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Abstract—A wide range of user perception applications lever-
age inertial measurement unit (IMU) data for online prediction.
However, restricted by the non-i.i.d. nature of IMU data collected
from mobile devices, most systems work well only in a controlled
setting (e.g., for a specific user in particular postures), limiting
application scenarios. To achieve uncontrolled online prediction
on mobile devices, referred to as the flexible user perception
(FUP) problem, is attractive but hard. In this paper, we propose a
novel scheme, called Prism, which can obtain high FUP accuracy
on mobile devices. The core of Prism is to discover task-aware
domains embedded in IMU dataset, and to train a domain-
aware model on each identified domain. To this end, we design
an expectation-maximization (EM) algorithm to estimate latent
domains with respect to the specific downstream perception task.
Finally, the best-fit model can be automatically selected for use
by comparing the test sample and all identified domains in the
feature space. We implement Prism on various mobile devices and
conduct extensive experiments. Results demonstrate that Prism
can achieve the best FUP performance with a low latency.

Index Terms—IMU, model inference, non-i.i.d., reliability

I. INTRODUCTION

Recent years have witnessed the soaring development of
appealing user perception applications on smart mobile de-
vices, such as user authentication [1]–[3], activity recogni-
tion [4]–[6], and health monitoring [7], [8], where machine
learning models trained on collected inertial measurement unit
(IMU) data are leveraged for online prediction. In general,
the successes of these user perception applications rely on the
superior performance of deep neural networks (DNNs), trained
on independent and identically distributed (i.i.d.) datasets [9],
largely limiting the application scenarios in a controlled setting
(e.g., for a specific user in particular postures). However,
datasets flexibly collected from mobile devices are often the
case non-i.i.d. because of different device types and usage
habits [10]. Can we achieve flexible user perception (FUP) by
training DNNs on IMU data flexibly collected from different
types of devices and distinct users without requiring how they
operate their devices?

An attractive scheme to the FUP problem is demanding due
to the following reasons. First, it should be able to deal with
IMU data collected from multiple non-i.i.d. sources (e.g., a
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device held in different postures or a device of a different brand
carried by a different user). Such a dataset contains multiple
hidden distributions (or domains) [11], [12], making it hard to
train an effective DNN. Second, it should achieve satisfactory
prediction accuracy with few constraints on how devices are
operated. Third, such a scheme should be lightweight and can
be easily deployed to a wide variety of mobile devices with
limited computational capacity.

In the literature, much effort has been made to improve the
accuracy of FUP on mobile devices. One main direction aims
to develop one single prediction model that can generalize
on all potential domains via domain generalization methods
[13], [14], meta-learning [15] and pre-training [16]–[18]. How-
ever, their performance improvements are marginal because
the essential non-i.i.d. issue still exists [19], [20]. Another
direction is to divide training data into subsets and train an
individual model on each subset, respectively. One or a few
of those models best fitting the current scenario are selected
for online prediction. One class of methods divides training
dataset manually based on some prior knowledge [21]–[23]
(e.g., user intention in recommendation system [23] or image
quality in computer vision [21]) or associated attributes of data
samples (i.e., metadata) such as where a device is carried or the
user ID [24], [25]. However, to obtain meaningful metadata is
of intensive manpower and how to select effective metadata to
use is not straightforward. Another class of methods clusters
similar data samples either in raw data space [26]–[29] or in
some high-dimensional feature space [23], [30], [31]. How-
ever, the derived subsets may not match the latent distributions
with respect to a particular user perception task. As a result,
to the best of our knowledge, there is no existing scheme that
successfully addresses the FUP problem.

In this paper, we propose an effective data partition scheme,
called Prism, which measures the inconsistence extent of a
non-i.i.d. dataset and wisely divides the dataset into domains
friendly to a downstream user perception task. Given a non-
i.i.d. dataset, we have an insight that different tasks (or corre-
sponding DNN models) may have distinct domain partitions.
The core idea of Prism, therefore, is to automatically find a
feature space where similar samples form i.i.d. domains for
a particular downstream task. Then, individual models can
be well-trained on each task-specific domain. As illustrated in
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Fig. 1. Illustration of IMU data partition using Prism, where non-i.i.d. samples
are divided into task-specific domains, denoted with different colors, rather
than prior-defined subsets according to device positions or types.

Figure 1, in Prism, non-i.i.d. data samples are first divided into
task-specific domains before task models can be trained. When
conducting uncontrolled online prediction, a best-fit trained
model can be selected for use by comparing the test sample
and all identified task-specific domains in the feature space.

The Prism design faces two main challenges. First, it’s hard
to tell whether a given dataset is non-i.i.d. (i.e., containing
multiple distributions) without any prior information. To deal
with this challenge, we propose a non-i.i.d. degree of a
dataset (NID) as the quantitative measure of non-i.i.d. NID
is calculated by testing the prediction inconsistency within
the dataset. Specifically, we first divide the dataset into two
parts and calculate a non-i.i.d. index (NI) between the divided
two parts. The data samples between the two parts are then
alternated to obtain a traversal of the dataset and obtain
multiple NIs. Finally, NID is defined as the average of the
multiple NIs during the traversal of the dataset.

Second, task-specific domains are latent, which means there
is no obvious clue to estimate them in a non-i.i.d. dataset.
Indeed, to find the optimal task-specific domains is NP-
hard. To tackle this challenge, we design a neat Expectation-
Maximization (EM) algorithm to iteratively train an encoder,
with which data samples can be converted into embeddings
in the feature space. Moreover, clusters of similar embeddings
can be used to correspondingly train a set of downstream task
models with the best performance. Specifically, each iteration
consists of an estimation-step (E-step) and a maximization-
step (M-step). In the E-step, k-means is adopted to group
similar embeddings obtained by the encoder from the previous
iteration into distinct clusters. In the M-step, an individual task
model is first trained on each cluster. Then, we assess both the
quality of the derived clusters and that of obtained task models
via trial tests, both of which are utilized to design a joint loss
to optimize the parameters of the encoder. In this way, after the
EM algorithm converges, we can obtain a superb estimation
of latent task-specific domains.

We implement Prism on 6 typical mobile devices with dif-
ferent CPU/GPU configurations. We consider activity recog-
nition (AR) and user authentication (UA) as typical user
perception tasks, and conduct extensive experiments on non-
i.i.d. public IMU datasets, i.e., UCI [32], HHAR [33], and
Motion [34]. We also construct a more non-i.i.d. large-scale
dataset based on the extensive SHL dataset [35] to show the
FUP performance of Prism on more complicated settings.
Experiment results show that Prism can effectively estimate

the latent task-specific domains, achieving reliable and state-
of-the-art (SOTA) prediction accuracy for flexible user percep-
tion applications. Results demonstrate that Prism can achieve
reliable FUP prediction and outperform a universal deep model
in terms of F1 score on datasets with high NID, achieving an
improvement of up to 16.79%. Prism is lightweight and can
be easily deployed on most mobile devices, with a latency less
than 60 ms even on a low-end smartphone.

We highlight the main contributions made in this paper as
follows:

• A non-i.i.d. degree of a dataset is delicately designed to
quantify the non-i.i.d. level of a complex dataset;

• The NP-hardness of automatically finding latent domains
is analyzed, and Prism, a joint method for task-specific
domain partition and corresponding task model training
based on an EM algorithm, is proposed;

• Prism is implemented on various types of mobile devices
and evaluated on multiple public IMU datasets. Results
demonstrate the efficacy of Prism’s design.

II. PROBLEM DEFINITION

Given a dataset of IMU samples collected from dif-
ferent users, denoted as D, there exists a data partition
scheme P , which separates D into n subsets, denoted as
{Γ1,Γ2, · · · ,Γn}. For each Γi, for i ∈ [1, n], a task model
Mi can be trained on the training set of Γi, denoted as Γtrn

i .
The FUP problem can be defined as follows:

Definition 1: The FUP problem is to find an optimal data
partition scheme, denoted as P∗, so that the prediction errors
of testing each obtained task model Mi on the corresponding
testing set of Γi, denoted as Γtst

i , i.e.,
∑n

i=1 E(Mi,Γ
tst
i ), is

minimized, where E(Mi,Γ
tst
i ) denotes the prediction error of

testing Mi on Γtst
i .

The FUP problem is hard when dataset D contains non-
i.i.d. distributions (e.g., D is collected from multiple subjects
with different devices) as data distributions captured by DNN
models are latent. We have the following theorem:

Theorem 1: The FUP problem is NP-hard.
Proof: The FUP problem can be reduced from the

weighted set cover problem [36], a classic NP problem.
Specifically, let U denote a set of N elements, i.e., U =
{u1, u2, · · · , uN} and C(Si) denote the cost of Si in the
power set of U , i.e., ℘(U) = {S1, S2, · · · , S2N }, for i ∈
[1, 2N ]. Given U and ℘(U), the objective of the weighted
set cover problem is to infer a subset of ℘(U), denoted
as K, where

⋃
Si∈K Si = U so that the sum of the cost

of Ui for Si ∈ K, i.e.,
∑

Si∈K C(Si), is minimized. We
regard data samples {x1, x2, · · · , xN} in dataset D as the
elements {u1, u2, · · · , uN} in U . Similarly, the power set of
D, ℘(D) = {Γ1,Γ2, ...,Γ2N }, can be regarded as ℘(U) =
{S1, S2, · · · , S2N }. The prediction error E(Mi,Γ

tst
i ) can be

regarded as C(Si). Therefore, our objective
∑n

i=1 E(Mi,Γ
tst
i )

is equivalent to
∑

Si∈K C(Si) and thus is NP-hard.

III. DESIGN OVERVIEW

The core idea of Prism is to effectively estimate latent
domains regarding a specific perception task, embedded in
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Fig. 2. System architecture of Prism, where the IMU datasets are first detected
whether they are non-i.i.d. and the non-i.i.d. IMU datasets is then partitioned
for model training.

a non-i.i.d. IMU dataset, by partitioning data samples in an
appropriate feature space. With estimated domains, versatile
task models are trained together and downloaded to user
devices for online prediction. After downloading pre-trained
models, FUP can be conducted locally on mobile devices. To
this end, as illustrated in Figure 2, Prism consists of three main
parts as follows:

Distribution Inconsistence Detection (DID). Given a
dataset D, DID trains an initial model M0 using all training
samples, and then detects the inconsistency of data distribu-
tions in D, i.e., whether D is a non-i.i.d. dataset. For i.i.d.
datasets, Prism will directly utilize M0 for future online
user perception. Otherwise, Prism will estimate task-specific
domains for further model training.

Task-specific Domain Estimation (TDE). TDE is deployed
on a cloud server, which estimates latent domains in the IMU
dataset with an EM algorithm. Specifically, in the E-step, it
first estimates the domains of data samples by clustering their
features extracted with a backbone modelMenco. Then, in the
M-step, it maximizes the likelihood of estimated domains by
considering the following two factors: 1) the feature similarity
of each obtained domain; 2) the performance of a pack of n
task modelsMtask

i for i ∈ [1, n], respectively trained and tested
on such domains. These two steps repeat to optimize Menco

and all Mtask
i until convergence.

Online User Perception (OUP). Before conducting online
user perception, all derived models in TDE, i.e., theMenco and
all Mtask

i for i ∈ [1, n], are downloaded to a mobile device.
Each test data sample is first embedded into the same feature
space using Menco. Then, the best-fit model classifier specific
to the closest domain in the feature space will be selected for
model inference.
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Fig. 3. Illustration of NID calculation, where NIs are calculated and averaged
as dataset D is traversed by swapping clips between Dα

i and Dβ
i .

IV. DISTRIBUTION INCONSISTENCE DETECTION

A. Initial Model Training

Given the available dataset D, we first train a model
M0 for a specific perception task using all training sam-
ples. Specifically, M0 comprises a feature extraction back-
bone network Menco

0 and a task classifier Mtask
0 . We train

M0 with all training samples using the cross-entropy loss:
Limt = − 1

N

∑N
i=1

∑C
j=1 yi,j log(Mtask

0 (Menco
0 (xi))j), where

xi denote the i-th data sample in dataset D; C denotes
the number of classes; yi,j denotes a binary label indicating
whether i-th sample belongs to j-th label; and N is the number
of samples in dataset D.

B. Non-i.i.d. Test

Given the dataset D and the initial modelM0, we examine
the non-i.i.d. level of D regarding a particular perception
task to determine whether latent domains should be identified.
Specifically, we first partition D randomly into 2k data clips,
denoted as ci, for i ∈ [1, 2k], where k denotes the pre-
set epochs of non-i.i.d. tests and i denotes the index of
rounds. Then, we group all clips into two sets, each with
k clips, denoted as Dα

1 and Dβ
1 , respectively. For example,

Dα
1 ← {c1, c2, · · · , ck} and Dβ

1 ← {ck+1, ck+2, · · · , c2k}.
The non-i.i.d. index (NI) between two sub-datasets Dα

i and
Dβ

i can be calculated as the norm of their features [37]:

NIi =
1

C

C∑
cls=1

∥M
enco
0 ([Dα

i ]
cls

)−Menco
0 ([Dβ

i ]
cls

)

σ(Menco
0 ([D]cls))

∥2, (1)

where [Dα
i ]

cls, [Dβ
i ]

cls
and [D]cls denotes the set of data

samples in Dα
i , Dβ

i and D with class label cls, respectively;
(·) denotes the first order moment; σ(·) denotes the standard
deviation used to normalize the scale of features; ∥·∥2 denotes
the L2-norm; C denotes the number of classes to classify in
a specific perception task.

As illustrated in Figure 3, we repeat the NI calcula-
tion between different pairs of Dα

i and Dβ
i , constructed by

exchanging ci−1 in Dα
i−1 and ck+i−1 in Dβ

i−1, for i ∈
[2, k]. For example, Dα

2 ← {c2, · · · , ck, ck+1} and Dβ
2 ←

{ck+2, · · · , c2k, c1}, where c1 in Dα
1 and ck+1 in Dβ

1 are
exchanged. After k − 1 rounds of exchanges, Dα

1 and Dβ
2

are totally swapped, i.e., Dα
k = Dβ

1 and Dβ
k = Dα

1 , which
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Fig. 4. Non-i.i.d. degree of a dataset (NID) vs perception prediction error,
where a high prediction error is always with a high NID.

completes one traversal of dataset D. We define NID of dataset
D as the average of all NIi obtained in one traversal of D:

NID =
1

k

k∑
i=1

NIi. (2)

Figure 4 shows the prediction errors of a single CNN model
and their corresponding NIDs of performing AR and UA tasks
on three IMU user perception datasets, i.e., UCI, HHAR, and
Motion. It can be seen that tasks with a high NID also have a
high prediction error. Therefore, we consider dataset D non-
i.i.d. for a task if its NID exceeds a certain threshold.

V. TASK-SPECIFIC DOMAIN ESTIMATION

A. Model Initialization

We first initialize all task models. Specifically, each Mi

comprises a common backbone Menco and n domain-specific
task classifiers Mtask

i for i ∈ [1, n], where n represents
the number of estimated domains. Each task classifier is
trained for a particular domain to produce a prediction ŷ. The
parameters of the pre-trainedM0 are used to initialize allMi

for i ∈ [1, n]:

Menco ←Menco
0 ,Mtask

i ←Mtask
0 for i ∈ [1, n]. (3)

B. E-step: Latent Distribution Estimation

The E-step of Prism aims to estimate the task-specific
domains in D. Specifically, we first utilize the encoder Menco

to encode {x1, x2, · · · , xN} into {h1, h2, · · · , hN} in a feature
space. Then, we group {h1, h2, · · · , hN} into n domains
{H1, H2, · · · , Hn} by clustering in the feature space through
k-means. Each Hi for i ∈ [1, n] in the feature space corre-
sponds to a latent domain Γi in the data space, leading to a
partition scheme P̂∗.

C. M-step: Task-oriented Domain Likelihood Maximization

The parameters of backbone encoder Menco are further
optimized in a manner of gradient descent in M-step. In
Prism, two assessments are designed to obtain the loss for
optimization.

1) Clustering Result Assessment: The clustering result as-
sessment aims to assess whether the hidden feature space
is well embedded so that the domains {Γ1,Γ2, · · · ,Γn} are
well divided in the feature space. The contrastive loss [38] is
used for clustering result assessment, which encourages similar

pairs to be closer and dissimilar pairs to be farther apart in
the feature space, which can be computed as follows:

LC =
1

2N

N∑
n=1

[u · d2 + (1− u) ·max(M − d, 0)2], (4)

where u denotes a binary label indicating whether two input
samples belong to the same class (u = 1) or not (u = 0);
d denotes the distance between two samples in the feature
space; M denotes the contrastive margin, which is a hyper-
parameter that determines the minimum distance for different-
class samples.

2) Trial Task Assessment: To obtain the task-oriented loss,
denoted as LT , the task classifiers Mtask

i for i ∈ [1, n]
are jointly trained to access the quality of current partition
scheme P̂∗. Specifically, for each training sample xj and its
corresponding domain index mj ∈ [1, n], we forward the
features hj of xj with the mj-th classifier. Then, the cross-
entropy loss is used for the optimization of Menco and Mtask

i

for i ∈ [1, n]:

LT = − 1

N

N∑
j=1

C∑
k=1

yj,k log(Mtask
mj

(Menco(xj))k). (5)

Finally, the total loss (denoted as Ltde) for domain estima-
tion is defined as the weighted sum of the contrastive loss LC

and the task-specific cross-entropy loss LT :

Ltde = α · LC + LT , (6)

where α denotes a hyper-parameter of contrastive loss weight
for the balance of LC and LT .

D. Theoretical Analyses

Convergence Analysis of Prism. Prism can be proven to
converge as follows.

Convergence of Prism: Denote the set of all parameters
in Mi for i ∈ [1, n] to be θ. In Prism, we first estimate
the domains H1, H2, · · · , Hn in E-step and then update the
current parameters, denoted as θ(t), to θ(t+1) by minimizing
the loss function Ltde shown in Equation 6. Therefore, to prove
the convergence of Prism is to prove the convergence of Ltde.
To this end, we first prove the monotonicity of Ltde during
iteration and then prove the boundedness of Ltde.

Monotonicity. The monotonicity of Ltde during iterations,
i.e., Ltde(θ(t+1)) ≤ Ltde(θ(t)) for each t, can be guaranteed
in the M-step. Specifically, in M-step, we obtain θ(t+1) by
minimizing Ltde, i.e., θ(t+1) = argminθ Ltde(θ(t)). As a
result, we have Ltde(θ(t+1)) ≤ Ltde(θ(t)).

Boundedness. We consider the custom loss function Ltde =
α · LC +LT , where LC and LT are shown in Equation 4 and
Equation 5, respectively. Ltde has a lower bound of 0 because
both components of Ltde, LC and LT , have a lower bound of
0. For LC = 1

2N

∑N
n=1[u · d2 + (1 − u) · max(M − d, 0)2],

since both d2 and max(M − d, 0)2 are non-negative, LC is
non-negative, and its minimum value is 0 when d = 0. For
LT = − 1

N

∑N
j=1

∑C
k=1 yj,k log(Mtask

mj
(Menco(xj))k), since

0 ≤ Mtask
mj

(Menco(xj))k ≤ 1 and log(Mtask
mj

(Menco(xj))k) ≤



0, LT is non-negative, and its minimum value is 0 when
Mtask

mj
(Menco(xj))k = 1 for the correct class k. Therefore, the

combined loss function Ltde is bounded below by 0, ensuring
the boundedness of the loss function.

In conclusion, Prism is guaranteed to converge due to the
monotonicity in each iteration and the bounded nature of the
loss function Ltde.

Computing Complexity Analysis of Training Prism. The
computational complexity of training Prism is linear.

Linear Complexity of Prism: Let Tenco and Ttask denote
training time of one sample needed by Menco and Mtask for
i ∈ [1, n], respectively. Both Tenco and Ttask are constant
because of the nature of DNN [39]. Let Iclus denote the
iteration times of clustering. Since the overhead of the NID
test is much smaller than model training, the computing
time of Prism mainly consists of 3 parts: encoder training,
domain clustering, and downstream task training. Thus, the
overall complexity O(Tenco · N + n · Iclus · N + Ttask · N) =
O((Tenco + n · Iclus + Ttask) ·N), where n denotes the number
of estimated domains. Note that all the coefficients of N are
constants. As a result, the overall time complexity is O(N).

Although the coefficient of linear complexity is large,
compared to the original NP-hard problem, the complexity is
greatly reduced and is acceptable for training on the cloud.

VI. EVALUATION

A. Methodology

1) Datasets: We consider the following user perception
datasets:
• UCI [32]: UCI is a publicly available dataset containing ac-

celerometer and gyroscope readings from a Samsung Galaxy
S II smartphone carried by 30 subjects when performing
six activities, i.e., standing, sitting, lying, walking, going
downstairs, and going upstairs. The data sampling rate is
50 Hz. We slice each sensor trace into non-overlapping
segments of 300 samples and filter out segments with
multiple activity labels, leading to a set D of 2,088 IMU
segments.

• HHAR [33]: HHAR is a publicly available dataset consist-
ing of accelerometer and gyroscope readings collected from
6 types of mobile phones (3 models of Samsung Galaxy and
1 model of LG). The smartphones are worn around the waist
by 9 users performing 6 different activities (biking, sitting,
standing, walking, upstairs, and downstairs). The sampling
rates of HHAR are 100 - 200 Hz.

• Motion [34]: Motion is a publicly available dataset of
accelerometer and gyroscope readings collected from a
smartphone (iPhone 6s) worn by 24 subjects during various
daily activities. The data is collected with the smartphone in
the front pockets of the subjects. Motion covers 6 different
activities (downstairs, upstairs, walking, jogging, sitting,
and standing) at a sampling rate of 50 Hz.
We down-sample the IMU data to 20 Hz and slice the data

with a window length of 120, each with a window of 6s.

We omit those samples with multiple inconsistent labels and
obtain a dataset of 2088, 5434, and 9166 original IMU samples
for UCI, HHAR, and Motion, respectively. We normalize the
recordings as follows: ai = ai

g , i ∈ {x, y, z}, where ai
denotes the accelerometer readings in the i-axis, respectively;
g denotes the universal gravitational constant. Data samples
are then shuffled and divided into training sets, validation sets,
and testing sets with a ratio of 6:2:2.

2) Implementation: We implement the offline domain es-
timation and model training part on a cloud server equipped
with 256GB DRAM and 4 Nvidia 3090 GPUs. Every down-
stream task classifier Mtask

i for i ∈ [1, n] is comprised of an
MLP [40]. Empirically, Prism can converge within 200 epochs.
As a result, Prism conducts EM iterations for 200 epochs and
the model with the best performance on the validation set is
selected for further testing.

We implement the online inference part on 6 typical mobile
devices, i.e., Honor X40, Vivo X27, Mi 6, Pixel 3 XL, Huawei
Mate 40 Pro, and iPhone 14 Plus. The hardware configurations
are shown in Table I. ONNX [41] is used to convert models for
cross-platform deployment. Well-trained model Mi is offline
downloaded from the cloud server to mobile devices. TVM
[42] is used for the model acceleration on mobile devices.

3) Candidate Methods: We compare Prism with the fol-
lowing candidate methods:

• Training one single model (P0): A single model is
trained with all available samples and is tested for all
test samples.

• Semantic partition (P sem) [43]: Models are trained on
domains defined by semantic attributes. During online
prediction, the task model with the same semantic at-
tribute is selected for use.

• Clustering in the data space (PCD) [28]: Models are
trained on domains defined by clustering training samples
in the original data space. During online prediction, the
downstream task model whose mean of all original data
is closest to the data of the test sample is selected for
use.

• Clustering in the feature space (PCF) [13]: Models
are trained on domains defined by deep clustering [30]
on training samples. During online prediction, the down-
stream task model whose mean of all features is closest
to that of the test sample is selected.

For all the candidate methods, we consider two model
training schemes as follows:

TABLE I
PRISM IS IMPLEMENTED ON 6 DIFFERENT TYPES OF MOBILE PHONES

WITH DISTINCT HARDWARE CONFIGURATIONS.

Phone SoC GPU Memory Disk
Honor X40 Dimensity 1300 Mali-G77 MC9 12GB 256GB
Vivo X27 Snapdragon 710 Adreno 616 8GB 256GB

Mi 6 Snapdragon 835 Adreno 540 6GB 64GB
Pixel 3 XL Snapdragon 845 Adreno 630 4GB 128GB

Mate 40 Pro Kirin 9000 Mali-G78 MP24 8GB 256GB
iPhone 14 Plus A15 5-core GPU 6GB 256GB
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Fig. 5. Hyper-parameters selection results across 6 testing sets Γtst
i for i ∈

[1, 6] on the UA task of UCI dataset.

• Training one single model using domain generalization
(DG): One single model, denoted as MDG

0 , is trained by
aligning data samples of the same label in each Γi in the
feature space [13].

• Training individual models using domain adaptation
(DA): An Individual model, denoted as MDA

i , is trained
by fine-tuning M0 on each Γi [43].

4) Tasks and Metrics: We compare all candidate methods
on typical user perception tasks of Activity Recognition (AR)
and User Authentication (UA). In the AR task, models are
trained to recognize human activities (e.g., standing, lying, or
walking) with IMU data. In the UA task, models are trained
to recognize human IDs (e.g., User 1 and User 2). As the
considered tasks are classification tasks, we adopt accuracy
(Acc) and F1 score (F1) for performance comparison. Acc
is defined as the proportion of correctly predicted samples
to the total number of test samples and F1 is defined as
F1 = 1

NC

∑NC

i=1
2·pi·ri
pi+ri

, where pi and ri denote the precision
and recall of the i-th class, respectively, and NC denotes the
number of all classes.

B. Hyper-parameters Selection

We first investigate the selection of hyper-parameters, i.e.,
weight of contrastive loss α, number of estimated domains
n, and contrastive margin M . We conduct hyper-parameters
selection on UA task of UCI dataset, which is a representative
non-i.i.d. task, with an NID of 2.69. In order to present the
detailed testing results, we partition the testing set of UCI
based on prior semantic attributes, i.e., activities, and obtain
6 testing sets, denoted as Γtst

i for i ∈ [1, 6] for evaluation.
Weight of Contrastive Loss α. Figure 5(a) shows the box

plot of FUP accuracy on Γtst
i for i ∈ [1, 6] with different

contrastive loss α in Prism. It can be seen that both a low α
and a high α result in a relatively low inference accuracy. This
is because a low α makes Prism degenerate to the methods
without partition while a high α will influence the optimization
with LT , which makes the training of downstream tasks under-
fitting. As a result, in the following experiments, we choose a
moderate value for α for its best performance.

Number of Estimated Domains n. Figure 5(b) shows the
box plot of FUP accuracy of Prism on Γtst

i for i ∈ [1, 6] with
different domain estimating numbers n. It can be seen that the
test accuracy increases quickly at first with n increasing. This
shows the efficacy of domain estimation on the non-i.i.d. tasks.
We can also see that the accuracy drops with the increase of

n. This is because i.i.d. domains may also be partitioned with
a large n, resulting in a sub-optimal FUP performance. As a
result, in the following experiments, we choose an intermediate
value of n for its competitive performance.

Contrastive Margin M . Figure 5(c) shows the box plot of
FUP accuracy of Prism on Γtst

i for i ∈ [1, 6] with different
contrastive margin M . It can be seen that the accuracy first
increase and then drop with the increase of M . This is because
a too small M will make LC ignore some key samples while a
too high M will make LC focus on the hard samples. Both of
the above two cases will result in a worse FUP performance.
As a result, we choose a moderate value for M (e.g., M = 1.0
for UA task on UCI dataset) for better performance.

C. Overall FUP Performance

In this experiment, we investigate the performance of all
candidate methods on FUP user perception tasks. The task-
specific domain estimation (TDE) module is conducted for all
datasets to evaluate its effect on datasets with various NIDs.
The models are trained with DCNN, GRU, and Transformer,
respectively. Table II shows the average accuracy and F1 score
of candidate methods of the models for all tasks.

1) Performance Comparison: It can be seen that Prism
outwits other methods over all tasks on all datasets. Prism
outperforms the traditional method P0 on tasks with high
non-i.i.d. degree (NID) by up to 38.69% and 41.86% rela-
tively in terms of accuracy and F1 score, respectively. This
demonstrates that FUP accuracy will be better for non-i.i.d.
datasets if we consider its non-i.i.d. issue. On tasks with low
NID, where the performance of P0 is good enough, Prism can
also slightly outperform P0 and other candidate methods. This
shows the adaptability of Prism on both tasks with high and
low NID.

2) Performance of Semantic Partition: It is a common
practice to partition a dataset based on semantic attributes (i.e.,
P sem). It can be seen that Prism can outperform P sem with both
DA and DG training schemes. The average prediction accuracy
of P sem is even lower than P0 by over 20%. This is because
the semantic attributes are task-agnostic and may not always
work well on all tasks. P sem may work well on some tasks. For
example, on UA task of Motion dataset, P sem with DG training
scheme outperforms P0 on accuracy by 3.03%. However, P sem

can not work well in most cases, which indicates its limitation.
3) Performance of Domain Partition based on Clustering:

A naı̈ve way for domain partition is clustering data samples in
the dataset unsupervisedly on data space (i.e., PCD) or feature
space(i.e., PCF). We can see that Prism outperforms both PCD

and PCF on all tasks. This is because unsupervised clustering
on data samples is also task-agnostic and remains unstable in
performance. Moreover, it can be seen that Prism outperforms
the state-of-the-art DG methods [13] (i.e., PCF with DG
training scheme) in terms of accuracy and F1 score by 41.94
% and 46.53 %, respectively. This is because FUP problem
is different from domain generalization (DG) problem. FUP
focuses on flexible model adaptation between seen domains
while DG focuses on model generalization to unseen domains.



TABLE II
OVERALL PERFORMANCE OF PRISM AND ALL OTHER CANDIDATE METHODS, WHERE PRISM OUTWITS OTHER CANDIDATE METHODS ON VARIOUS TASKS.

Dataset UCI HHAR Motion
Task AR UA AR UA AR UA
NID 0.37 2.69 0.20 0.56 0.24 1.35

Metric (%) Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
P0 93.06 93.53 42.26 40.11 98.26 98.15 95.69 95.71 98.53 97.81 75.19 74.46

DG
Psem 72.73 67.78 43.54 38.11 76.05 75.78 64.99 58.47 86.48 78.48 64.46 61.45
PCD 82.06 78.85 36.68 30.94 73.59 73.24 72.32 70.61 91.69 85.72 67.51 63.80
PCF 72.73 67.78 43.54 38.11 76.05 75.78 64.99 58.47 86.48 78.48 64.46 61.45

DA
Psem 81.9 77.19 40.75 33.95 57.16 55.26 54.33 46.85 86.81 82.93 79.82 77.67
PCD 87.88 85.10 49.28 44.16 62.59 61.01 70.47 68.14 70.77 60.68 70.01 67.63
PCF 86.05 81.93 40.19 34.67 90.77 90.12 62.83 58.66 79.46 76.28 63.14 60.21

Ppri 95.93 96.18 58.61 56.90 99.16 99.07 96.73 96.69 98.75 98.16 82.98 82.67
Gain over P0 +2.87 +2.65 +16.35 +16.79 +0.90 +0.92 +1.04 +0.98 +0.22 +0.35 +7.79 +8.21

As a result, DG can not work well on FUP problem. We will
apply DA for model training in the following experiments.

D. Experiments on Large-scale Non-i.i.d. Dataset

We further evaluate Prism on large-scale non-i.i.d. IMU
datasets. Specifically, we consider the University of Sussex-
Huawei Locomotion (SHL) V1 dataset [35] a representative
real-world IMU dataset. Four HUAWEI Mate 9 smartphones
were respectively placed on four different body locations of
a participant, including hand (ha), torso (to), backpack (ba),
and trousers’ front pocket (fr). A data logging application [44]
was used to automatically log 16 sensor modalities including
IMU sensors at a sampling rate of 100 Hz. During post-
processing, an annotation tool is developed to help participants
to label their activity as Car, Bus, Train, Subway, Walk, Run,
Bike, and Still. We first pre-process the 9-dimension IMU
data of three types of sensors, i.e., accelerometer, gyroscope,
and magnetometer. Specifically, IMU data are segmented into
samples of 5 seconds and then normalized as in Section VI-A1.
We omit those samples with multiple inconsistent labels and
obtain a dataset of 287,124 original IMU samples. In this
study, we take a natural data partition scheme according to the
phone location and derive four subsets, denoted as Γha, Γto,
Γba, and Γfr, respectively. In addition, to mimic data sources
with different sampling rates, we further equally divide Γha

into four subsets, and downsample them with four sampling
rates, i.e., 25 Hz, 50 Hz, 75 Hz, and 100 Hz, respectively. After
that, we obtain four new subsets, denoted as Γ25

ha, Γ50
ha, Γ75

ha,
and Γ100

ha . The same procedure repeats for each of the other
three subsets, i.e., Γto, Γba, and Γfr, too. As a result, we can
obtain a manual data partition of 16 prior semantic domains,
denoted as P sem, according to two types of metadata, i.e., the
phone location and the sampling rate. We divide each domain
into a training set, a validation set, and a testing set with a
ratio of 6:2:2.

We conduct FUP evaluation on the testing sets of 16
domains in SHL. We considers 4 popular IMU base models,
i.e., DCNN [45], GRU, LIMU-CNN, and LIMU-GRU [16]
in this experiment. Table III shows the average overall per-
formance of candidate methods on different base models
with both the AR task and the UA task. We show the FUP

performance based on DCNN [45], GRU, LIMU-CNN, and
LIMU-GRU [16] in Figure 6, Figure 7, Figure 8 and Figure 9,
respectively. We can see that Prism outperforms all candidate
methods on all base models on average. This is because Prism
considers data partition based on the performance of training
on the downstream task. We further take the performance of
evaluations based on DCNN on the AR task as an example,
which is shown in Figure 6(a) and Figure 6(b). We can see
that the box plot of Prism is both higher and more compact,
suggesting its superior performance across all test domains
compared to other methods. Specifically, Prism can achieve
an average increase of 9.5% and 9.3% on accuracy and F1
score compared with P0, respectively. The results demonstrate
that Prism estimates the latent domains and the models can be
trained well on corresponding domains. We can also see that
all the partition-based methods except for PSR (which lacks
prior semantic information when testing) can outperform P0,
which considers all samples as one domain. In fact, PCF and
P sem can outperform P0 by 6.0% and 3.8% on F1 score,
respectively. This is because data partition relieves the non-
i.i.d. issue in the dataset in some degree. We can also see
difficulty differences in different test domains as there are
always some test domains showing a low inference accuracy.
For example, in Figure 6(a), the typical P0 method can have
a performance difference of over 17.5% between the easiest
and the most difficult domain, i.e., the range between the upper
and lower limits of the boxes.

E. System Costs

1) Training Costs: We investigate the system cost of dif-
ferent schemes from the following three aspects, i.e., total
number of parameters, disk size, and memory consumption
during inference. Table IV demonstrates that the increase on
system costs of Prism compared with P0 is acceptable. This
is owing to the design of unified backbone Menco in Mi,
indicating the feasibility of Prism’s deployment.

2) Inference Latency: We evaluate the inference latency of
Prism and the fast candidate method (i.e., P0) on different
mobile devices. The results are shown in Figure 10. The results
reveal that Prism only exhibits a negligibly higher latency
when compared to the fastest scheme. This is because despite



TABLE III
AVERAGE FUP PERFORMANCE ON LARGE-SCALE NON-i.i.d. SHL DATASET, WHERE PRISM OUTPERFORMS ALL THE CANDIDATE METHODS ON AVERAGE.

EACH MODEL IS TRAINED WITH DOMAIN ADAPTATION FOR THE SUPERIOR PERFORMANCE OF THIS TRAINING SCHEME ON FUP PROBLEM.

Model DCNN GRU LIMU-CNN LIMU-GRU
Task AR UA AR UA AR UA AR UA

Metric (%) Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
P0 75.2 76.1 85.4 85.1 75.7 77.5 91.0 91.0 77.0 77.2 82.5 82.3 78.4 80.0 86.9 86.7
PCF 81.2 82.1 89.7 89.7 73.2 75.0 87.6 87.5 78.7 79.3 87.4 87.2 78.8 79.8 90.5 90.4
PCD 81.0 81.7 90.2 90.1 72.9 73.7 88.0 87.8 79.0 79.5 86.4 86.3 78.9 80.0 90.4 90.3
PSR 71.2 72.3 76.2 76.0 64.2 65.2 79.3 79.0 65.3 64.1 77.5 77.3 66.8 65.2 65.2 78.4
Psem 78.8 79.9 91.8 91.7 71.1 72.1 89.1 89.0 74.4 73.7 88.1 88.0 75.0 74.9 89.5 89.0
Ppri 84.7 85.4 92.5 92.4 78.8 80.2 91.5 91.5 79.2 80.2 88.0 87.8 82.9 83.9 91.0 90.9

Gain over P0 +9.5 +9.3 +7.1 +7.3 +3.1 +2.7 +0.5 +0.5 +2.2 +3.0 +5.5 +5.5 +4.5 +3.9 +4.1 +4.2
1 In fact, accurate semantic information is lacking in real-world testing. As a result, Psem is unrealistic and we add a realistic alternative of Psem

named PSR (semantic partition in the real-world setting), which utilizes a neural network for semantic information prediction in real time.
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Fig. 6. Boxplots of FUP performance based on DCNN, where Prism can outperform all other candidate methods and achieve the best performance among
all the base models. We denote the partition of Prism as Ppri.
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Fig. 7. Boxplots of FUP performance based on GRU, where Prism can outperform all other candidate methods. Note that on this base model, P0 works
second best.
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Fig. 8. Boxplots of FUP performance based on LIMU-CNN. Surprisingly, other partition-based methods also work well on this base model owing to the
strong generalization ability of the pre-trained model LIMU. However, Prism is also comparable with the best methods.
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Fig. 9. Boxplots of FUP performance based on LIMU-GRU, where Prism can outperform all other candidate methods. Note that LIMU-GRU is the SOTA
base model for IMU data prediction. However, it does not perform best as the best model on Prism for the FUP problem.



TABLE IV
COSTS OF ALL PARTITION METHODS.

Methods P0 Psem PCD PCF Ppri

Parameters (KB) 96.7 386.8 290.1 360.2 118.5
Disk size (KB) 380 1520 1140 1490 468
Memory (MB) 119 714 833 894 152
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Fig. 10. Inference latency of Prism and P0 on 6 typical mobile devices.

Prism utilizes multiple downstream task classifiers (e.g.,Mtask
i

for i ∈ [1, n]), only one downstream task classifier (e.g.,
Mtask

3 ) needs to be executed during each inference. As a result,
the latency of Prism is close to that of P0. We can also see
that even on our lowest-end smartphones (i.e., Honor X40), the
latency of Prism is below 60 ms. This highlights that Prism
is lightweight and can be easily deployed to a wide variety of
mobile devices with limited computational capacity.

VII. DISCUSSION

Differences between Prism and MoE. MoE, i.e., Mixture
of Experts, is a popular technology to extend the model
parameters and is similar with Prism. Prism differs from MoE
in two aspects. First, experts in MoE are diversified just by
constraints of losses, but they themselves cannot be related
to the domains in the dataset. Second, models based on MoE
architecture can only be deployed with the entire model, which
is unacceptable for mobile applications. On the contrary, the
models in Prism can be partially deployed [29], i.e., only
models related to testing scenarios to be deployed, making
Prism more lightweight and suitable for mobile devices.

VIII. RELATED WORK

A. Flexible User Perception for IMU Data.

Flexible user perception for IMU data has been widely
explored with transfer-learning-based solutions [11], [12].
However, these methods based on transfer learning do not
consider the mobile setting, where the test domains are un-
known. The domain partition is therefore proposed to solve
the FUP problem [22], [24], [25]. TeamNet [22] explores and
trains multiple small NNs through competitive and selective
learning. UniHAR [10] adapts to all seen domains offline to
ensure inference performance. All of these methods require
accurate apriori information for data partition, which is hard
to obtain in the real-world setting.

B. Automatic Domain Estimation.

As for automatic domain estimation, a natural idea is to per-
form clustering before training, e.g., Clustered partition [46].
The key lies in the similarity measurement including mainly

two types, i.e., prior information, and historical samples.
First, through prior information, similarity graphs bring similar
domains close to each other based on domain knowledge [47],
[48]. However, such prior information constructed accord-
ing to domain-based knowledge is also not easy to obtain,
hindering the wide use of such approaches in real-world
applications. Second, samples are used in data partition for
more automatic clustering [26], [49]. However, these methods
merely rely on the samples or features, which can result in
missing intrinsic information, as reported in various real-world
applications [27], [50]. Third, the downstream task labels can
also be used for the task-specific data partition [28], [43].
A task-oriented data grouping strategy based on the greedy
method is proposed by TForest [43]. LEON [28] proposed
an online updating method for task-specific data partition.
However, prior information is still needed for the initial data
partition. DIVERSIFY [13] iteratively estimates dynamic task-
independent distributions of time series. In contrast, Prism
differs from the existing methods for it is automatic, prior-
free, and task-aware.

C. Quantification of Non-i.i.d. Degree.

Non-i.i.d. issue has been a research focus in the field of
data mining for a long time [51]–[53]. The quantification
of non-i.i.d. degree between two distinct datasets can be
computed as their difference of features of the same class
between datasets [37]. For the non-i.i.d. index of one single
dataset, prediction confidence is always considered as a flag for
non-i.i.d. testing [54]. RISE [55] proposed a non-i.i.d. index
based on Conformal Prediction (CP) theory [56] for traditional
machine learning models. However, RISE relies on the closed-
form solution of the model and as a result unsuitable for deep
neural network. In contrast, Prism defines NID based on the
difference of features in multiple partitions of the dataset,
which is simple but effective.

IX. CONCLUSION

In this paper, we have proposed a flexible user perception
scheme, called Prism, for flexible user perception on mobile
devices. Prism can automatically discover latent domains in a
dataset with respect to a specific perception task, resulting in a
set of domain-specific reliable task models for use. As a result,
Prism can obtain state-of-the-art prediction accuracy while
having no particular requirements on how users operate their
devices. Prism is lightweight and can be easily implemented
on various mobile devices at a low cost. Extensive experiment
results demonstrate that Prism can achieve the best flexible
user perception performance at low latency.
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