WISNet: Pseudo Label Generation on Unbalanced and
Patch Annotated Waste Images

Shifan Zhang!
! Shanghai Jiao Tong University

Hongzi Zhu'*  Yinan He? Minyi Guo'

2 Tencent Al Lab

Ziyang Lou’  Shan Chang?
3 Donghua University

{zhangshifan, hongzi, louworldl2}@sjtu.edu.cn

heyinanda@alumni.sjtu.edu.cn guo-my@cs.sjtu.edu.cn

changshan@dhu.edu.cn

Abstract

Computer-vision-based assessment on waste sorting is de-
sired to replace manpower supervision in Shanghai city.
Due to the hardness of labeling a multitude of waste im-
ages, it is infeasible to train a semantic segmentation model
for this purpose directly. In this work, we construct a new
dataset consisting of 12, 208 waste images, upon which seed
regions (i.e., patches) are annotated and classified into 21
categories in a crowdsourcing fashion. To obtain pixel-level
labels to train an effective segmentation model, we propose
a weakly-supervised waste image pseudo label generation
scheme, called WISNet. Specifically, we train a cohesive
feature extractor with contrastive prototype learning, in-
corporating an unsupervised classification pretext task to
help the extractor focus on more discriminative regions even
with the same category. Furthermore, we propose an effec-
tive iterative patch expansion method to generate accurate
pixel-level pseudo labels. Given these generated pseudo
labels, a few-shot segmentation model can be trained to
segment waste images. We implement and deploy WISNet
in real-world scenarios and conduct intensive experiments.
Results show that WISNet can achieve a state-of-the-art
40.2% final segmentation mloU on our waste benchmark,
outperforming all other baselines and demonstrating its ef-
ficacy. The dataset and code will be publicly available at:
https://github.com/shifan-Z/WISNet

1. Introduction

To reduce waste treatment overload and make the city
more environmentally friendly, new waste sorting regula-
tions have come into effect in Shanghai, one of the biggest
metropolises in China. As many residents have little en-
thusiasm and knowledge for waste sorting, a team of over
30,000 volunteers has been recruited to supervise trash
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Figure 1. (a) Examples of waste images and patch-level annota-
tions to minimize the manpower costs; (b) examples of test waste
images; (c) ground truth; (d) and (e) are the segmentation results
using PANet with labels generated by a SOTA model [34] and
WISNet, respectively.

sorting on around 21, 000 disposal sites across the city. To
reduce manpower costs, an automated waste sorting quality
assessment system is needed to analyze top-view images of
trash bins, identify all waste categories, and estimate the
proportion of incorrectly sorted waste.

To recognize each category in a waste image, however,
is quite distinct from classic image segmentation tasks due
to three reasons. First, waste images are more complex
with distorted and stained waste objects of various cate-
gories densely distributed and highly overlapped with each
other. For instance, as illustrated in Figure 1 (a), it is often
challenging for human eyes to recognize all categories in a
waste image. Second, the distribution of waste categories
is severely imbalanced, making the number of samples of
each category quite imbalanced. Last but not least, there is
no existing large-scale and high-quality community waste
dataset available for waste image segmentation study.

In the literature, many segmentation models [3, 4] have
been proven effective on various datasets, ranging from



biomedical images to real-world scenes, but they heav-
ily rely on training datasets with pixel-level annotations.
Recently, weakly-supervised learning, using simple labels
such as image-level labels [5, 7, 31, 34, 35], scribbles [21]
or bounding boxes [14, 19, 25, 30], greatly alleviates the
difficulty of constructing expensive labeled data. Neverthe-
less, heavily stained waste objects severely impair the per-
formance of these segmentation models. As illustrated in
Figure 1, results of applying the PANet [33] trained with
pseudo labels generated with DuPL [34], a SOTA solution
to weakly-supervised segmentation, are unsatisfactory.

In this paper, we propose a weakly-supervised waste im-
age pseudo label generation scheme, called WISNet, to fa-
cilitate the analysis of semantic composition of waste im-
ages. To boost the study, we first construct a waste dataset,
named ShanghaiWaste, comprising 12, 208 images across
21 categories. To minimize annotation costs, as shown in
Figure 1 (a), rectangle patches are used to label objects of
the same category by volunteering sanitation workers, lead-
ing to a large set of 40, 392 patches in total. The core idea
of WISNet is to first obtain pixel-level semantic information
from patch-level annotations and then train a segmentation
model using the generated masks as supervision. There are
two main challenges in designing WISNet as follows.

First, the imbalanced distribution and patch-level annota-
tions of waste images make generating accurate pixel-level
labels for all categories challenging. To tackle this, we pro-
pose a framework of contrastive prototype learning, where
both positive and negative feature prototypes of each waste
category are generated and used to assign pseudo labels to
unpatched pixels by matching the corresponding features of
these pixels to the prototypes. Furthermore, to obtain stable
results, we introduce an iterative patch expansion method,
where newly generated pseudo labels are in turn used to
update those prototypes. This process repeats until conver-
gence. Consequently, all categories, regardless of sample
abundance, can be effectively recognized.

Second, assigning labels to unpatched pixels in a waste
image is a non-trivial task since only pixels within patches
have semantic labels. To deal with this challenge, it is key
to obtain a supreme feature extractor, which can effectively
discriminate complex waste objects of various categories in
waste images. Observing the fact that the image characteris-
tics of waste objects in the same category vary significantly,
we incorporate a challenging classification task into the fea-
ture extractor training process. Specifically, all patches of
each category are first classified into different subcategories
in the feature space using a mature pre-trained image feature
extractor. Then, in addition to the given patch-level annota-
tions, the subcategory information is also used to supervise
the classification task designed in the training of the feature
extractor. As a result, the ability of the extractor to capture
diverse attributes of waste images is greatly enhanced.

We implement a prototype system of WISNet and deploy
the system in two residential complexes in Shanghai. We
evaluate the performance of WISNet with real-world waste
images and the results demonstrate that WISNet can achieve
a SOTA average mloU of 40.2% over all categories on our
waste benchmark at the current stage.

The main contributions of our work are as follows:

* We construct a new waste dataset consisting of
40, 392 patches of 21 waste categories from 12, 208 im-
ages, which will be available for public study.

* We propose a new pseudo label generation scheme,
called WISNet, integrating neat feature extraction and it-
erative patch expansion.

* We deploy a weakly-supervised waste image segmen-
tation system at two pioneer residential complexes in
Shanghai, gaining SOTA performance in real-world ex-
periments.

2. Related Work
2.1. Waste Image Datasets

Existing waste image datasets [16, 24, 26] contain a limited
number of images captured in simple scenes, typically fea-
turing fewer than 1,000 images with a few waste objects
against clear backgrounds. Other datasets [11, 12] include
a larger number of images but primarily focus on under-
water environments. The TrashBox [17] collects images
from the web, yet many of these may not accurately repre-
sent actual trash. The WIXray [27] provides valuable X-ray
waste images, but expanding this dataset is challenging due
to the uncommon practice of deploying X-ray machines at
waste disposal sites. Consequently, there is a notable lack
of datasets featuring mixed waste objects in trash bins with
severe distortion and contamination. To address the gap,
we construct a new waste dataset, namely ShanghaiWaste,
which comprises 12, 208 images across 21 waste categories.

2.2. Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation, leveraging
coarse annotations like image-level annotations [1, 9, 31,
34, 35], scribbles [21] or bounding boxes [19], aims to learn
semantic segmentation without exhaustive labeling. Most
SOTA methods [7, 31, 34] follow a similar strategy in which
information is excavated from coarse annotations to obtain
pseudo labels, aiming at revealing the accurate shapes and
boundaries of object areas. Some methods [14, 25, 30]
utilize traditional techniques like graph-based optimization
and dense conditional random fields to refine initial re-
gions. Others [13, 15] adopt a seed-and-expand principle,
employing algorithms and loss functions to expand crude
annotations. A few approaches [1, 2] extract pixel-wise
affinity from weak annotations to propagate initial seeds,
while some methods [10, 18, 36] leverage additional data



like saliency maps or video frames to enhance performance.
Most existing methods focus on two natural datasets COCO
[22] and VOC [8], where all instances of object categories
are labeled in different terms including image-level anno-
tations, scribbles, and bounding boxes. In this paper, we
introduce new weak annotations in the form of patch-level
annotations for the ShanghaiWaste dataset.

2.3. Few-shot Learning

The distribution of objects in the real world is naturally
imbalanced. Most existing datasets are well-designed
and manually balanced to avoid performance degradation
caused by class imbalance. However, in many cases, data
of some categories are difficult to collect and imbalanced
data distributions inevitably become a challenge. In recent
years, research studies [28, 32] introduce the challenging
problem of few-shot segmentation, in which new models
are developed to learn to predict given only a few annotated
examples. It can greatly help solve the data imbalance prob-
lem. In few-shot segmentation literature, metric-learning
that measures the similarity between support images and
query images for fine-grained mask prediction is a popu-
lar paradigm. Many few-shot learning segmentation models
[6, 33, 37, 38] adopt the concept of prototypical networks
that extract prototypes from support samples. The distribu-
tion of waste is inherently imbalanced. To address this is-
sue, we propose a contrastive prototype learning framework
based on few-shot learning.

3. The ShanghaiWaste Dataset

In Shanghai, sanitation workers upload photos taken from
the top of waste bins to a data center via a smartphone app
if they find trash is not properly sorted out. Such images are
manually filtered according to the image quality, eliminat-
ing blur photos taken under extremely dark environments
or taken by shaky hands. In total, we collect 15, 090 waste
images from local authorities which were taken at different
indoor and outdoor locations, ranging from residential areas
to business districts, under different light conditions.

3.1. Waste Categories

In Shanghai, the current waste sorting method divides
household waste into four general categories: wet waste, re-
cyclables, hazardous waste, and dry waste. Wet waste refers
to organic waste such as food waste and green waste, which
can be composted with biotechnology to produce fertilizer
and renewable energy. Recyclables include paper, plastic,
glass, metal, and fabric, which can be recycled after com-
prehensive treatment to reduce pollution and save resources.
Hazardous waste such as batteries, expired medicines and
light bulbs contains heavy metal and other toxic substances
that cause potential harm to human health and the environ-
ment, and thus need special treatment before disposal. As

Super Category | Category | #of Images  # of Patches
Wet Waste | Wet (We.) | 3522 4032
Fabric (Fa.) 444 664
Cardboard (Ca.) 864 1328
Paper (Pa.) 691 1040
Glass (Gl.) 706 1538
Metal (Met.) 224 484
Recyclables Leather (Le.) 27 43
Shoes (Sh.) 71 105
Foam Plastic (FP.) 651 1047
Other Plastic (OP.) 1093 1554
Plastic Bottle (PBo.) 1125 2179
Tetrapak (Te.) 240 322
Plastic Film (PF.) 5945 16096
Dry Waste Tissue (Ti.) 277 470
Battery (Ba.) 161 363
Medicine (Me.) 617 1131
Electronic (EL) 111 147
Hazardous Waste Lamp (La.) 788 1836
Paint Bucket (PB.) 21 28
Pesticide (Pe.) 220 379
Background ‘ Bin (Bi.) ‘ 5553 5606

Table 1. The ShanghaiWaste dataset contains 40, 392 patches of
21 categories of waste from the 12, 208 waste images.

each super category contains a large variety of waste items
with distinct appearances, we further define 21 categories
of interest. Moreover, we explicitly define an additional
background category, i.e., trash bin, to distinguish trash bins
from other waste in images. Table | presents the detailed
statistics of images and patches across different waste cate-
gories. The data clearly highlights the imbalanced distribu-
tion of waste categories within the ShanghaiWaste dataset.

3.2. Patch-level Annotations

Identifying and annotating each pixel in waste images is
challenging, even for humans. To balance practical usability
and development costs, a crowd-sourcing method is adopted
where sanitation workers as volunteers are asked to focus
on large continuous regions of distinct waste objects. Rect-
angle boxes are used to annotate obvious waste materials
of the same category, referred to as patches, as cues for
the location of different waste objects. To ensure the an-
notation quality, each image is annotated by three workers
independently, and their results are merged automatically
by combining overlapping boxes with the same labels. We
then review and refine these annotations to ensure quality.
This process increases annotation efficiency and results in
40, 392 patches from 12, 208 waste images.

Figure 1 (a) shows examples of patch annotations, where
pixels within a red box belong to the same category, and
pixels outside remain unlabeled. Unlike bounding boxes,
where pixel overlap can occur, all pixels within a patch
exclusively pertain to a single object, ensuring there is no
overlap between two patches. This feature proves to be
highly valuable, serving as the foundation for the creation



of a novel pseudo-label generation algorithm.

3.3. Comparison with Existing Waste Datasets

Compared to existing waste datasets, the ShanghaiWaste
dataset stands out with several compelling advantages.
First, the collected images reflects the real situation within
trash bins, which is crucial for community waste sorting.
Second, the waste images collected from widely distributed
waste bins are much more complex for segmentation.

4. Design of WISNet

4.1. Overview

WISNet is designed to analyze the semantic composition of
waste images by training an effective semantic segmenta-
tion model using an imbalanced dataset with weak annota-
tions. As depicted in Figure 2, WISNet adopts a pipeline of
weakly-supervised pseudo label generation scheme, which
consists of three components as follows:

Pre-trained Unsupervised Classification (PUC) Consid-
ering the large disparity of image characteristics even in
the same waste category, the PUC module leverages a pre-
trained image feature extractor to divide each waste cate-
gory into K more consistent subcategories in the feature
space. The finer classification labels serve as one of the su-
pervisory signals for the CFE module.

Cohesive Feature Extraction (CFE) The feature extrac-
tor aims to find a feature space where data points cluster
around a prototype representation for each class. To train
this extractor, we utilize the support-query setting from few-
shot learning. The manual annotated masks of the query set
serve as one of the supervisions for prototype extraction.
Moreover, we further introduce a more demanding classifi-
cation task in the CFE module, enhancing the network to
capture diverse attributes within the same category. The
classification supervision is provided by the PUC module.
Iterative Patch Expansion (IPE) For an image with patch
annotation, the IPE module uses the feature extractor ob-
tained in the CFE module to generate a pixel-level pseudo
label. It begins by initializing the prototypes using the man-
ually annotated masks as guidance. Subsequently, it itera-
tively updates the prototypes and expands the masks with
the assistance of the original patch-level masks. Once the
process converges, the final masks are upsampled to form
pixel-level pseudo labels.

Finally, the pixel-level pseudo labels generated through
the IPE can be used to train an underlying segmentation net-
work. To deal with imbalanced waste categories, a classic
few-shot segmentation model is trained. In each training
episode, the segmentation model is trained to segment query
images with prototypes extracted from a small support set
of images with pseudo labels. Finally, given the obtained
segmentation model, real-world waste images can be well

segmented for automatic waste sorting quality assessment.

4.2. Pre-trained Unsupervised Classification

We observe that objects of the same waste category may
have distinct image characteristics. For example, different
types of papers have unique reflective properties. It would
be beneficial if such subcategory information can be ob-
tained and leveraged to train the backbone feature extractor.
To this end, we employ unsupervised K-Means clustering
to further divide each category C;, for i € [1,21], into K
subcategories, denoted as C;;, for j € [1, K].

Specifically, a mature feature extractor pre-trained on
ImageNet is used to extract features from all images. For
all patches labelled with category C;, denoted as PC, the
clustering objective can be written as:

c;
|P7i|

min E min
CeRdx K Aci

2

]MAP(E(P,?)) — CAG

)]

S.t., .Az lK = 1,

where E(Pkc ") is the feature of the k-th patch in P¢ ob-
tained from the extractor and M AP is the masked aver-
age pooling, leading to a feature vector of d dimensions;
C is a d x K cluster centroid matrix that needs to be
learned; \Pci denotes the number of patches in set PCi;
and Ay’ € {0,1}* is the clustering assignment for patch
P,f *. As aresult, the derived Aj’ serves as the subcategory
label of patch P,S L

4.3. Cohesive Feature Extraction

To deal with the imbalance distribution of waste categories,
we propose contrastive prototype learning to train the back-
bone feature extractor. The key idea of prototype learning
[33] is to use a support set to generate feature prototypes
which can be used to segment a query image by matching
the extracted feature of the query image to the learned pro-
totypes. In this way, the backbone can well recognize all
categories either with abundant samples or with few sam-
ples. In addition to prototype learning, we use both positive
and negative prototypes to enhance pixels corresponding to
the same category having similar features. Furthermore, to
empower the feature extractor to capture diverse attributes
within the same category, we incorporate a more challeng-
ing classification task during training the backbone.
Specifically, for each category C;, for i € [1,21], a subset
of training images, denoted as ¢ = {(X{",Y,7), k € N},
is first constructed, where X ]SL is the k-th image that con-
tains at least one patch labelled with category C; in the set
and YkCZ is the corresponding label of X ,S Particularly, lo-
cation (z, y) in Y, i.e., ch" (z,y), is set to 1 or O if the
corresponding X,S (x,y) is labelled with C; or C;, j # 1,
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Figure 2. Framework of WISNet. WISNet consists of three components: 1) the Pre-trained Unsupervised Classification (PUC) module
initially generates finer classification labels by unsupervised learning; 2) in the Cohesive Feature Extraction (CFE) module, a feature
extractor is trained through contrastive learning and supervised by both the patch annotations and the finer labels generated by PUC; 3)
the trained extractor in CFE is then used in the Iterative Patch Expansion (IPE) module to generate pseudo labels, which finally serve as

supervision for training a downstream segmentation model.

respectively; otherwise, chi (z,y) is not annotated and will
be ignored in the training procedure.

Then, in each training episode, a support set .S of N im-
ages and a query set () of one image are randomly sam-
pled from . Both the support and query images are fed
into the feature extractor, producing support feature set S¢
and query feature set Q. Two feature prototypes, i.e., the
positive prototype Plc ‘ representing the feature template of
category C; and the negative prototype POC ‘ squeezing rep-
resentative information of other categories, are calculated
using masked average pooling over S¢ as follows:

1 '§25_1z;v_ls,fwx,y)nt(Yfz(x,y)) )

k—1 Zf:l ZZV:1 ]lt(YkCi (x, y))

where t € {0,1} and S{' is the feature of the k-th im-
age in S; H and W are the height and width of a fea-
ture, respectively; and ]lt(chi (z,y)) is an indicator func-
tion that equals 1 when chi (z,y)) = t and equals 0 when
YkCi (‘T7 y)) 7£ 2

After obtaining Plc and Poc'i, the dense prediction on
query image is made based on the cosine similarity between
the feature Q¢ and both prototypes. More specifically, a
similarity map MY for each prototype PC7, t € {0,1} is
calculated as:

Qci (l’, y)PtCi
1Q% ()| - || P

Given all MS* and MS? for i € [1,21], the category of
each pixel in the query image is predicted using the argmax

MSi(z,y) = : 3)

scheme. We define a segmentation loss L., as the cross-
entropy loss between the segmentation predictions and the
patch-level annotations.

Finally, each query feature point Q% (z,y) is not only
used to predict which category but used to predict which
subcategory C;; for j € [1, K]. We define a classification
loss L, as the cross-entropy loss between the subcategory
predictions and the the subcategory labels as stated in the
above subsection. In the end, both L., and L, are lin-
early combined to supervise the training.

4.4, Iterative Patch Expansion

As patches are annotated with rectangular boxes, they pro-
vide cues about the spatial location of the target regions but
miss the important pixel-wise information of object shapes
and boundaries. To expand the original rectangular patches
to more accurate and complete pseudo labels, we propose an
iterative patch expansion scheme, where the patch-level an-
notations serve as the initial mask and are progressively re-
fined through repeated iterations of two steps, i.e., label as-
signment and prototype update, until the process converges.

More specifically, in the initialization stage, given an
image X, its annotation Y containing patches of m cate-
gories, and the feature F' extracted with the backbone fea-
ture extractor, M AP is used on the feature F' with la-
bel Y as the initial mask. Without the loss of generality,
assume this process yields m + 1 prototypes, denoted as
PCo, pC .. PCm where P represents the prototype for
all unannotated regions, and P for i € [1,m] is the proto-
type for each annotated category in Y.

During the iteration, in the label assignment step, a re-
fined mask is generated based on the cosine similarity be-



tween the feature F' and the derived prototypes. To enhance
the accuracy of the mask, the regions of the initial mask
containing m categories are overlaid onto the refined mask
for pixels within a patch that entirely belongs to a specific
category. In the prototype update step, MAP is used on the
feature F' with the refined mask to yield refined m+-1 proto-
types. When the difference between two consecutive masks
is less than ¢, the iteration process is considered converged.
The final mask serve as the pseudo label of this input image.

5. Evaluation
5.1. Methodology

5.1.1. Implementation

We implement WISNet using PyTorch and train all models
on a Linux server equipped with a 3.80GHz Intel 17-9800X
CPU and a GeForce RTX 3090Ti. In Pre-trained Unsuper-
vised Classification (PUC) and Cohesive Feature Extraction
(CFE), VGGI16 [29] is used as the backbone. The number
of subcategories K is set to 3 in PUC. In CFE, we use SGD
for training over 30, 000 iterations. In Iterative Patch Ex-
pansion, the convergence criterion ¢ is set to 0.1%. In Un-
derlying Semantic Segmentation, a 1-way 5-shot setting is
adopted in the training stage. In the testing stage, support
sets contain all 21 waste categories.

5.1.2. Datasets

We train and evaluate WISNet on two datasets: Shanghai-

Waste and ShanghaiWaste-Seg, respectively.

* ShanghaiWaste: We train WISNet on the ShanghaiWaste
dataset, which contains 12, 208 waste images and 40, 392
annotated patches, split into 11, 108 training samples and
1, 100 validation samples.

* ShanghaiWaste-Seg: We evaluate WISNet on an extra
constructed dataset, ShanghaiWaste-Seg, featuring pixel-
level labels. The annotations were created using the open-
source tool Labelme. This dataset comprises 928 real-
world waste images, carefully selected to minimize the
presence of unrecognizable objects. These images cover
all 21 waste categories, with a detailed distribution across
super categories shown in Table 2. The table reveals that
the waste dataset is inherently imbalanced in terms of cat-
egory distribution.

5.1.3. Metrics

We use mean intersection over union (mloU) as the metric
to evaluate segmentation performance across 21 categories.

5.2. Choosing a Proper Segmentation Model

Different segmentation models can be applied in WISNet.
In this experiment, we examine three existing segmentation
models, i.e., DeepLab V3 [4], PANet [33] and ASGnet [20]
as candidates, which have been proved effective on fully
supervised segmentation tasks on common datasets such as

Super Category ‘ Wet Dry Rec. Har. Bin
Ratio of Images (%) ‘ 627 850 91.0 28.0 824
Ratio of Area (%) ‘ 155 307 211 53 274

Table 2. Category distribution of ShanghaiWaste-Seg. “Rec.” and
“Har.” denote Recyclables and Hazardous Waste, respectively.

Pascal VOC [8] and COCO [22]. We follow the authors’
settings to train the three candidates on ShanghaiWaste and
test on ShanghaiWaste-Seg.

The results are shown in Table 3, where PANet consis-
tently outperform the other two models for two reasons.
First, among the three models, PANet and ASGnet are spe-
cially designed for few-shot segmentation while DeepLab
V3 encounters severe performance degradation dealing with
the imbalanced ShanghaiWaste dataset. Second, despite the
fact that ASGnet can achieve the SOTA performance on
Pascal VOC and COCO, its structure is designed specially
for fully supervised learning with accurate pixel-wise labels
and fails in learning from coarse annotations. As a result,
WISNet integrates PANet as its segmentation model.

5.3. Performance Comparison

To our knowledge, weakly-supervised semantic segmenta-
tion (WSSS) for patch-level annotations has not been ex-
ploited before. We compare WISNet with three WSSS
models based on bounding box annotations, i.e., SDI [14],
BANA [23] and BBAM [19], and four models based on
image-level annotations, i.e., AEFT [35], PPC [7] , ACR
[31] and DuPL [34]. These models are trained on the
ShanghaiWaste dataset to generate pixel-level pseudo la-
bels. Subsequently, two segmentation models, PANet and
DeepLab, are trained on the pseudo labeles and tested on
the ShanghaiWaste-Seg dataset.

Table 4 lists the segmentation results, showing that WIS-
Net outwits all other methods. With DeepLab and PANet,
WISNet achieves mIoUs of 31.8% and 40.2%, exceeding
the second-highest methods (ACR and PPC) by 2.7% and
4.1%, respectively. Figure 3 shows the qualitative results
of the top models: PPC, ACR, DuPL, and WISNet, respec-
tively. It is clear to see that WISNet can recognize both
common categories and rare categories better and make
more accurate predictions on object locations.

5.4. Ablation Study

5.4.1. Effectiveness of Different Components

Experiments are conducted with consistent training settings
and various component combinations to verify the effec-
tiveness of each component. As shown in Table 5, both
Pre-trained Unsupervised Classification and Iterative Patch
Expansion contribute to performance improvement.



Model ‘ Ba. Bi. Ca. Me. EL Fa. FP. Gl. La. Le. Met. OP. PB. Pa. Pe. PF. PBo. Sh. Te. Ti. We. ‘ mloU
DeepLab ‘ 554 661 195 84 21.0 346 344 296 264 00 3.0 38 00 26 489 579 126 24 04 1.7 533 ‘ 23.0
PANet ‘ 439 693 298 232 148 440 595 328 37.0 478 123 150 620 143 563 487 173 300 221 270 573 ‘ 36.4
ASGnet ‘ 241 156 00 224 120 281 288 7.8 226 101 132 345 123 205 420 44 182 40 50 400 617 ‘ 20.4

Table 3. Performance comparison of existing semantic segmentation models trained on the ShanghaiWaste dataset with patch-level anno-
tations. Methods from top to bottom are DeepLab V3 [4], PANet [33] and ASGnet [20].

Ref. | Seg. |Ba. Bi. Ca. Me. EL TFa. FP. GL La. Le. Met. OP. PB. Pa. Pe. PF. PBo. Sh. Te. Ti. We. | mloU
SDI | DeepLab | 269 700 229 73 288 316 346 338 296 00 24 49 00 43 486 568 130 00 00 16 533]| 224
BANA | DeepLab | 0.2 487 182 132 00 179 200 203 230 00 09 20 00 13 93 430 66 00 00 00 472] 129
BBAM | DeepLab | 0.0 42 51 78 00 264 111 219 149 00 00 00 00 00 00 400 07 00 00 00 468 85
AEFT | DeepLab | 59.7 69.1 118 188 304 413 225 425 326 00 01 35 00 123 627 629 148 384 00 81 604 282
PPC | DeepLab | 624 77.1 202 234 9.1 396 44 391 359 00 02 54 00 119 681 712 125 00 20 62 666 | 283
ACR | DeepLab | 69.1 792 160 161 250 36.1 391 369 424 00 00 37 00 103 592 636 196 175 58 105 619 | 29.1
DuPL | DeepLab | 51.0 713 116 128 28.1 374 485 365 355 00 05 57 00 93 467 668 164 00 00 26 64.1] 260
WISNet | DeepLab | 61.3 783 227 186 325 429 477 337 423 00 02 7.6 133 150 689 674 232 50 69 166 64 | 318
SDI | PANet [349 678 185 268 81 363 408 167 334 634 52 47 620 74 275 469 209 264 138 196 520 30.1
BANA | PANet |242 615 215 116 152 403 439 147 356 321 47 59 563 50 345 427 245 282 59 177 530| 276
BBAM | PANet |419 458 119 88 160 222 235 198 125 370 55 89 396 137 327 222 57 186 105 170 33.1] 213
AEFT | PANet |334 698 353 222 175 442 60.1 343 365 558 84 155 661 145 514 593 120 229 149 153 587 356
PPC | PANet |229 717 323 242 182 426 581 325 436 627 87 16 639 137 489 601 129 290 182 166 60.4 | 36.1
ACR | PANet |448 741 336 212 188 416 61.6 302 425 432 84 134 702 146 463 544 138 318 159 154 575 359
DuPL | PANet |304 654 328 241 228 430 586 295 390 69.1 13.0 153 532 113 448 574 142 209 119 100 467 | 340
WISNet | PANet | 452 708 373 255 19.1 453 622 368 412 771 120 168 722 157 560 569 155 423 212 208 543 | 402

Table 4. Performance comparison between WISNet and seven SOTA weakly-supervised segmentation methods, i.e., SDI [14], BANA
[23] and BBAM [19] designed based on bounding box annotations, AEFT [35], PPC [7] , ACR [31] and DuPL [34] designed based on
image-level annotations. PANet [33] trained with WISNet pseudo labels outwits other methods.

Baseline PUC IPG IPE mloU
v 36.4
v 38.4(+2.0)
v v 39.5(+3.1)
v v v 40.2(+3.8)

Table 5. Experiments of the proposed components. Baseline refers
to PANet. PUC, IPG, and IPE stand for Pre-trained Unsupervised
Classification, Iterative Patch Generation, and Iterative Patch Ex-
pansion, respectively. IPE makes more extensive use of patch-
level annotations compared to IPG.

5.4.2. Effectiveness of Iterative Patch Expansion (IPE)

We investigate the effectiveness of IPE by evaluating the
quality of the generated labels. To do this, we train semantic
segmentation models using various labels and test their per-
formance on the ShanghaiWaste-Seg dataset. Specifically,
we conduct experiments using both manual patch-level an-
notations and image-level annotations. For manual anno-
tations, we compare the results of the model trained solely
with manual annotations against those trained with labels
generated by IPE. For image-level annotations, following
the widely accepted pipeline, we utilize class activation map

Seed Cues ‘ Refine Method ‘ Segmentation Model ‘ mloU(%)
/ DeepLab L 230
. IPE 31.8
Manual Annotation
/ PANet 36.4
IPE ¢ %02
/ 28.9
PSA 28.9
PSA + IPE 30.1
RN DeepLab 301
IRN + IPE 31.3
IPE 29.7
CAM / 344
PSA 344
PSA + IPE 36.1
RN PANet 36.6
IRN + IPE 37.6
IPE 35.1

Table 6. Evaluation of the quality of generated labels. The top
block compares the segmentation performance when patch-level
manual annotations are provided. The bottom block compares the
performance when only image-level annotations are provided and
CAM is used as seed cue.

(CAM) as the initial cues for objects.

We assess several pseudo-label generation methods, in-
cluding PSA [1], IRN [2], and our IPE, both indepen-



(a) Original Images  (b) Ground Truth (c) PPC+PANet

(d) ACR+PANet

(e) DuPL+PANet

(f) PANet (g) WISNet+PANet

Figure 3. Visualized examples of segmentation, where (a) are waste images, (b) are ground truth, (c)-(e) are results of PANet [33] trained
with pseudo labels generated by PPC [7], ACR [31] and DuPL [34] . (f)-(g) are the results of PANet trained with patch-level annotations
and pseudo labels generated by WISNet. PANet trained with labels generated by WISNet achieves the best performance.

dently and in combination with segmentation models such
as DeepLab and PANet. It can be seen in Table 6 that
pseudo labels generated by IPE alone achieve competitive
quality compared to those refined by PSA and IRN. Fur-
thermore, IPE can be used to further refine the noisy labels
generated by PSA and IRN, thereby enhancing the perfor-
mance of the segmentation models.

7

a=0.25, mlou = 34.1% a=0, mIoﬁ =32.4%

Figure 4. Cropped annotations of various size and the correspond-
ing segmentation performance.

5.4.3. Impact of Patch Annotation Method

We further study the impact of patch annotation method
in terms of patch size to the segmentation performance.
Clearly, there is a trade-off between annotation cost and
quality. For fair comparison, we synthesize patches of

smaller size based on original annotations to represent low-
quality annotations. Specifically, given a patch of size S, it
is cropped in the center to get a smaller patch of size a.S.
We choose a € {0,0.25,0.5,1}, where 0 means the patch
is reduced to a point. Examples of cropped annotations and
performance are shown in Figure 4. We can see that WIS-
Net is robust to moderate fluctuation of quality of annota-
tions and is still applicable with only point supervision.

6. Conclusion

In this paper, we have constructed ShanghaiWaste, a waste
image dataset consisting of 12,208 image samples with
40,392 seed patch annotations of 21 waste categories,
which will be available for public study. Moreover, we have
proposed a weakly-supervised few-shot pseudo label gener-
ation scheme, called WISNet, for imbalanced and weakly
annotated waste images dataset. We have implemented and
deployed a WISNet-enabled waste image segmentation sys-
tem in Shanghai city and conducted extensive experiments.
Our system can achieve a SOTA segmentation mloU of
40.2% on real-world waste images. In the future, we will
continue to contribute more samples to ShanghaiWaste and
study advanced end-to-end semantic segmentation methods
to improve the overall performance of WISNet.
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