49.8 42.6 43.7 42.6 41.6 43.0 40.9 41.9 41.6 52.0
RRB (ours) 74.3 72.2 53.6 74.3 74.3 65.4 68.7 66.3 66.0 66.6 73.3 73.3 72.2 72.2 64.9 67.3

1 There are four types of resources in our experiments (Net. Bandwidth, Device, Memory): G1 = (25Mbps,Nano, 4GB),G2 = (25Mbps,NX, 6GB),G3 =
(50Mbps,Nano, 4GB),G4 = (50Mbps,NX, 6GB). Resource Distribution 1 represents the resource types of the four servers are (G1,G1,G0,G0), denoted as RD1 = (G1, G1, G0, G0).
Similarly, other resource distributions are RD2 = (G3, G3, G0, G0),RD3 = (G1, G1, G2, G2),RD4 = (G0, G1, G2, G3).

2 There are three levels of performance requirements in our experiments (Latency, Accuracy): R1 = (1000ms, 0.6),R2 = (500ms, 0.5), R3 = (200ms, 0.4). VD-x represents xth
requirement distribution, where VD-1= (R1 ∗ 30, R2 ∗ 30, R3 ∗ 30), VD-2= (R1 ∗ 15, R2 ∗ 30, R3 ∗ 45), VD-3= (R1 ∗ 15, R2 ∗ 45, R3 ∗ 30), and VD-4= (R1 ∗ 45, R2 ∗ 15, R3 ∗ 30).

0.25 0.50 0.75
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Fluctuation=0.05

w=5 w=10 w=15 w=20

0.5 1.0
Recall

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

Fluctuation=0.1
0.5 1.0
Recall

0.2

0.4

0.6

0.8

Pr
ec

isi
on

Fluctuation=0.15

(a) Building video

0.5 1.0
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Fluctuation=0.05

w=5 w=10 w=15 w=20

0.5 1.0
Recall

0.4

0.6

0.8

Pr
ec

isi
on

Fluctuation=0.1
0.5 1.0

Recall

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

Fluctuation=0.15

(b) Traffic video

Fig. 12. Precision-Recall curve of content change detection.

Fig. 13 shows that Novas achieves the highest good-
put across all distributions compared with other algorithms.
Specifically, our RRB algorithm improves the goodput by
29.3% and 25.6% compared to First-Fit and Best-Fit on
average, respectively. In the best-case scenario, it outperforms
the other two algorithms by 46.4% and 50%, respectively.
Even in the worst-case scenario, it still achieves improvements
of 13% and 9% respectively. The resource utilization results
are summarized in Table II, which shows that RRB signif-
icantly improve resource utilization in most cases. Network
and computing resource utilization is improved by 4.8% and
10.4% compared to First-Fit and improved by 1.8% and 11.4%
compared to Best-Fit. The memory utilization of RRB is
35.5% and 54.9% higher than that of First-Fit and Best-Fit
algorithms due to more models loaded on servers.

2) Scalability on varying number of servers and requests:
We use simulated clients and edge servers to evaluate the
scalability of Novas. Video analysis requests contain pedes-
trian detection and vehicle detection workloads with different
performance demands randomly. Fig. 14 (a) shows the goodput
of various algorithms as the number of servers increases
from 20 to 100 (and the number of requests correspondingly
increases from 300 to 1500 with an interval of 300). The result

VD1VD2VD3VD4 VD1VD2VD3VD4 VD1VD2VD3VD4 VD1VD2VD3VD4
20

30

40

50

Go
od

pu
t (

re
q/

s)

RD1 RD2 RD3 RD4

FF BF RRB (Ours)

Fig. 13. Goodput comparison of different scheduling methods

20 40 60 80 100
Number of servers

0
200
400
600
800

1000

Go
od

pu
t (

re
q/

s) RRB (Ours)
FF
BF

(a) Varying number of servers

50 150 250 350 450
Number of requests

0
50

100
150
200
250

Go
od

pu
t (

re
q/

s) RRB (ours)
FF
BF

(b) Varying number of requests

Fig. 14. Scalability comparison on emulated servers.

shows that Novas achieves linear scaling with the number
of servers and highest goodput. Fig. 14 (b) shows that the
goodput of our algorithm is much greater than other methods
as the number of requests increases when 20 servers are used
and remains stable until the resource reaches its limit.

E. Overall Performance of Novas

We randomly select 40 video clips of 40 minutes long
from Ekya traffic and building datasets to evaluate the overall
performance of Novas. Each video requires the latency no
higher than 200ms/300ms and accuracy (mAP) no lower than
0.3/0.4. The client simulator sends 10 video requests to the
system every 10 minutes. At runtime, Novas automatically
identifies accuracy anomalies and select the best configuration
to execute. We compare Novas with four baseline schemes
(Fix-FF, Fix-BF, Ada-FF, and Ada-BF) on accuracy gain,
latency gain, and goodput.

Fig. 15 shows the CDFs of accuracy and latency gain
over all video requests of four random request distributions.
For Fix-BF and Fix-FF schemes, more than 97% accuracy
gains are less than 0, which indicates that using fixed service
configurations derived from offline profiling fails to deal
with dynamic video analysis requests. In contrast, adaptive
adjustment schemes Novas, Ada-BF and Ada-FF have more
than 83.33%, 81.25%, and 80.21% accuracy gains greater than



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

-1 -0.5 0 0.5 1
Accuracy gain

0

0.2

0.4

0.6

0.8

1

CD
F

0.4 0.5 0.6
Latency gain

0

0.2

0.4

0.6

0.8

1

CD
F

Fix-FF Fix-BF Ada-FF Ada-BF Novas

Fig. 15. Overall performance of Novas.

0 10 20 30 40
0

10
20
30
40

Go
od

pu
t 

 (r
eq

/s
)

0 10 20 30 40
Time (min)

0.4

0.5

0.6

Ac
cu

ra
cy

 
 (m

AP
)

Fix-FF
Novas

Fix-BF
Anomaly

Ada-FF
Switch

Ada-BF

Fig. 16. Goodput and configuration adjustment of Novas.

0, respectively, with the maximum accuracy violation less than
32.5%. Moreover, all schemes can meet latency requirements.

The goodput subgraph of Fig. 16 shows that the peak
goodput of Novas is 43% higher than Fix-FF and Fix-BF
schemes, 37.72% higher than the Ada-FF scheme, 32.86%
higher than the Ada-BF scheme. The bottom subgraph of
Fig. 16 plots configuration adjustments during one video clip.
Detected accuracy anomalies and configuration switches are
marked. Interestingly, the number of configuration switches is
far smaller than that of detected accuracy anomalies because
the controller finds the current configuration still optimal
even if some anomalies occur. This observation indicates that
component collaboration enables Novas to tolerate some errors
caused by individuals, thereby avoiding their negative impact
on overall performance. Besides, we can see that most time
Novas can maintain the required analysis accuracy.

F. System Overhead

We evaluate the overhead of different components on a
desktop with 6 Intel Core i7-8700 CPUs @3.2 GHz, and
the results are shown in Fig. 17. The number of models and
resolutions keeps constant in our evaluation. For the predictor,
the performance model training time is proportional to the
number of video streams, which is only about 110 ms, even if
the number of video streams reaches 1000. Its prediction time
is less than 1 ms and can be negligible at runtime. The running
time of the detector is proportional to the window length, but
it is always below 1 ms even when the window length reaches
150. The running time of the controller is proportional to
the number of resource groups and servers, where the pre-
processing operation takes up to 100 ms, and the scheduling
operation always runs under 2 ms. The reading and writing of
performance files and related calculations take up most of the
time of pre-processing operations. While this can be further

200 400 600 800 1000
Video Number

0

50

100

Ex
ec

ut
e 

tim
e 

(m
s) (a) Profiler

30 60 90 120 150
Window Length

0.25

0.50

0.75

Ex
ec

ut
e 

tim
e 

(m
s) (b) Detector

(4,20)
(6,40)

(8,60)
(10,80)

(12,100)

Resource and node number

0

50

100

Ex
ec

ut
e 

tim
e 

(m
s) (c) Controller (preprocessing)

(4,20)
(6,40)

(8,60)
(10,80)

(12,100)

Resource and node number

0

1

2

Ex
ec

ut
e 

tim
e 

(m
s) (d) Controller (scheduling)

Fig. 17. Overhead of different components in Novas.

optimized, the current time consumption does not affect the
performance of online video analysis.

VI. RELATED WORK

Accuracy anomaly detection on DNN models. In the lack
of ground truth information, two approaches can be employed
to identify accuracy anomalies. One involves utilizing transfer
learning methods to generate new labeled data, facilitating
the computation of accuracy metrics [31]. The alternative
approach is to directly leverage the inputs, internal state,
and outputs of DNN models to highlight accuracy anomalies.
DISSECTOR [32] ensures accurate analysis results by filtering
out unbefitting inputs. SelfChecker [33] monitors internal layer
features of DNN models and triggers an accuracy alarm when
they are inconsistent with the final prediction. SELFORACLE
[34] identifies the confidence boundary between normal and
unsupported conditions to predict misbehavior in autonomous
driving systems. Furthermore, calibrated confidence can re-
place the accuracy metric to determine the early-exit point of
models [35], [36] or select smaller models [37] for reducing
the execution time of models on resource-constrained devices.
In this paper, we focus on detecting significant fluctuations in
accuracy, and a confidence sum proportional to the change in
accuracy is deemed sufficient for this purpose.

Adaptive configuration on video analytics. Adaptive
configuration on video analytics workloads aims to achieve
analysis accuracy and resource cost tradeoff. Some prior work
[4]–[10] adjust video parameters like frame sampling rate
and resolution to reduce computing and network cost. They
rely on a performance-accuracy profiler to obtain analysis
results of different configurations and compute the accuracy
by comparing them with ground truth obtained by running
a ”golden” configuration. This profiling process need to be
executed repeatedly and consume a lot of resources when the
video content changes rapidly. Some work encodes important
parts [11]–[14] or extracts key features [38] to reduce data
transmission and computation complexity. Other work utilizes
the low-power GPU/CPU on camera devices to run some
cheap DNN models to analyze and filter frames [39] or
inference in advance on some frames with salient features [40].
At the mobile edge, resource-constrained devices can only
support simple parameter adjustments like resolution. Novas
combines model selection and request scheduling to achieve
adaptive configuration and improve resource efficiency.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Scheduling optimization with multiple constraints. Task
scheduling problems at the edge focus on how to improve re-
source utilization [41] or maximize task performance (latency
[42], [43], throughput [44], [45], or both [46]) under the con-
dition of diversified resource constraints. Network, computing
power and energy constraints are frequently considered in
existing work like [43]–[45], [47], [48]. Besides, the memory
constraint is also getting more attention with the rise of
DNN analysis workloads [49], [50]. Video analysis workloads
consume much network, compute and memory resources, and
our scheduling algorithm needs to consider multiple resource
limitations and robustness in heterogeneous resources.

VII. CONCLUSION AND FUTURE WORK

This paper proposes Novas, a scalable online edge video an-
alytics scheme specialized for dynamic videos. Novas achieves
maximized system resource utilization while guaranteeing di-
verse QoS requirements by integrating online accuracy fluctu-
ation detection, lightweight configuration performance predic-
tion, and a RRB heuristic scheduling strategy. These innovative
techniques enable Novas to automatically fit service config-
urations to dynamic video analysis requests. We have im-
plemented Novas and conducted both real-world experiments
and extensive trace-driven simulations. Novas is easy and
scalable for large-scale implementation. Experiment results
demonstrate the efficacy of Novas design. In the future, we
will further explore the impact of dynamic system resources
due to unexpected join and leave of voluntary edge servers.

REFERENCES

[1] M. Hu, Z. Luo, A. Pasdar, Y. C. Lee, Y. Zhou, and D. Wu, “Edge-based
video analytics: A survey,” arXiv preprint arXiv:2303.14329, 2023.

[2] Intelligent roadside units and v2x solutions. Accessed March 4, 2024.
[Online]. Available: https://campaign.advantech.online/en/Road Side
V2X/

[3] Nvidia agx systems. Accessed March 4, 2024. [Online]. Available:
https://www.nvidia.com/en-us/deep-learning-ai/products/agx-systems/

[4] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 236–252.

[5] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
{Delay-Tolerance},” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), 2017, pp. 377–392.

[6] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings of
ACM SIGCOMM’18, 2018, pp. 253–266.

[7] S. Zhang, C. Wang, Y. Jin, J. Wu, Z. Qian, M. Xiao, and S. Lu, “Adaptive
configuration selection and bandwidth allocation for edge-based video
analytics,” IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp.
285–298, 2021.

[8] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orches-
trator for mobile augmented reality,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 756–764.

[9] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[10] K. Zhao, Z. Zhou, X. Chen, R. Zhou, X. Zhang, S. Yu, and D. Wu,
“Edgeadaptor: Online configuration adaption, model selection and re-
source provisioning for edge dnn inference serving at scale,” IEEE
Transactions on Mobile Computing, 2022.

[11] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155–168.

[12] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359–376.

[13] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in The 25th annual international
conference on mobile computing and networking, 2019, pp. 1–16.

[14] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of ACM SIGCOMM ’20, 2020, pp. 557–570.

[15] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals
of queueing theory. John Wiley & Sons, 2018, vol. 399.

[16] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004. [Online]. Available:
https://doi.org/10.1007/978-3-540-24777-7

[17] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A
benchmark for multi-object tracking,” arXiv preprint arXiv:1603.00831,
2016.

[18] M. Li, Y.-X. Wang, and D. Ramanan, “Towards streaming perception,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part II 16. Springer, 2020, pp.
473–488.

[19] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 119–135.

[20] Yolov8. Accessed March 4, 2024. [Online]. Available: https://github.
com/ultralytics/ultralytics

[21] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp.
127–144, 2014.

[22] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “{Heterogeneity-Aware} cluster scheduling policies for
deep learning workloads,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 481–498.

[23] C.-H. Chang and N. Pal, “A revisit to the behrens–fisher problem: com-
parison of five test methods,” Communications in Statistics—Simulation
and Computation®, vol. 37, no. 6, pp. 1064–1085, 2008.

[24] Gurobi optimization. Accessed March 4, 2024. [Online]. Available:
https://www.gurobi.com/

[25] Scip optimization suite. Accessed March 4, 2024. [Online]. Available:
https://scipopt.org/

[26] Y. Koren, “Factor in the neighbors: Scalable and accurate collabora-
tive filtering,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 4, no. 1, pp. 1–24, 2010.

[27] D. Lemire and A. Maclachlan, “Slope one predictors for online rating-
based collaborative filtering,” in Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining. SIAM, 2005, pp. 471–475.

[28] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender
systems handbook,” in Recommender systems handbook. Springer,
2010, pp. 1–35.

[29] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich et al., “Protean:{VM}
allocation service at scale,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 845–861.

[30] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector
bin packing,” research. microsoft. com, 2011.

[31] K. Zhang, X. Liu, X. Xie, J. Zhang, B. Niu, and K. Li, “A cross-
domain federated learning framework for wireless human sensing,” IEEE
Network, vol. 36, no. 5, pp. 122–128, 2022.

[32] H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input validation for
deep learning applications by crossing-layer dissection,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineer-
ing, 2020, pp. 727–738.

[33] Y. Xiao, I. Beschastnikh, D. S. Rosenblum, C. Sun, S. Elbaum, Y. Lin,
and J. S. Dong, “Self-checking deep neural networks in deployment,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE). IEEE, 2021, pp. 372–384.

[34] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour predic-
tion for autonomous driving systems,” in Proceedings of the ACM/IEEE
42nd international conference on software engineering, 2020, pp. 359–
371.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[35] T. Tan and G. Cao, “Deep learning on mobile devices through neural
processing units and edge computing,” in IEEE INFOCOM 2022-IEEE
Conference on Computer Communications. IEEE, 2022, pp. 1209–
1218.

[36] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“Spinn: synergistic progressive inference of neural networks over device
and cloud,” in Proceedings of the 26th annual international conference
on mobile computing and networking, 2020, pp. 1–15.

[37] D. Kang, S. Lee, H. S. Chwa, S.-H. Bae, C. M. Kang, J. Lee, and
H. Baek, “Rt-mot: Confidence-aware real-time scheduling framework
for multi-object tracking tasks,” in 2022 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2022, pp. 318–330.

[38] S. Wang, C. Ding, N. Zhang, X. Liu, A. Zhou, J. Cao, and X. Shen, “A
cloud-guided feature extraction approach for image retrieval in mobile
edge computing,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 292–305, 2019.

[39] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The
design and implementation of a wireless video surveillance system,”
in Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, 2015, pp. 426–438.

[40] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” arXiv preprint
arXiv:1703.02529, 2017.

[41] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu,
B. Hu, and R. Y. Kwok, “Distributed and dynamic service placement
in pervasive edge computing networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 6, pp. 1277–1292, 2020.

[42] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. Lau,
“Ondisc: Online latency-sensitive job dispatching and scheduling in
heterogeneous edge-clouds,” IEEE/ACM Transactions on Networking,
vol. 27, no. 6, pp. 2472–2485, 2019.

[43] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, “Online deadline-aware
task dispatching and scheduling in edge computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 6, pp. 1270–1286,
2019.

[44] K. Yang, P. Sun, J. Lin, A. Boukerche, and L. Song, “A novel distributed
task scheduling framework for supporting vehicular edge intelligence,”
in 2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2022, pp. 972–982.

[45] M. Zhang, J. Cao, L. Yang, L. Zhang, Y. Sahni, and S. Jiang, “Ents: An
edge-native task scheduling system for collaborative edge computing,”
in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE,
2022, pp. 149–161.

[46] Z. Yang, K. Nahrstedt, H. Guo, and Q. Zhou, “Deeprt: A soft real
time scheduler for computer vision applications on the edge,” in 2021
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2021, pp.
271–284.

[47] X. Shao, G. Hasegawa, M. Dong, Z. Liu, H. Masui, and Y. Ji, “An
online orchestration mechanism for general-purpose edge computing,”
IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 927–940,
2023.

[48] H. Zhou, Z. Zhang, Y. Wu, M. Dong, and V. C. Leung, “Energy efficient
joint computation offloading and service caching for mobile edge com-
puting: A deep reinforcement learning approach,” IEEE Transactions
on Green Communications and Networking, vol. 7, no. 2, pp. 950–961,
2023.

[49] N. Ling, K. Wang, Y. He, G. Xing, and D. Xie, “Rt-mdl: Supporting
real-time mixed deep learning tasks on edge platforms,” in Proceedings
of the 19th ACM Conference on Embedded Networked Sensor Systems,
2021, pp. 1–14.

[50] A. Padmanabhan, N. Agarwal, A. Iyer, G. Ananthanarayanan, Y. Shu,
N. Karianakis, G. H. Xu, and R. Netravali, “Gemel: Model merging for
{Memory-Efficient},{Real-Time} video analytics at the edge,” in 20th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), 2023, pp. 973–994.

Liang Zhang received the B.E. degree in Computer
Science and Technology from Northeastern Univer-
sity in China, in 2018. She is currently working
toward the PhD degree in the Department of Com-
puter Science and Engineering at Shanghai Jiao Tong
University. Her research interest includes stream
processing and resource scheduling in the cloud or
edge computing environment. For more information,
please visit https://zl-cs.github.io/.

Hongzi Zhu received the PhD degree in com-
puter science from Shanghai Jiao Tong University,
in 2009. He was a post-doctoral fellow with the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
and the Department of Electrical and Computer En-
gineering, University of Waterloo, in 2009 and 2010,
respectively. He is a professor with the Department
of Computer Science and Engineering, Shanghai
Jiao Tong University. His research interests include
mobile sensing, mobile computing, and Internet of

Things. He received the Best Paper Award from IEEE Globecom 2016. He is
an associate editor for the IEEE Transactions on Vehicular Technology and
the IEEE Internet of Things Journal.

Wen Fei received the B.S. degree from Northeast-
ern University, Shenyang, China, in 2018. He is
currently pursuing the Ph.D. degree at the Depart-
ment of Electronic Engineering, Shanghai Jiao Tong
University, Shanghai, China. His current research
interests include deep neural network explanation
and compression.

Yunzhe Li received his B.S. degree in computer
science from Wuhan University in 2021. He is a
PhD student in the Department of Computer Science
and Engineering, Shanghai Jiao Tong University. His
research interests include mobile sensing and edge
computing.

Mingjin Zhang is currently a Ph.D. candidate with
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong SAR, China.
He received the B.Eng. degree in communication
engineering from Wuhan University of Technology,
China, in 2019. He has been a visiting PhD student
in Department of Computer Science and Technology,
University of Cambridge, from Feb 2023 to Sep
2023. His research interests include edge computing,
edge AI, distributed machine learning, and Internet
of Things.

Jiannong Cao (Fellow, IEEE) is the Otto Poon
Charitable Foundation Professor in Data Science
and the Chair Professor of Distributed and Mobile
Computing in the Department of Computing at The
Hong Kong Polytechnic University, Hong Kong. He
is the Dean of Graduate School, the director of
the Research Institute for Artificial Intelligence of
Things in PolyU, and the director of the Internet
and Mobile Computing Lab. He is now the associate
director of PolyU’s University Research Facility in
Big Data Analytics. Prof. Cao is a member of

Academia Europaea, a fellow of IEEE, a fellow of the China Computer
Federation, and an ACM distinguished member. His research interests include
distributed systems and blockchain, wireless sensing and networking, big data
and machine learning, and mobile cloud and edge computing.

Minyi Guo (Fellow, IEEE) is a Zhiyuan Chair
Professor in the Department of Computer Science
and Engineering at Shanghai Jiao Tong University,
China. He received the PhD degree in computer
science from the University of Tsukuba, Japan. He is
currently Zhiyuan Chair professor and head with the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His present
research interests include parallel/distributed com-
puting, compiler optimizations, embedded systems,
pervasive computing, big data and cloud computing.

He is now on the editorial board for IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Cloud Computing and Journal
of Parallel and Distributed Computing. He is a fellow of IEEE.


