
HERO: Online Real-time Vehicle
Tracking in Shanghai٭

Hongzi Zhu‡, Yanmin Zhu§, Minglu Li‡, and Lionel M. Ni§

‡Shanghai Jiao Tong University
Shanghai, China

{hongzi, mlli}@sjtu.edu.cn

§Hong Kong University of Science and Technology
Hong Kong, China

{zhuym, ni}@cse.ust.hk

Abstract—Intelligent transportation systems have become
increasingly important for the public transportation in Shanghai.
In response, ShanghaiGrid (SG) aims to provide abundant
intelligent transportation services to improve the traffic
condition. A challenging service in SG is to accurately locate the
positions of moving vehicles in real time. In this paper we present
an innovative scheme HERO to tackle this problem. In SG, the
location information of individual vehicles is actively logged in
local nodes which are distributed throughout the city. For each
vehicle, HERO dynamically maintains an advantageous
hierarchy on the overlay network of local nodes to conservatively
update the location information only in nearby nodes. By
bounding the maximum number of hops the query is routed,
HERO guarantees to meet the real-time constraint associated
with each vehicle. Extensive simulations based on the real road
network and trace data of vehicle movements from Shanghai
demonstrate the efficacy of HERO.

Keywords-vehicle tracking; spatiotemporal locality; real-time
system; RFID system; peer-to-peer network

I. INTRODUCTION

Intelligent transportation systems (ITSs) have been
evolving rapidly in the past two decades, leveraging advanced
computing and communication technologies. ITSs help
coordinate traffic condition, improve safety, reduce
environmental impact, and make efficient use of available
resources. Shanghai, the largest metropolis in China, covers an
area of 5,800 square kilometers and has a large population of
18.7 million. The economy of Shanghai is soaring today and
the growing traffic has become a serious challenge. In response
to the challenge and the needs of the public, the Shanghai
government has established the ShanghaiGrid (SG) project
since 2005, with the ambitious goal of building a metropolitan-
scale traffic information system. This project will construct the
basic infrastructure, composed of a great number of traffic
information collectors and local information processing nodes.
The location and status information of vehicles can be actively
captured by these pervasively deployed collectors and further
logged and processed by local nodes interconnected through
the Internet. The goals of the project are two-fold. First, it tries
to make the available transportation infrastructure to be used
more efficiently. Second, it aims to provide the public with a
wide spectrum of ITS applications [8], ranging from navigation,

trip planning and optimal route selection to congestion
avoidance and bus arrival prediction.

Among all the others, online real-time vehicle tracking is a
fundamental service in SG, which refers to tracking the current
position of a certain vehicle in real time. A wide spectrum of
compelling applications can be implemented on top of this
basic service. For example, users will be authorized to track
individual vehicles that they are concerned with, such as their
own or friends’ cars, public buses and taxies. In particular,
there exist several critical types of vehicles in the city, which
need to be located urgently, such as stolen cars, speeding cars,
ambulances and police cars. Besides these application
scenarios, it is also an indispensable building block
underpinning many other high-level applications. For example,
in the bus arrival prediction application, the tracking service
can be used to locate the nearest feasible bus.

However, real-time vehicle tracking in the metropolitan-
scale system is very challenging because of several rigorous
requirements. First, users (or high-level applications) often
pose a real-time requirement on tracking a certain vehicle. That
is, any query for the vehicle must be answered within a certain
bounded time. Otherwise, the returned answer may become
invalid or useless. For example, a query tries to locate the
current location of a stolen car. If the query fails to be answered
within a short time, the car could actually be far away from the
returned location because it may be moving at a high speed.
Second, the system should be scalable to support up to millions
of users and hundreds of thousands of vehicles. The huge
number of simultaneous queries is a serious issue. Third, the
system should be robust to node failures. In such a large-scale
distributed system consisting of thousands of local nodes,
system maintenance is not a trivial issue.

To realize this service, a centralized scheme is
straightforward, where location information of all vehicles is
sent back to a centralized database and constantly maintained.
A user, who wants to track a vehicle, can send a query to the
central server. The server then processes the query and returns
the vehicle’s information to this user. However, it is infeasible
for the metropolitan-scale system due to the huge amount of
vehicle data streams. For example, there are 22,413 crossroads
in Shanghai. Even in 2001, the average number of vehicles
running across a crossroad per minute in daytime was up to 33

 This research is supported by the National Basic Research Program ٭
(973 Program) of China (No. 2006CB303000), NSFC (No. 60473092,
90612018 and 60533110), STCSM (No. 05DZ15005), Hong Kong Research
Grant Council (HKUST6183/05E) and Intel Research Council.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE 1615

[1]. This produces in total about 12 thousand events per second.
Such a large volume of location updating data can easily
overwhelm the centralized server.

Therefore, it necessitates efficient designs of distributed
solutions. As an alternative scheme, captured vehicle
information can be stored locally at distributed nodes.
Therefore, there is little updating data as required in the
centralized scheme. Nevertheless, by this means, there is no
hint about the enquired vehicle for a query. To track the
vehicle, an intuitive scheme is to flood the query across the
network which can always locate the desired vehicle. However,
flooding search not only incurs a large amount of network
traffic and hence is subject to poor scalability, but also fail to
satisfy the rigid real-time requirement. To reduce query traffic,
there is another search scheme based on random walks, which
introduces modest network traffic. However, this scheme is
limited by the problem of unbounded response latency of the
query. As a result, there is no existing successful solution, to
the best of our knowledge, to tracking vehicles in real time in a
large-scale distributed system.

In this paper, we propose a novel scheme Hierarchical
Exponential Region Organization (HERO) which satisfies the
unique requirements of real-time vehicle tracking in a
metropolitan-scale distributed system. In essence, HERO
connects local nodes into an overlay network matching the
underlying road network. A further hierarchical structure over
the overlay network is then constructed and dynamically
maintained while the vehicle is moving along. Exploiting the
inherent spatiotemporal locality of vehicle movements in the
urban setting of Shanghai, this hierarchy enables the system to
conservatively update location information of a moving vehicle
only in nearby nodes. The distinctive features of HERO are
twofold. First, it guarantees that any query, which can be
injected anywhere in the city, can meet the real-time constraint
associated with each vehicle, by bounding the maximum
number of hops that the query is routed. Second, it significantly
reduces the communication overhead of both location updating
and query routing, and therefore is truly scalable to support
hundreds of thousands of vehicles and millions of users.
Moreover, HERO is a fully distributed light-weight protocol
extensible to the increasing scale of the system. In addition, it is
robust to node failures and also able to tolerate inaccurate
location readings.

The original contributions that we have made in the paper
are highlighted as follows:

• We propose a novel protocol HERO for real-time
vehicle tracking in a metropolitan-scale intelligent
transportation system. HERO employs a distributed
technique to store the large volume of vehicle
information. It guarantees to meet the real-time
constraint associated with a vehicle for answering any
query about the vehicle, and is truly scalable with
respect to the number of vehicles, the number of
queries and the system scale.

• We conduct in-depth theoretical analysis, identify the
tradeoff relationship between the communication

overhead and the query response time, and draw an
optimal configuration of system parameters of HERO,
minimizing network traffic under real-time constraints.

• We evaluate the performance of the HERO approach
through precise trace-driven simulations. We base our
simulations on the real road network and trace data of
vehicle movements in Shanghai, and compare the
performance of HERO with other alternative schemes.

The rest of this paper is structured as follows. Section II
compares HERO with related work. In Section III, we
introduce the infrastructure that will be deployed in the SG
project. Section IV elaborates the design of HERO and presents
theoretical analysis for the optimal configuration of the
protocol parameters. Several design issues that may be
encountered in practice are discussed in Section V. In Section
VI, we introduce the trace-driven methodology that we use to
evaluate the performance of HERO and present simulation
results. Finally, we present concluding remarks and outline the
directions for future work in Section VII.

II. RELATED WORK

The Globe system [9] constructs a static world-wide search
tree for mapping object identifiers to the locations of moving
objects. It is not flexible to expand or adjust the structure and
may have the bottleneck problem near the root of the directory
tree structure. Alminas et al [10] introduce a distributed
approach for load balance but haven’t taken the number of
queries into consideration.

In database community, indexing techniques have been
proposed for tracking moving objects but they are based on the
assumption of the existence of centralized databases [11-14].
Despite the large number of existing methods, there is no
applicable one for update-intensive applications, where it is
infeasible to continuously update the index and process queries
at the same time [15]. HERO does not need any centralized
database and all routing information is distributed to every
node in the system.

In structured peer-to-peer (P2P) networks, various DHT
schemes have been proposed to map objects to peers in a
decentralized way, thus enabling the system to satisfy queries
efficiently [16-19]. However, DHTs may cause large
computation and traffic overhead for a large number of rapid
updates of moving objects. In unstructured P2P networks, the
most typical query methods are based on flooding [7]. Using
flooding is not scalable. Several randomized approaches, such
as random walks [20, 21] and randomized gossip-based
methods [22, 23], have been introduced to distribute and locate
objects. Random schemes incur notable long query latency
before finding the results in a stable network. HERO introduces
minimal updating cost to guarantee the real-time constraints
desired by the applications.

III. SYSTEM DESCRIPTION

As RFID technology continuously evolves, it has been
widely used in tracking various mobile objects, such as
vehicles [2]. The US government also enacts the TREAD Act

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1616

[4] which demands RFID tags to be planted in every new tire
before September 2007. The SG project exploits the promising
RFID and local-area wireless communication technologies. The
infrastructure of SG, which is still underway, is illustrated in
Fig. 1. RFID readers and wireless APs will be deployed
throughout the urban area of Shanghai, typically installed at
crossroads. A local node is responsible for collecting data from
several close RFID readers and wireless APs within its own
domain, and accepts queries from nearby users or applications.
A local node is basically a server which connects to the Internet
through a dedicated connection.

In the initial prototype of SG, a vehicle is captured using
active RFID technology. An active RFID tag emits its ID at a
fixed interval and has an effective communication range of
about 2 to 80 meters. The battery can sustain the operation of
an active RFID tag for about 6 years [3]. A moving vehicle
attached with an active RFID tag can be captured if the emitted
signal reaches some reader. In addition, a vehicle can actively
push important vehicle status information, such as vacancy
status, to local nodes by communicating with wireless APs.

As another initial pilot effort in Shanghai, certain vehicles
(around 4,000 taxies and 2,000 buses) are equipped with
Global Positioning System (GPS) receivers, which can provide
coarse-grained location information. A vehicle actively reports
its location information back to a centralized database through
a wireless cell-phone data channel (i.e., GPRS). Several crucial
reasons prohibit this initial effort from being extended for
vehicle tracking in SG. First, with crowded high buildings
squeezed along most of the narrow streets in the city, it is very
difficult for the GPS system to work accurately without any
other assistant devices. It is often the case that the reported
GPS position of a vehicle can be more than 100 meters
deviated from its actual location. To make things worse, a large
number of major roads are covered by viaducts which prevent
satellites from seeing the vehicles running under viaducts.
Second, the intervals of location information reports can be
notably long. Due to the GPRS communication cost for
transmitting the GPS location information back to the data
centre, drivers prefer to choose relatively large intervals. The
typical value would be from 1 minute up to 3 minutes. Third,
the expense of a GPS receiver as well as data communication
cost is quite high. However, the trace data of vehicle

movements in the urban area of Shanghai obtained from this
prototype using GPS technology is very valuable for study of
traffic conditions. We evaluate HERO using the real trace data.

IV. DESIGN OF HERO

In this section, we first give an overview of the HERO
protocol, introducing its basic rational. Next, we describe the
conservative location updating based on the assistance of a
dynamically maintained hierarchy. Finally, we discuss the
optimal configuration of the protocol parameters of HERO.

A. Design Overview

There are two critical issues in real-time vehicle tracking.
First, the system should limit the maximum query response
time to guarantee the posed real-time constrains. Second, the
system should minimize network traffic to support a large
number of vehicles and queries.

However, there is an intrinsic tradeoff between network
traffic and query response time in vehicle tracking. By
aggressively updating location information of a vehicle to all
the other nodes, the system provides minimal query response
time. In contrast, the system suffers from long query response
time if the system does not perform any location updating at
all. In general, more rigid real-time requirement on tracking a
vehicle implies higher network traffic overhead.

Recognizing the inherent spatiotemporal locality of vehicle
movements, HERO elegantly manages to solve the two critical
issues in an integrated approach. The core idea of HERO is to
dynamically update location information of a moving vehicle to
all the nodes in the system in a controlled way. Generally, the
nodes closer to the vehicle are updated more frequently than
those further from it and, therefore, have more accurate
information about the current location of the vehicle. By this
means, HERO significantly reduces location updating cost.
Upon receiving a query, the node unlikely has the exact
information. However, it knows some other node which has
more accurate information about the vehicle and thereby closer
to the vehicle. Thus, it forwards the query to that node.
Following an elaborately organized routing path, the query can
eventually reach the destination node, which keeps the most
updated information of the vehicle. The typical latency
between two nodes can be easily measured. Thus, by bounding
the maximum number of hops that the query is routed, HERO
can also meet the real-time constraint for the vehicle.

The key to the design of HERO is how to realize the
controlled location updating while bounding the maximum
number of hops a query is routed. To achieve this, HERO
integrates four effective components:

Overlay construction: To exploit the locality of vehicles’
movements, HERO organizes local nodes into an overlay
network that matches the underlying real road network in
Shanghai (as depicted in Fig. 1, dashed lines present the
overlay connections of local nodes). There is a connection
between two geographically neighboring local nodes if there is
a road between the two corresponding regions. This overlay is
easy to build and maintain although the system scale is very

Figure 1. The infrastructure of ShanghaiGrid; a small part of the Pudong
District of Shanghai is shown.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1617

large, with each node having to know its neighbors. To enhance
the reliability of the overlay network, additional overlay
connection may also be added for two nodes that are
geographically close to each other although they are not
connected by a real road.

Hierarchy initialization: For every vehicle, HERO divides
local nodes into different regions which constitute the hierarchy
over the overlay network. The regions are organized in the
following way, as illustrated in Fig. 2. The first region (R1) has
the smallest size and covers the vehicle. For the example in
Fig. 2, R1 covers node e, which is closest to the vehicle and has
the latest information about it. The second region (R2) has a
larger size and covers R1. More generally, a region (Ri) has a
larger size than the immediate inner region (Ri−1) and covers it.

Restricted location updating: When the vehicle is moving
within R1, the location updating only needs to be carried out
among the small set of nodes in R1. When the vehicle is moving
out of R1, the location updating is extended to more regions. In
this case, part of the hierarchy needs to be re-organized. This
reorganization aims to restrict location updating within R1 in
the future as much as possible, thereby minimizing network
traffic cost for location updating.

Query Routing: With the hierarchy and restricted location
updating, an inner region always has more up-to-date location
information of the vehicle than outer regions. In HERO, each
node has a pointer pointing to a boundary node of its
immediate inner region. A query can be issued from any node
in the system. For the example in Fig. 2, node a receives a
query. Node a will forward the query to b. The query will
further be forwarded by node c and d, and eventually arrives at
e. Node e will return the location information directly back to
node a. To restrict the maximum number of hops that the query
is routed, we limit the number of regions that the hierarchy for
the vehicle contains.

In the following subsections, we first describe the process
of hierarchy initialization when a new vehicle is joining the
system. Next, we describe the detailed mechanism for restricted
location updating while the vehicle is moving based on the
established hierarchy. Finally, the optimal configuration of
design parameters is discussed.

B. Hierarchy Initialization

The first node that captures a new vehicle triggers an
initialization procedure to establish the hierarchy for the
vehicle. As the vehicle may move towards any direction, a
region is designed as a disk on the overlay network. Note that,
the deployment of local nodes is not necessary to be uniform in
the city. They can be more densely deployed where more
refined tracking accuracy is required. We will discuss more on
this in Section V. In the rest part of this paper, without explicit
specification, distance is measured in terms of hops in the
overlay network. Each region Ri has a radius ri (in hops). A
node, which has a distance d from the first node, belongs to
region Rk if this region is the smallest one that covers the node.
The radius rk of Rk is,

1

min{ , },
h

k i ii
r r r d

=
= ≥ (1)

where h is the maximum number of regions in the system. If d
equals to certain ri, 1≤i≤h, the node is on the boundary of ri.
For query routing, every node maintains a pointer that points to
a node which is on the boundary of the immediate inner region.
We call this pointer next-insider.

To establish the region hierarchy and next-insider pointers,
the first node initiates an initialization packet which contains a
router field for setting up next-insider pointers and a
journey field for maintaining the distance that the packet has
traversed. The first node initializes router and journey to
its own IP address and one, respectively. Then the first node
floods the initialization packet throughout the network. Upon
receiving the packet, a node first sets its next-insider to
router contained in the packet. Then it checks journey in
the packet. If journey equals to the radius of certain region
ri, the node modifies router in the packet to its own IP. It
then marks itself as a boundary node of region Ri. Otherwise, it
leaves the router field unchanged. Next, it increases
journey in the packet by one and re-broadcasts the packet to
its neighbors. In addition, duplicated packets with larger
journey are silently dropped. After the initialization
procedure terminates, the regions are centered at the first node
and the hierarchy is established with each node having its next-
insider set up (as illustrated in Fig. 2).

C. Restricted Location Updating

When the vehicle is moving in the city, its information is
captured by the local nodes it passes by. When a node captures
the vehicle (we call this node chaser), it performs location
updating, and maintains the hierarchy for the vehicle if
necessary. There are three cases depending on the position
where the chaser is located in the hierarchy. For presentation
clarity, we define a node as a boundary node of Ri if it is a most
outer node within Ri. The nodes in Ri except boundary nodes
are interior nodes of Ri.

Case 1: the chaser is an interior node within R1. In this
case, the hierarchy for the vehicle remains unchanged. The

R2

R3

R1

a

ed
cb

R4

f

Figure 2. Illustration of hierarchical regions and query routing.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1618

chaser floods the location information of the vehicle to all the
other nodes in R1.

Case 2: the chaser is a boundary node of R1. In this case,
it is possible that the vehicle will move out of R1 shortly. For
example in Fig. 3, node a is the current chaser which is a
boundary node of R1 (the dashed circle). When the vehicle
moves along the depicted direction, R1 will not cover the
vehicle any more. Two consequences follow. First, a future
query cannot be routed to the chaser properly because the
information on the boundary nodes of R1 is out-of-date.
Second, to enable the proper routing of a future query, the
chaser has to flood the location information of the vehicle to R2
every time, which will incur larger network traffic overhead.
Therefore, HERO needs to re-organize R1.

To this end, the chaser initiates an update packet in which
its router and journey is initialized to its own IP address
and one, respectively, as in an initialization packet. The update
packet includes an additional scale filed that is used to
indicate the area that the update packet should be propagated
to. In this case, the chaser floods the packet within R2 by letting
the boundary nodes of R2 stop the flooding. On the one hand,
the new R1 is rebuilt from the current chaser within R2. At the
same time, location information is also updated in the new R1.
On the other hand, it updates nodes in R2 about the current
position of the new R1.

There is a special situation during the reconstruction of R1,
where the new R1 is truncated by the boundary of R2. This
happens when the chaser is near the boundary of R2 (e.g., node
a in Fig. 3). In this situation, a boundary node of R2 (e.g., node
b) sets itself as a boundary node of both R1 and R2. We call
such a node a common boundary node of R1 and R2. In this
case, R1 is no longer a disk because it is restricted in R2. But,
this does not affect the operation of our protocol.

Case 3: the chaser is a common boundary node of
several regions R1, R2, … , Rj (j>1). This is actually a more
general situation of Case 2. This situation results from constant
reconstructions of regions as the vehicle is moving. In this case,
it is possible for the vehicle to move out of all the regions from
R1 to Rj. The system needs to re-organize regions from R1 to Rj.
For example in Fig. 4, the situation occurs if node b is the

current chaser, where b is also a common boundary node of R1
and R2 (the dashed circles).

To re-build regions from R1 to Rj, the chaser floods an
update packet within Rj+1. As a result, all regions from R1 to Rj
are re-constructed within Rj+1. In addition, the location
information of the vehicle within Rj+1 is updated. Similar to
Case 2, there is also a special situation during the
reconstruction of regions from R1 to Rj, where several regions,
say from Ri to Rj, might be truncated by some boundary nodes
of Rj+1. Such a boundary node of Rj+1 sets itself as the common
boundary node of regions Ri, Ri+1,…, Rj+1, (1≤i≤j). For example
in Fig. 4, node c is a resulting common boundary node of R2
and R3.

Note that the hierarchy needs to be established only once at
the time when the vehicle is first introduced in the system.
Afterwards, it is dynamically maintained in a fully
decentralized manner. Therefore, the storage overhead for
tracking the vehicle at each local node is small. HERO
automatically reorganizes the hierarchy to control the flooding
for location updating to happen mostly in the first few smallest
regions. Using flooding for the controlled location updating
and hierarchy maintenance is robust and effective when the
flooding scale is small [24]. In addition, duplicated useless
packets during the flooding are silently dropped which also
mitigates the network traffic for location updating. The efficacy
of HERO design can be examined more intensively by our
extensive simulations.

D. Protocol Analysis and Parameter Optimization

By far, a key question remaining unestablished is the
configuration of the radii ri (1≤i≤h) in (1). To conveniently
control the maximum number of regions in the hierarchy and to
restrain the location updating in small regions close to the
vehicle, HERO organizes the hierarchical regions with
exponentially increasing sizes.

More specifically, we introduce two protocol parameters:
first radius r and amplification factor k. The radius of the first
region is r (i.e., r1=r), and the radius of Ri is ki−1r (if k is an
integer). Fig. 2 shows an example with r and k both equal to 2.
More generally, k can take any real number greater than one.
Since the radius of a region must be an integer in hops, we take
the ceiling of ki−1r as the radius of Ri and further make sure that

a

c
R2

 b

R1

R1'

Figure 3. Reconstruction of R1, node a is the chaser and is a boundary node of
the first region (R1').

R3

b

c

R2
R1

R1'

R2'

Figure 4. Reconstruction of R1 and R2, node b is the chaser and also is a
common boundary node of the first and second region (R1' and R2').

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1619

a region is larger than its immediate inner region. Then the
radius of Ri is defined as,

1

1 1
1

1

;

, < ;

2, .

i i
i

i

i

r r

r k if r r k
r

r otherwise

− −
−

−

=

 ⋅ ⋅ =
+

 (2)

With this region organization, the maximum number of
hops a query is routed is subject to the following theorem.

Theorem 1. Given a network with the network diameter
(i.e., the maximum hop distance between any pair of nodes) D
hops, it takes at most logk(D/r) hops for a query to be
answered.

PROOF. The worst case of a query, where it traverses the
maximum number of hops, occurs when the hierarchy is
constructed from one end of the network diameter and the
query is injected at the other end of the diameter. In this case,
according to the definition of the exponential hierarchy, the
maximum number of regions contained in the network is
logk(D/r). Since nodes in R1 always have the latest location
information, a query only needs to be routed to a boundary
node of R1. Thereby, a query takes at most logk(D/r)−1 hops
to reach that boundary node. It takes the boundary node one
more forwarding hop to finally return the result back to the
node that initiates the query. This concludes the proof.

Despite of the general characteristic of locality, a vehicle
prefers to move as straight as possible for a destination. As
straight movements can break the maximum number of regions
and hence cause the most location updating traffic, we need to
investigate this situation and have the following theorem.

Theorem 2. Suppose that the topology of a network is a
disk, the maximum network traffic overhead of location
updating for a vehicle moving a distance of D is η(D) =
c(kD2+2r(r−k−1)D−6r2), where D is the network diameter and
c is a constant coefficient.

PROOF. Fig. 5 depicts the worst case of location updating
among all possible movements with a distance of D, where all
constructed regions in the network need to be reconstructed
during the movement from node a to node b. For analysis
simplicity, we assume that k is an integer. With uniform
deployment of local nodes, the network traffic for flooding in
Ri (denoted as Si) can be approximately evaluated by the area of

Ri. Let φi denote the updating overhead incurred as a vehicle
moves from the boundary of Ri−1 to the node immediately next
to the boundary of Ri, (i≥2). For example in Fig. 6, the updating
overhead introduced when the vehicle moves from node a to
node b is denoted as ζ1, and that from node c to node d is
denoted as ζ2. We have,

() ()

()

2
1 1 0

1

1

1 1
,

1
i

i i j
j

r S c r r

k S

ζ π

ζ ζ
−

=

 = − = −

= − ⋅ +

∑

 (3)

where c0 is a constant coefficient. Let ωm denote the updating
overhead incurred as the vehicle traverses the diameter of Rm
from node a as shown in Fig. 5. It can be formulated as
follows,

() ()

()()

1

1
2 1 1

2 2
0

2 1 2 1

2 2 1 3

m m i

m i j
i i j

m m

r S k S

c k r r r k r r

ω ζ

π

−

= = =

= − ⋅ + − +

= ⋅ + − − −

∑ ∑∑
 (4)

Denote η(D) as the total updating traffic caused while the
vehicle traverses the network, and then η(D)=ωh. Let c=c0π/2.
This concludes the proof.

Let td denote the maximum delay of a query between two
neighboring nodes, and t0 denote the application real-time
constraint. We try to minimize the average updating overhead
per hop, denoted as g(r, k), under the constraint logk(D/r) ≤
t0/td. Let logk(D/r)+1 = t0/td, then g(r, k) can be reduced as,

 ()0 0 23(,) [2 2(1) 2].
t td d

t t t td dg r k c D r D r r r
D

− −−= ⋅ − + − − (5)

We develop numerical procedures to compute the
approximately optimal value of r and k respectively based on
(5) and the results can be stored into a table. Therefore, HERO
supports to track each vehicle with a different real-time
constraint by organizing a particular hierarchy for each one
with corresponding r and k. Given a particular set of td, t0 and
D, the configuration of r and k can be determined by looking
up the table.

Rh

a

R2
R1

R2'
R1'

 b

Figure 5. Worst case of location updating, when the vehicle traverses the
whole network from node a to b.

a b
R1

R2

c d e

Figure 6. Example of continuous reconstruction of R1 during the movement
from node a to d.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1620

V. DESIGN ISSUES

It is possible that occasionally a vehicle fails to be captured
by a RFID reader (e.g., when the vehicle is moving too fast). In
addition, a local node may also fail from time to time. This data
inaccuracy can be corrected. At any time, a node n in region Ri
(i≥2) should have received an update packet from a boundary
node of Ri − 1 before the node itself captures the vehicle.
Otherwise, the corresponding updating process has failed. To
solve the problem, node n takes the responsibility to trigger the
updating for the reorganization of regions from R1 to Ri−1.
Unless node n itself happens to be a boundary node of Ri, in
that case, it performs updating for the reorganization of regions
from R1 to Ri instead.

As a vehicle keeps moving, it may run out of the current
cover of an RFID reader while still has not entered the
territories of others. This causes the system have inaccurate
vision about the current position of the vehicle before it re-
enters into the system. To refine the resolution of tracking
accuracy, more RFID readers can be deployed at those places
which are more interested to users.

In HERO, a single node failure can be discovered in a short
time. An unavailable node can be reported to the system
administrator by its neighbors. To join the system for tracking
vehicles, a new node (or a recovered node) only needs to
contact its neighboring nodes. Then, for each vehicle, the node
configures its status to the same as that of the neighbor which
resides in the smallest region among all neighbors in the
hierarchy. Thereafter, it can perform location updating and
query processing properly.

VI. PERFORMANCE EVALUATION

A. Methodology and Metric Design

In the simulations, the HERO protocol is implemented
using ns2 [5]. Since it is more preferable to leverage cheap
ADSL connections than dedicated networks to connect all
nodes in the metropolitan-scale system, we use Brite [6] to
simulate the underlying Internet topology of Shanghai with
10,000 routers. The overlay network is based on the real
complex road network of Shanghai where local nodes are
deployed on every crossroad. The size of all used packets is 40
bytes. The typical link transmission delay between two
neighbor nodes in the overlay network is 48ms, measured by
ping between two desktop PCs with 1MB bandwidth ADSL
dial-up connections. One of the overlay topologies employed in
our simulations is depicted in Fig. 7. The topology containing
1,000 nodes (denoted by small white dots) covers the
geographical downtown area of Shanghai. The dark line shows
the network diameter in the topology which is 55 hops.

To investigate the impact of the vehicle moving patterns to
the HERO design, we use real GPS trace data of taxies which
were obtained with GPS technology from August 2006 to
October 2006. Taxies can move more randomly and
extensively in the whole city and, therefore, have more sense to
be considered. A typical trace of a taxi in the downtown area of

Shanghai through daytime (on Aug. 13, 2006) is shown in Fig.
7, where red dots are locations captured when the taxi is vacant
and the dark dots are those captured while the taxi is delivering
passengers. It can be seen that the taxi cruises around within an
area most the time when seeking for passengers. This benefits
our HERO design best because most of the location updating
can be perfectly restricted within small regions. It can also be
seen that, when the taxi has a delivery, it runs very fast along
the straightest path for its destination. HERO leverages
restricted location updating strategy to reduce network traffic
while still keeping the whole system up-to-date.

In this section, we compare HERO with several alternative
schemes:

• ST-Updating. In this scheme, whenever a node
captures a vehicle, it updates this information to all
other nodes. To reduce the network traffic overhead of
this update, the system maintains a global spanning
tree. Therefore, only n−1 update packets are introduced
across the whole network for each update. The strength
of this scheme is that each node can answer any query
locally, providing minimal query response time.

• ST-Flooding. This scheme does not perform vehicle
information update in the network and hence no
overhead is introduced for location updating. To search
for a vehicle, a query is flooded throughout the
network. A global spanning tree is used to broadcast
the query to reduce the network traffic overhead.

• Ex-Flooding. Similar to ST-Flooding but instead of
relying on a global spanning tree, it employs expanding
flooding. The query is iteratively flooded on the
network with ever-increasing scales (by increasing the
TTL with 4 hops each time) until the vehicle is found.

• Random Walks. This scheme does not perform
information update either. To search for a vehicle, five
walkers randomly walk on the network. A walker
checks with the querying node every 50 steps until
either the result has been retrieved or the maximum
2,000 steps have been reached.

We propose two important metrics to evaluate the
performance of HERO and the above schemes:

Figure 7. The topology of the downtown area of Shanghai with 1,000 nodes
(red dots) deployed at crossroads of this area.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1621

Figure 8. Maximum query latency vs. different
protocol parameters.

Figure 9. Updating network traffic vs. different
protocol parameters.

103 104 105
102

104

106

108

Number of queries

N
et

w
or

k
tr

af
fic

 p
er

 q
ue

ry
 (

B
yt

e)

HERO
ST-Updating
ST-Flooding
Ex-Flooding
Random Walks

Figure 10. Network traffic per query vs. number
of queries.

1) Maximum query latency (MQL). It refers to the
maximum query response time of a successful query. The
intention of this metric is to check whether a scheme can
guarantee certain real-time requirements.

2) Network traffic per query (MNT). It can be seen that if
there were no query then no location updating would need to
be carried out at all. Therefore, to answer a query, the system
cost should involve two parts of network traffic, i.e., for
location updating and for routing query packets. We
investigate the communication cost per query cost by any
location updating as well as query processing.

B. Effects of Protocol Parameters

We first examine the effects of protocol parameters on the
system performance and validate the theoretical analysis. We
employ one hour extensive trace data of 100 taxies, randomly
generate 105 queries for different vehicles during this hour and
demand any query should be answered within 500
milliseconds. We vary r from 1 hop to 30 hops with an
increment of 1 hop, and vary k from 1.2 to 3 with an increment
of 0.05. For each pair of r and k, we repeat the experiment 10
times and present the average.

Fig. 8 and Fig. 9 plot the MQL among all the generated
queries and the MNT, respectively, under different
configurations of r and k. It shows that the MQL drops
dramatically with increasing r and k. The MNT increases as
either r or k increases. This is because either a greater r or a
greater k leads to a more aggressive updating strategy. In the
extreme cases where r equals to D or r equals to one and k
equals to D, HERO actually floods every location updating
throughout the whole network. In this experiment setting, the
numerical computation results of r and k are 2 and 1.393,
respectively. The arrows in Fig. 8 and Fig. 9 show their
corresponding positions. It is clear to see that, with this
configuration of r and k, HERO can answer any query within
the real-time constraint with the MNT approaching to the
practical minimum.

C. Impact of Query Quantity

In this experiment, we investigate the impact of the query
quantity on the system performance. We take the same setting
as the previous experiment with r and k set to 2 and 1.393,

respectively. We vary the total number of queries from 105 to
107 with increments of 400.

Among all queries, the MQL of HERO is 480ms which is
strictly shorter than the real-time constraint. In ST-Updating,
the MQL is about 14ms which is for local database operations.
The other schemes cannot guarantee to satisfy the real-time
requirement. The MQL of ST-Flooding and Ex-Flooding is
5,232ms and 14,120ms, respectively. The MQL of Random walk
is about 105ms due to the search step limitation of 2,000. Fig.
10 plots the MNT with different numbers of queries per vehicle.
The MNT of HERO is much less than that of other schemes. In
addition, it declines as the number of queries increases. It can
be seen that, with this experiment setting, HERO has less query
overhead than ST-Updating until the number of queries for the
same vehicle exceeds 41,400. This is very interesting to find
that the number of queries decides whether ST-Updating or
HERO is preferable. However, we argue that it is impractical
that a single vehicle would be queried so tensely within one
hour in a region with 1,000 nodes.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented the real-time tracking
protocol HERO for the metropolitan-scale intelligent
transportation system. Exploiting the locality of vehicle
movements in the urban area, HERO adaptively updates the
locations of a vehicle according to the innovative hierarchical
structure. HERO significantly reduces network traffic while
still satisfying the real-time requirement. As a fully distributed
protocol, this protocol is highly scalable to the number of users,
the number of vehicles and the system scale as well.
Comprehensive simulations based on the real road network and
trace data of vehicle movements demonstrate the efficacy of
HERO.

This is an on-going research and system effort in tracking
various vehicles in the metropolitan-scale system. Following
the current work, we have a lot of more exciting yet
challenging topics ahead. One of these topics is the privacy
implications of tracking personal vehicles all the time. The
government will guarantee to protect individual privacy by
authorizing legal individuals and corporations with different
privileges to access appropriate vehicles. Next, we will delve
into designing better location updating schemes such that
update overhead can be reduced as much as possible. A

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1622

realistic prototype testbed will be built to validate our design
and study its performance under real complex environments.
Improvements will be made based on the realistic studies
before it comes to be deployed in the large-scale SG system.

REFERENCES

[1] Shanghai City Comprehensive Transportation Planning Institute,
http://www.scctpi.gov.cn/chn/chn.asp, 2006.

[2] LoJack Corp., “Stolen Vehicle Recovery System,” http://www.lo-
jack.com/what/stolen-vehicle-recovery-system.cfm, 2007.

[3] Ltd Shanghai Super Electronic Technology Co., http://www.super-
rfid.net/english/, 2007.

[4] “Transportation Recall Enhancement, Accountability, and
Documentation (TREAD) Act,” the 106th United States Congress, 2000,
http://www.citizen.org/documents/TREAD%20Act.pdf.

[5] The Network Simulator, http://www.isi.edu/nsnam/ns/, 2006.
[6] BRITE, http://www.cs.bu.edu/brite/, 2006.
[7] “The Gnutella Protocol Specification V0.6,” http://rfc-

gnutella.sourceforge.net, 2005.
[8] Hongzi Zhu, Yanmin Zhu, Minglu Li, and Lionel M. Li, “ANTS:

Efficient Vehicle Locating Based on Ant Search in Shanghai
Tranportation Grid”, in Proceedings of ICPP, 2007.

[9] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, I. van der Wijk,
M. van Steen, and A.S. Tanenbaum, “The Globe Distribution Network,”
in Proceedings of USENIX Annual Conference, 2000.

[10] Alminas Civilis, Christian S. Jensen, and Stardas Pakalnis, "Techniques
for Efficient Road-Network-Based Tracking of Moving Objects," IEEE
Transactions on Knowledge and Data Engineering, vol. 17, pp. 698-712,
2005.

[11] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis, “Novel
Approaches to the Indexing of Moving Object Trajectories,” in
Proceedings of VLDB, 2000.

[12] George Kollios, Dimitrios Gunopulos, Vassilis Tsotras, Alex Delis, and
Marios Hadjieleftheriou, "Indexing Animated Objects Using
Spatiotemporal Access Methods," IEEE Transactions on Knowledge and
Data Engineering, vol. 13, pp. 758-777, 2001.

[13] Dan Lin, Christian S. Jensen, Beng Chin Ooi, and Simonas Saltenis,
"Efficient Indexing of the Historical, Present, and Future Positions of
Moving Objects," in Proceedings of MDM, 2005.

[14] Mindaugas Pelanis, Simonas Saltenis, and Christian S. Jensen, “Indexing
the Past, Present, and Anticipated Future Positions of Moving Objects,”
ACM Transactions on Database Systems, vol. 31, pp. 255-298, 2006.

[15] John F. Roddick, Max J. Egenhofer, Erik Hoel, and Dimitris Papadias,
"Spatial, Temporal and Spatio-Temporal Databases - Hot Issues and
Directions for Phd Research," in Proceedings of SIGMOD, 2004.

[16] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph, "Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and Routing,"
University of California at Berkeley, Technical Report, UCB/CSD-01-
1141, 2001.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications,” in Proceedings of ACM SIGCOMM, 2001.

[18] Antony Rowstron and Peter Druschel, "Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer Systems," in
Proceedings of IFIP/ACM Int. Conf. Distributed Systems Platforms,
2001.

[19] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker, “A Scalable Content-Addressable Network,” in Proceedings of
ACM SIGCOMM, 2001.

[20] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” in Proceedings of
the 16th international conference on Supercomputing, 2002.

[21] Christos Gkantsidis, Milena Mihail, and Amin Saberi, "Random Walks
in Peer-to-Peer Networks," in Proceedings of IEEE INFOCOM, 2004.

[22] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Davavrat Shah,
“Gossip Algorithms: Design, Analysis, and Applications,” in
Proceedings of IEEE INFOCOM, 2005.

[23] David Kempe, Alin Dobra, and Johannes Gehrke, "Gossip-Based
Computation of Aggregation Information," in Proceedings of IEEE
FOCS, 2003.

[24] Song Jiang, Lei Guo, and Xiaodong Zhang, “LightFlood:an Efficient
Flooding Scheme for File Search in Unstructured Peer-to-Peer Systems”,
In:Proceedings of ICPP, 2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1623

