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Abstract—Inter-contact times (ICTs) between moving vehicles 

are one of the key metrics in vehicular networks, and they are 

also central to forwarding algorithms and the end-to-end delay. 

Recent study on the tail distribution of ICTs based on theoretical 

mobility models and empirical trace data shows that the delay 

between two consecutive contact opportunities drops 

exponentially. While theoretical results facilitate problem 

analysis, how to design practical opportunistic forwarding 

protocols in vehicular networks, where messages are delivered in 

carry-and-forward fashion, is still unclear. In this paper, we 

study three large sets of Global Positioning System (GPS) traces 

of more than ten thousand public vehicles, collected from 

Shanghai and Shenzhen, two metropolises in China. By mining 

the temporal correlation and the evolution of ICTs between each 

pair of vehicles, we use higher order Markov chains to 

characterize urban vehicular mobility patterns, which adapt as 

ICTs between vehicles continuously get updated. Then, the next 

hop for message forwarding is determined based on the previous 

ICTs. With our message forwarding strategy, it can dramatically 

increase delivery ratio (up to 80%) and reduce end-to-end delay 

(up to 50%) while generating similar network traffic comparing 

to current strategies based on the delivery probability or the 

expected delay. 

Keywords-Inter-contact time; vehicular networks; temporal 

dependency; opportunistic forwarding; Markov chain 

I.  INTRODUCTION 

Vehicular networks are emerging as a new landscape of 

mobile ad hoc networks, aiming to provide a wide spectrum of 

safety and comfort applications to drivers and passengers. In 

vehicular networks, vehicles equipped with wireless 

communication devices can transfer data with each other 

(inter-vehicle communications) as well as with the roadside 

infrastructure (vehicle-to-roadside communications). In order 

to successfully transfer data from a vehicle to another, the 

vehicle needs to first wait until it geographically “meets” other 

vehicles (i.e., within the communication range of each other) 

for data-relay. Data transfer, therefore, arises in a store-carry-

forward fashion. Applications based on this type of data 

transfer strongly depend on vehicular mobility characteristics, 

especially on how often such contact opportunities take place 

and on how long they last. The delay between two consecutive 

contacts (referred to as inter-contact time) of the two vehicles 

is a major component of the end-to-end delay, as it represents 

how long it takes for this vehicle to encounter the other vehicle 

for data transmission. Larger inter-contact time (ICT) results in 

larger end-to-end delay. 

In the literature, several opportunistic message forwarding 

protocols in intermittently connected mobile ad hoc networks 

(MANETs) and delay tolerant networks (DTNs) have been 

proposed. When the future node movement is known in 

advance, data forwarding path can be calculated based on the 

knowledge of network topology and workload of traffic [1]. In 

reality, it is often the case that the information of future 

movement is unavailable. However, when node mobility is not 

completely random, it is possible to make forwarding decision 

based on mobility history [2] [3] [4], such as past records of 

connection opportunities with other nodes, node motility 

patterns, rate of change of connectivity and friendship index 

with other nodes. Random walks [5] [6] and epidemic routing 

[7] [8] require no history information while conducting data 

forwarding. In a random walk, a node randomly selects a 

neighbor as the next hop to carry a message. Using random 

walks generates very moderate network traffic but tends to 

show very large end-to-end delay. On the contrary, epidemic 

routing can achieve the minimum end-to-end delay by flooding 

a message throughout the network, which introduces 

unacceptable network overhead. 

Recently, there have been several studies on analyzing 

mobility characteristics based on empirical trace data collected 

from urban areas [9] [10] and public transportation systems 

[11] [12]. These studies mainly focus on the distribution of 

ICTs, having the observation that vehicles in urban 

environments tend to meet very frequently. They demonstrate 

the tail distribution of ICTs can decay exponentially fast. 

Although the exponential distribution facilitates the problem 

analysis on the performance bound of routing algorithms, it is 

not clear how to design a practical opportunistic forwarding 

algorithm utilizing the characteristics of inter-contact times?  

In this paper, we take a data-driven approach in designing 

and evaluating our opportunistic forwarding algorithm in 

urban vehicular networks. Extensive GPS trace data collected 

from more than ten thousand public vehicles (taxies and buses) 

in Shanghai and Shenzhen, two metropolises in China, are 

mined. Specifically, we analyze more than 45 million pairwise 

contacts resolved from the trace to characterize the contact 
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interaction among vehicles. By studying the distribution of 

ICTs, in addition to the exponential tail distribution, we find 

that the layout of ICTs also demonstrates an apparent pattern: 

if a vehicle meets another vehicle at certain time, the 

probability that the two vehicles meet again at the same time in 

the following days is very high. With this observation, we 

characterize the temporal correlation of ICTs and then capture 

those characteristics with higher order Markov chain models. 

We then design an opportunistic forwarding algorithm 

exploiting the temporal dependency of ICTs. In our algorithm, 

a vehicle estimates the expected delay between a neighboring 

vehicle and the destination of a message, based on their 

previous ICTs. If this vehicle has smaller estimation, it 

forwards the message for data-relay. The goal of our algorithm 

is twofold: first, we concern the delivery performance in 

vehicular networks, trying to minimize the end-to-end delay 

and maximize the delivery ratio; second, since vehicles 

communicate via wireless channels, we try to minimize the 

network overhead for data transmission. We verify the 

performance of our algorithm through extensive trace-driven 

simulations. The results show that we can achieve comparable 

delivery performance as epidemic routing in terms of end-to-

end delay and delivery ratio with a very moderate network 

overhead. Compared with current message forwarding strategy 

based on the delivery probability or the expected delay, our 

algorithm can dramatically increase 84% delivery ratio and 

reduce 53% end-to-end delay while generating similar network 

traffic. 

The remainder of this paper is organized as follows. 

Section II presents the related work. In Section III, we describe 

the characteristics of the GPS trace data and the distribution of 

the ICTs resolved. Section IV presents the temporal 

correlations of ICTs. We develop our opportunistic forwarding 

algorithm in Section V. Section VI describes the methodology 

to evaluate the performance our message forwarding algorithm 

and presents the results. Finally, we give concluding remarks 

and outline the directions for future work in Section VIII. 

II. RELATED WORK 

In intermittently connected MANETs and DTNs, where 
moving objects communicate in a store-carry-forward fashion, 
the mobility characteristics of objects are central to forwarding 
algorithms and the ultimate performance in terms of end-to-
end delay and delivery ratio. Based on the available knowledge 
about the movement of objects, data forwarding algorithms in 
these networks can be divided into two basic categories: 
knowledge-based and non-knowledge-based. 

In the knowledge-based category, there are several 
methods available to estimate the end-to-end path delay when 
the future movement of nodes is known ahead of time. For 
example, S. Jain et al [1] discuss the path selection algorithms 
according to how much knowledge about the network 
topology and network traffic workload being known. The path 
delay can be calculated as the sum of the expected delay of 
each hop on this path. A recursive process is deployed in [13] 
to calculate the minimum end-to-end delivery delay, assuming 
that the tail distribution of ICTs is exponential and ICTs are 

independent. In reality, however, it is often the case that 
information about the future movement of moving objects is 
unavailable. A number of utility-based routing schemes [14] 
[15] have been proposed for data forwarding based on node 
history mobility information, such as the contact records, 
mobility patterns and the rate of connectivity change. In these 
schemes, a utility function is defined and measured for every 
other node in the network. If the current message carrier meets 
a node with a higher utility, the message is forwarded to this 
node. Our algorithm fits in this category. In our algorithm, 
instead of examining the node mobility or pairwise contact 
patterns, we study the effect of the temporal dependency of 
ICTs to the delivery performance in vehicular networks, which 
we believe is one of the first reports analyzing the 
characteristics of ICTs from thousands of real urban vehicles. 

In the non-knowledge-based category, without requiring 

any information, random walks [5] [6] can be used for data-

relay. For a random walk, a node randomly selects a neighbor 

as the next hop to carry a message. Using random walks 

generates very moderate network traffic but tends to have very 

large end-to-end delay. By performing multiple walks, both 

delivery ratio and end-to-end delay can be improved. An 

extreme case of this is epidemic routing [7] [8], where a 

message is flooded throughout the network. Using epidemic 

routing can achieve the minimum end-to-end delay and 

maximum delivery ratio but generates unacceptable network 

overhead at the same time. Techniques such as limiting the 

number of duplicated copies of a message, setting a living 

timeout for packets and forwarding to selected neighbors can 

be used to reduce the overhead of epidemic routing.  

III. EMPIRICAL VEHICULAR DATA 

A. Collecting Urban Vehicular Trace Data 

In order to design message forwarding algorithms between 

urban vehicles, it is of great importance to study the empirical 

data on the frequency, duration and temporal distribution of 

contacts between them. Ideally, such a data set would contain a 

large number of vehicles over a sufficient long period of time, 

as well as include all connection opportunity information 

twenty-four hours a day with a fine granularity measured in 

seconds. 

We collect three sets of GPS traces (partially available at 

http://www.cse.ust.hk/scrg) of more than 10 thousands of 

public vehicles, namely taxies and buses, in Shanghai and 

Shenzhen, two metropolises in China. As a bus or a taxi 

commutes in the city, it periodically sends reports back to a 

data center via an on-board GPS-enabled device (an example 

taxi in Shanghai is shown in Fig. 1). The specific information 

contained in such a report includes: the vehicle’s ID, the 

longitude and latitude coordinates of the current location, 

timestamp, moving speed, heading and operational status (i.e., 

whether a taxi has passengers onboard or a bus is arriving at a 

bus stop). Due to the GPRS communication cost for data 

transmission, reports are sent at a granularity of around one 
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minute. The specific characteristics of the three data sets are 

shown in Table I. 

Definitely, there are various types of vehicles in urban 

environments, each of which has particular mobility patterns. 

We choose taxies and buses to study for two reasons. First, 

taxies and buses shows two distinct mobility patterns, namely, 

rather random and well scheduled, respectively. They are quite 

representative for a large variety of other vehicles in a city. For 

example, a private vehicle may follow a nearly precise route 

and schedule traveling back and forth between work and home 

on weekdays (bus-like behavior) whereas it is more interest-

driven (e.g., towards a park for picnic, a friend’s home for 

gathering, and a mall for shopping) on weekends or holidays 

(taxi-like behavior). Second, the privacy problem is less 

concerned since they are public vehicles. As privacy 

preservation schemes progress and more mobility data of 

private vehicles available, it is more practical to study private 

vehicles in the future. 

B. Statistics of Inter-Contact Time  

1) Extraction of Inter-Contact Time from Trace Data: 

Since GPS reports are sent in discrete time, usually on one 

minute, we use a sliding time window to check contacts 

between a pair of taxies as introduced in our pervous work 

[12]. Here we make the assumption that two vehicles would 

have a connection opportunity (called a contact) if their 

locations reported within a given time window are within the 

communication range.  Althogh the inaccuracy may be 

introduced by this assumption and contact extraction 

algorithm, the essential vehicular mobility characteristics are 

preserved and therefore the results are very valuable for study. 

We refer to inter-contact time as the time elapsed between 

two successive contacts of the same vehicles as defined in [16] 

[17] [18]. Specifically, the inter-contact time is computed at 

the end of each contact, as the time period between the end of 

this contact and the beginning of the next contact between the 

same two vehicles. For example, in Fig. 2, inter-contact time 

d1 can be computed as the starting time of contact C2 minus the 

end time of its previous contact C1. 

2) Inter-Contact Time Distribution Characteristics: We 

apply the above contact extraction algorithm with a time 

window of one minute and a communication range of 100 

meters to each pair of vehicles in all three data sets, 

respectively (basic statistics are shown in Table I). We plot the 

tail distribution (CCDF) of inter-contact time over time in 

linear-log scale in Fig. 3. The linear delay of all plots in linear-

log scale indicates that the tail distribution of inter-contact time 

between vehicles drops exponentially. The reason that the ICT 

tail distribution of vehicles is exponential rather than power 

law as found in human mobility [16] might be that traffic tends 

to converge around certain areas in the urban settings, such as 

the underlying topology of road networks and distribution of 

residential areas, shopping centers and commercial zones, 

which enormously increases contact opportunities of vehicles 

[12]. The exponential distribution implies, to some extent, 

vehicles meet each other in urban settings very frequently. 

While exponential distribution is convenient for the problem 

analysis, we are athirst for the answer to the following 

question: how to design a practical opportunistic forwarding 

algorithm utilizing inter-contact time distribution 

characteristics? 

To answer the question, it is not enough knowing only the 

frequency of connection opportunities but particularly the 

temporal layout or patterns between each inter-contact time 

within the distribution. Therefore, we examine the probability 

density function (PDF) of inter-contact time as shown in Fig. 4. 

It is easy to notice an apparent pattern that the probability 

reaches local maxima when the length of an inter-contact time 

equals an integral multiple of one day. This indicates that if a 

vehicle meets another vehicle at certain time the probability 

that the two vehicles meet again at the same time in the 

following days is very high. The reason can be explained as 

follows. Buses can constantly encounter with each other since 

they have dedicated routes and schedules. Intuitively, taxies 

behave rather randomly and have higher mobility than buses. 

Nevertheless, taxi drivers also have their own preferences in 

choosing serving areas and path planning. Evidence shows that 

other vehicles of different kinds in urban settings also 

 

Figure 2.  An example of contacts and inter-contact times between a pair of 

vehicles v1 and v2. 

 

Figure 1.  A taxi with a commercial GPS device installed (highlighted in the 

inset), the location and operational information thus can be preriodically sent 

back via GPRS wireless channels. 

TABLE I.  COMPARISON OF THERE DATA SETS 

Data Set Shanghai  Bus Shanghai Taxi Shenzhen  Taxi 

Number of  vehicles 2,501 2,109 8,291 

From date Feb. 19, 2007 Feb. 1, 2007 Oct. 1, 2009 

Duration (day) 15 31 31 

Granularity (second) 60 15*, 60** 60 

Number of contacts 1,229,380 22,053,178 23,968,860 

Mean ICT (minute) 31.8 47.6 30.5 
*vacant, **passengers onboard 

 

d1 d2

time

(v1, v2)

dm

C1 C2 C3 Cm Cm+1

T
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demonstrate strong mobility patterns during daily routines [19], 

which constitute regular connection opportunities. In other 

words, temporal dependency of inter-contact time does exist 

between two vehicles in urban vehicular networks. 

IV. ANALYZING ICT TEMPORAL PATTERNS 

In this section, we examine two specific questions: 1) how 

historical inter-contact time information is related to the 

current inter-contact time; and 2) how inter-contact time 

patterns evolve over time and how much historical information 

we need to track to capture the inter-contact time patterns over 

time. 

A. Characterizing Temporal Correlations of Successive ICTs 

We examine the correlation between inter-contact times by 

computing the marginal entropy of inter-contact times between 

each pair of vehicles and the conditional entropy of the inter-

contact times between a pair of vehicles given their previous M 

inter-contact times in all of the three data sets. 

Although an inter-contact time can be infinitely long in 

time, due to the fast exponential decay of inter-contact time tail 

distribution, most inter-contact times are less than a relatively 

short period of time. For example, in Fig. 3, more than 90% 

inter-contact times are less than six days. Therefore, an inter-

contact time  can be specialized into a discrete finite value 

space as,  

     
                

                      
 , (1) 

where    is the maximum inter-contact time, and   is the 

counting measure. In the rest part of this paper, without 

explicit specification, inter-contact times are referred to as 

their specialized counterparts. 

Let X be the random variable representing the inter-contact 

times between a pair of vehicles. If we have observed N inter-

contact times between this pair of vehicles, these inter-contact 

times can be presented by a vector                  where 

                      denotes the i
th
 inter-contact 

time. Assume each of these inter-contact times appeared xj 

times in T,          . Thus, the probability of the inter-

contact time being j can be computed as     . Therefore, the 

entropy of T is: 

                 
 

    

     
    , (2) 

For     , let X′ be the random variable for the 

immediately previous inter-contact time between this pair of 

vehicles given the inter-contact time   .    and    have the 

same distribution when   is large enough. The vector   can be 

written as                      . Therefore, the joint 

entropy of   and   can be computed as: 

                     
 

       
          (3) 

where        is the number of times        appearing in   

divided by the total number of elements in  . With      and 

       , the conditional entropy of   given    is: 

                                     (4) 

For      let    denote the random variable representing 

the distribution of the previous two ICTs given  . Similarly, 

the conditional entropy          is: 

                         

                                                                 (5) 

The joint entropy          can be calculated similarly. 

Fig. 5 shows the CDFs of the mean entropy and the mean 

conditional entropy, for     and 2, over each pair of taxies 

in the Shanghai data set. It can be seen that the conditional 

entropy for     is much smaller than the marginal entropy, 

and that the conditional entropy for     is smaller than that 

for    . This implies that the uncertainty about the inter-

contact time decreases when knowing the previous inter-

contact times between the same pair of taxies. 

We further examine the entropy and conditional entropy 

for vehicles in all data sets. Fig. 6 shows the results for 

marginal entropy and conditional entropy when    . It is 

 

Figure 4.  Probability density function of the inter-

contact time of the same experimental vehicle sets. 

 

Figure 5.  CDFs of marginal entropy and conditional 
entropy of inter-contact times between each pair of 

taxies in Shanghai data set. 

 

Figure 3.  Tail distribution of the inter-contact time 
of urban public vehicles in Shanghai (SH) and 

Shenzhen (SZ).  
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clear to see that the conditional entropy is much smaller than 

the marginal entropy for all types of vehicles. In addition, all 

entropy distributions are very close. Buses have much smaller 

conditional entropy than taxies in Shanghai. Therefore, 

although a pair of buses can have as many inter-contact times 

as a pair of taxies do, the inter-contact times between buses are 

more correlated than those between taxies. Interestingly, taxies 

in Shenzhen also have much smaller conditional entropy than 

taxies in Shanghai. This suggests that taxies in Shanghai 

operate more randomly with less interference of drivers than 

taxies in Shenzhen. 

B. Evolution of ICT Patterns 

In order to establish informed message forwarding strategy 

utilizing inter-contact time temporal patterns, we divide time 

into short time slots and examine the correlation between the 

distribution of inter-contact times between a pair of vehicles in 

time slot t and that in time slot t - n, increasing   from one to a 

large number. We use redundancy to quantify the correlation. 

Specifically, the inter-contact times between this pair of 

vehicles in time slot   forms a time 

series                    , where     is the length of a time 

slot and    is the number of inter-contact times occurred at 

time              . We also have the time series of inter-

contact times in time slot          . We compute the mutual 

information of    and      ,             via the joint entropy 

           and the marginal entropy       and         as 

follows: 

                                      (7) 

We define the redundancy of    and     by 

            
          

             
  (8) 

We compute the mean redundancy averaged over all pairs 

of vehicles in Shanghai bus data set from March 5, Shanghai 

taxi data set from March 3 and Shenzhen taxi data set from 

October 31, respectively. Time is divided into time slots of 

four hours. Fig. 7 shows the result for n = 1 to 84 (a period of 

two weeks). It can be seen that the layout of inter-contact times 

in a period of time has higher correlation with historical 

information when the time difference is a multiple of one day 

for all types of vehicles. Buses have higher redundancy than 

taxies. Therefore, the inter-contact times between buses are 

more predictable. Interestingly, the redundancy with Shanghai 

taxies achieves higher values on even numbers of days than on 

odd ones whereas the redundancy with Shenzhen taxies is 

more homogeneous throughout the whole period of time, 

having larger variances. This should reflect the different shift 

rules of taxies in these two cities. In Shanghai, taxi drivers 

usually shift every 24 hours so a taxi behaves very differently 

on every day but very similarly on every other day. The case in 

Shenzhen, where drivers shift twice a day (e.g., 7am and 5pm), 

is that a taxi behaves differently during the daytime but 

similarly on every day. 

To better understand how much history data should be 

considered in capturing the inter-contact time patterns, we 

examine the redundancy between the layout of inter-contact 

time in time slot t and the aggregated historical information 

from    to    , i.e.,      
 
   . We plot the average 

redundancy over all pairs of vehicles in the three data sets 

shown in Fig. 8. It is clear that the redundancy increases until 

  reaches to about three weeks. This implies that information 

older than three weeks does not help in capturing inter-contact 

time temporal patterns. 

V. OPPORTUNISTIC FORWARDING ALGORITHM DESIGN 

The analysis based on empirical vehicular trace data in 

Section III suggests that it is possible to predict when the next 

connection opportunity between a pair of vehicles will 

probably occur based on their recent inter-contact times. This 

enlightens the design of new opportunistic forwarding 

algorithms in urban vehicular networks. In this section, we first 

capture the inter-contact time temporal patterns between each 

pair of vehicles using higher order Markov chain models. 

Then, we describe our opportunistic forwarding strategy and 

discuss the algorithm parameter configuration in terms of 

system performance and memory cost.  

A. Markov Chain Model of k-th order 

The class of finite-state Markov processes (Markov chain 

models) is rich enough to capture a large variety of temporal 

 

Figure 7.  Mean redundancy of the layout of inter-
contact times between two different time slots over 

all pairs of vehicles in the three data sets. 

 

Figure 8.  Mean redundancy of the layout of inter-
contact times with aggregated history ICTs over all 

pairs of vehicles in the three data sets. 

 

Figure 6.  CDFs of marginal entropy and 
conditional entropy of inter-contact times between 

each pair of taxies in all data sets. 
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dependencies. In Markov chain models, the current state of the 

process depends only on a certain number of previous values 

of the process, which is the order of the process. By (1), 

continuous values of inter-contact times can be specialized into 

finite state space,                . Thus, we can establish 

a k-th order Markov chain to represent the temporal 

dependency of inter-contact time between a pair of vehicles. 

The number of states is             and the number of 

conditional probabilities is           . 

More specifically, let        
 be an observed sequence of 

inter-contact times between this pair of vehicles. The k-order 

state transition probabilities of the Markov chain can be 

estimated for all     and     ,               as 

follows.  Let    be the number of times that state   is 

followed by value   in the sample sequence. Let   be the 

number of times that state   is seen and let     denote the 

estimation of the state transition probability from state   to 

state            . The maximum likelihood estimators of the 

state transition probabilities of the k-th order Markov chain are 

       
                 

                    
   (9) 

B. Opportunistic Forwarding Strategy 

In order to acquire the knowledge of inter-contact patterns, 

a vehicle first collects recent inter-contact times between itself 

and all other vehicles. Meantime, it establishes a k-th order 

Markov chain for each interested vehicle in the network by 

determining the state transition probabilities according to (9). 

As a new inter-contact time comes, the vehicle also updates 

the corresponding Markov chain. It then uses the established 

Markov chain model as guidance to conduct future message 

forwarding. Specifically, when a vehicle v1 encounters vehicle 

v2, v1 examines all messages stored in the buffer of v2. Suppose 

vd is the destination of such a message. Let       
denote the 

current state in the k-th order Markov chain between v1 and vd. 

The estimated delay of the next contact between v1 and vd, 

      
     can be calculated as, 

       
              

    
     
     (10) 

Vehicle v1 will act as the next relay for this message if one 

of the two following cases happens: 1) v1 is the destination of 

this message, i.e., v1 = vd, and 2) v1 is a better candidate for 

relaying this message if the estimated delay of the next contact 

between v1 and vd is shorter than that between v2 and vd, i.e., 

      
            

     . After transmitting the message to v1, v2 

simply removes this message from its buffer. Similarly, v2 will 

also check messages carried by v1 and relay messages if 

needed. 

C. Algorithm Parameter Configuration 

In our opportunistic forwarding algorithm, there are four 
key parameters that impact the system performance, namely 

the maximum inter-contact time in consideration   , the 
counting measure  , the order of Markov chain models k and 
the length for learning stage. In addition, vehicles can have 
large but limited memory.  

Given  , a small counting measure   will increase the 
number of states in the Markov chain models, preserving more 
detailed information at a price of larger memory consumption. 
On the other hand, if    equals  , there is only two states in the 
Markov chain. Thus, a pair of vehicles can only judge the 
probability that the delay of their next connection is larger 
than  . This has less sense in helping message forwarding. 
Intuitively, with more detailed information, vehicles can 
predict more accurately about next communication 
opportunities. Therefore, there is a tradeoff between memory 
cost and system performance. Given the state space of a 
Markov chain model, simply increasing k will not help 
increase the number of state transition probabilities. The order 
of Markov chain models k can be determined by conducting 
AIC tests [20]. Due to the limitation of space, we omit the 
details.  

Fig. 9 shows an example of the average number of state 
transition probabilities per pair of vehicles in Shanghai taxi 
trace data set. It can be seen that the number of state transition 
probabilities reaches the maximum when   takes the minimum 
value (i.e., four hours in this example) and k equals six.  

From the analysis in Section IV, it is clear that increasing 

the length of learning stage will definitely help improving the 

accuracy of estimation for next connections. It also suggest 

that history information that is old than about three weeks will 

not help. Note that all Markov chains are established along 

with the movement of vehicles in real time. The performance 

of the proposed opportunistic forwarding algorithm will 

gradually improve as more learning data becomes available. 

We will further examine the effect of  , k and the length of 

learning stage through trace-driven simulations in the next 

section. 

VI. PERFORMANCE EVALUATION  

A. Methodology 

In this section, we compare our opportunistic forwarding 
algorithm with several alternative schemes: 

 Epidemic. In this scheme [7] [8], vehicles exchange 
every packet whenever they experience a contact. If 
vehicles have infinite buffer size, using epidemic 
routing will find the shortest path between the source 
and destination vehicles and therefore has the shortest 
end-to-end delay. On the other hand, since there is no 
control on data forwarding, it also generates a 
tremendously large volume of network traffic, 
overwhelming limited wireless bandwidth. 

 Minimum Expected Delay (MED). This scheme [1] 
utilizes the expected delay metric to guide data 
forwarding. Expected delay is used to estimate the 
expected delay between two vehicles v1 and v2 based 
on contact records. Given the contact record shown in 
Fig. 2, expected delay can be calculated 
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as           
   

  
   

  
. When conducting packet 

forwarding, the vehicle with the minimum expected 
delay is chosen as the next hop. 

 Maximum Delivery Probability (MDP). This 
scheme [2] [21] utilizes the delivery probability metric 
to guide data forwarding. Delivery probability is  
designed to reflect the contact frequency, i.e., how 
often two vehicles meet each other. For example, if the 
contact record between vehicles v1 and v2 is shown in 
Fig. 2, the delivery probability between vehicles v1 and 

v2 can be calculated as            
   

 
   

 
. Upon 

selecting a next-hop vehicle to forward a packet, a 
vehicle prefers the neighbor with the maximum 
delivery probability. 

We consider three important metrics to evaluate the 
performance of our algorithm and the above schemes:  

1) Delivery ratio. It refers to the success ratio of the 

number of successfully delivered packets to the total number 

of packets at the end of an experiment of certain time.  

2) End-to-end delay. It refers to the delay for a packet to 

be received to its destination. It can be calculated by 

accumulating every delay of each hop. We only calculate end-

to-end delay for successfully delivered packets. 

3) Network traffic per packet. It refers to the average 

network cost per packet, calculated by dividing the total 

number of data forwarding by the number of packets. 

In the following simulations, we evaluate the performance 
of our opportunistic forwarding algorithm in terms of the 
above metrics, using real trace data from Shanghai taxies, 
Shenzhen taxies and Shanghai buses. From each data set, we 
randomly choose 500 vehicles. We then extract contact records 
between each pair of vehicles for all selected vehicles, using 
the algorithm described in Subsection III.B. We use the 
contact records in the first three weeks (one week for bus due 
to the limited available data) as the learning stage for all 
alternative schemes and use the last week for data transmission. 
At beginning of each experiment, we inject 100 packets using 
a Poisson packet generator with a mean interval of ten seconds. 
For each packet, the source and destination are randomly 
chosen among all vehicles in each data set. Here we assume 

that two vehicles can always successfully conduct all data 
transmission when they have a contact. 

B. Effect of Algorithm Parameters 

We first examine the effects of protocol parameters to the 
network delivery performance. The maximum inter-contact 
time   is set to be six days (90% confidence interval). We vary 
the counting measure   from four hours to six days at an 
interval of four hours and vary the order of Markov chain k 
from one to 20 at an interval of one. For each value of   and k, 
we run the experiment 50 times and measure the average 
results.  

Fig. 10 shows the end-to-end delay based on Shanghai taxi. 
The minimum end-to-end delay can be achieved with the 
smallest   equal to four hours and k equal to six in this case. It 
is clear that increasing   will result in larger end-to-end delay. 
To some extent, increasing k will not reduce the end-to-end 
delay. Fig. 11 shows the delivery ratio as a function of    and k. 
It can be seen the delivery ratio reaches the maximum with the 
smallest    and k equal to six. The delivery ratio increases very 
fast as k increases in the beginning but after that it starts to 
decrease gradually. When   varies from four hours to six days, 
the delivery ratio decreases. These results verify the conclusion 
described in Subsection V.C. We also check the effect of the 
configuration of   and k to the delivery performance on 
Shanghai buses and Shenzhen Taxies. The result is similar, i.e., 
taking the smallest   will get the best performance with k equal 
to five based on Shanghai bus data and six based on Shenzhen 
Taxi data. 

C. Effect of Learning Stage 

In this simulation scenario, we examine how much history 
information is essential for setting up our models. We apply a 
small   and the corresponding optimal configuration of k and 
gradually increase the time for learning. For example, in 
Shanghai taxi trace data, we set   = 30 minutes and k = 6 and 
use the trace in last week, from Feb. 25 to Mar. 3, for data 
transmission. We increase the time for learning from one day 
(i.e., Feb. 24), two days (i.e., Feb. 23 - Feb. 24) till 24 days 
(i.e., Feb. 1 - Feb. 24). For each training time, we run the 
experiment 50 times and measure the average results. 

Fig. 12 shows the end-to-end delay as the length of 
learning stage grows. It can be seen that, with more history 

 

Figure 11.  The delivery ratio vs. counting measure   

and the order of Markov models k. 

 

Figure 9.  The memory cost vs. counting measure   

and the order of Markov models k. 

 

Figure 10.  The end-to-end delay vs. counting 

measure   and the order of Markov models k. 
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information available, our algorithm can dramatically reduce 
the average end-to-end delay from 53.62 hours to 22.87 hours. 
When the length of learning stage is larger than 19 days, the 
end-to-end delay hits a plateau and stabilizes. This is 
consistent with our observation in Subsection IV. B that 
history information older than three weeks will not contribute 
more. Surprisingly, as the learning time grows, both MED and 
the MDP schemes have larger end-to-end delay. Since these 
schemes are based on aggregated characteristics of inter-
contact times, they cannot fully utilize the temporal 
dependency of vehicular mobility. The MED and the MDP 
schemes achieve the minimum end-to-end delay of 61.62 
hours and 61.02 hours, respectively, using one day for learning. 
The epidemic scheme has the minimum end-to-end delay of 
8.6 hours. 

We plot the delivery ratio as a function of learning time 
shown in Fig. 13. We omit results from the epidemic scheme 
since it can always get a 100% delivery ratio in this setting. 
The Markov scheme can reach to a 96% delivery ratio when 
the length of learning stage is larger than three weeks. It can 
also delivery about 84% more packets, compared with the best 
performance of the MDP and the MED schemes (53% and 
52%). Fig. 14 shows the average network traffic per packet 
generated in the network. It can be seen that it takes three more 
hops on average to deliver a packet using the Markov scheme 
than using the MED and the MDP schemes to achieve best 
performance. The epidemic scheme has the largest network 
cost of 1.87×10

5
 hops. In summary, our scheme can achieve 

comparable delivery performance as the epidemic scheme with 

a conservative network cost. We also examine the effect of 
learning stage to the network performance based on Shenzhen 
taxi data and Shanghai bus data. Results are presented in Table 
II. 

D. Effect of Multiple Paths 

In previous simulations, each packet follows only one path, 
i.e., at any time, at most one copy of a packet exists in the 
network. In this simulation, we extend our algorithm to allow 
multiple copies of a packet, thus to improve delivery 
performance in terms of shorter delay and higher delivery ratio. 
We consider two multiple path forwarding strategies: 

1) Better Candidate. In this strategy, instead of removing a 

packet from its buffer after message forwarding, a vehicle 

keeps a copy of a packet and can always forward the packet to 

other candidate vehicles in the future; 

2) Ever-best Candidate. In this strategy, a vehicle also 

keeps a copy of a packet but only transmits the packet to a 

candidate that has the ever-best delay estimation among all 

previous candidates it has chosen. 

We apply these two strategies to our Markov scheme, the 
MDP and the MED schemes, and conduct experiments with 
the same configuration as that in the above simulation except 
all available data in learning stage are used. The end-to-end 
delay, delivery ratio and the network traffic per packet based 
on Shanghai taxi data are shown in Fig. 15, Fig. 16 and Fig. 17, 

 

Figure 15.  The end-to-end delay vs. opportunistic 

forwarding algorithms based on Shanghai taxi data. 

 

Figure 12.  The end-to-end delay vs. the length of 

learning stage based on Shanghai taxi data. 

 

Figure 17.  The network traffic per packet vs. 

opportunistic forwarding algorithms. 

 

Figure 16.  The delivery ratio vs. opportunistic 

forwarding algorithms based on Shanghai taxi data. 

 

Figure 13.  The delivery ratio vs. the length of 

learning stage based on Shanghai taxi data. 

 

Figure 14.  The network traffic per packet vs. the 

length of learning stage based on Shanghai taxi data. 
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respectively. It can be seen that the proposed scheme can 
achieve appealing delivery performance (22.87-hour end-to-
end delay and 96% delivery ratio) even with one-path 
forwarding. By conducting multiple path forwarding, the MED 
and MDP schemes can achieve smaller end-to-end delay and 
larger deliver ratio but at a very high network cost. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have demonstrated that urban vehicles 
show strong temporal dependency in terms of how they meet 
each other. Although our study based on two specific types of 
public vehicles, namely taxies and buses, they are 
representative with respect to mobility characteristics in urban 
settings. Buses have dedicated routes and fix schedules which 
make their connection opportunities more predictable. On the 
other hand, taxies with much random mobility still have strong 
temporal correlation between every pairwise contact. 
Therefore, we have developed an appealing opportunistic 
forwarding algorithm using higher order Markov chains, which 
can significantly improves the delivery ratio and reduce the 
end-to-end delay for data delivery.  

We will extend our work in two directions. First, it is often 
assumed in the literature that data transfers can be done 
instantaneously as soon as two vehicles have a chance to meet. 
It is definitely not the case in reality since wireless link quality 
is very dynamic. Thus, we will investigate the end-to-end 
delay with limited wireless link bandwidth since the delay is 
influenced not only by ICTs but also by retransmissions if the 
data transfer fails in a contact. Second, we will validate our 
algorithm by conducting field tests and collecting trace data of 
more types of vehicles. 
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TABLE II.  PERFORMANCE COMPARISON OF ALL SCHEMES 

Shenzhen Taxies  
Min. End-to-end 

Delay (hour) 

Max. Delivery 

Ratio 

Network Traffic 

(hop) 
Shanghai Buses  

Min. End-to-end 

Delay (hour) 

Max. Delivery 

Ratio 

Network Traffic 

(hop) 

Markov 23.68 83% 3.34 Markov 34.12 95% 2.33 

MED 49.70 40% 1.82 MED 74.90 53% 1.47 

MDP 48.81 41% 2.04 MDP 74.29 53% 1.47 

Epidemic 3.34 100% 1.25×105 Epidemic 11.67 100% 2.06×105 
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