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Abstract—With the proliferation of smartphones, participatory
sensing using smartphones provides unprecedented opportunities
for collecting enormous sensing data. There are two crucial
requirements in participatory sensing, fair task allocation and
energy efficiency, which are particularly challenging given high
combinatorial complexity, tradeoff between energy efficiency and
fairness, and dynamic and unpredictable task arrivals. In this pa-
per, we present a novel fair energy-efficient allocation framework
whose objective is characterized by min-max aggregate sensing
time. We rigorously prove that optimizing the min-max aggregate
sensing time is NP hard even when the tasks are assumed as a
priori. We consider two allocation models: offline allocation and
online allocation. For the offline allocation model, we design an
efficient approximation algorithm with the approximation ratio
of 2 − 1

m
, where m is the number of member smartphones in

the system. For the online allocation model, we propose a greedy
online algorithm which achieves a competitive ratio of at most
m. The results demonstrate that the approximation algorithm
reduces over 81% total sensing time, the greedy online algorithm
reduces more than 73% total sensing time, and both algorithms
achieve over 3x better min-max fairness.

I. INTRODUCTION

With the proliferation of mobile devices, participatory sens-

ing with smartphones becomes a new and important paradigm

for collecting and sharing data with the general public. A

lot of collaborative, crowdsourcing based applications spring

up. Example applications of participatory sensing include

intelligent transportation [1] [2] [3], localization [4] [5] [6],

environmental monitoring [7] [8], and crowding counting [9].

The typical architecture of a participatory sensing system

is illustrated in Fig. 1. The system is comprised of a central
platform and a collection of smartphones. The platform resid-

ing on the cloud accepts sensing service requests from system

users, and allocates sensing tasks to the member smartphones.

After being assigned a sensing task, a smartphone performs

the required sensing service and returns the sensing data to the

platform which forwards the data to the querying user. The

smartphones in the participatory sensing system are assumed

cooperative (not strategic), which belong to or affiliated to

the system, willing to take sensing tasks and provide sensing

services to the system. We call such smartphones member
smartphones. Such participatory sensing systems are practical

and realistic in enterprise or agreement-based cooperation

scenarios. The issue of participation incentive [10] [11] of

rational or even strategic smartphone user is out of the scope

of the paper.

Fig. 1. The architecture of a participatory sensing system.

In this paper we focus on energy efficiency of member

smartphones of a participatory sensing system. More specif-

ically, we study the task allocation strategy of the platform

for optimizing the energy efficiency of member smartphones.

Processing a sensing task typically requires a smartphone to

drive the processor for sampling and processing the data. It

consumes considerable energy on the smartphone, which is

dependent on the required sensing time length of a sensing

task. Recent measurement study [12] has shown that the

processor consumes up to 25% and an energy hungry sensor

like GPS can consume up to 15% of the total energy. As a

result, it causes large energy cost as a smartphone contributes

to the participatory sensing system.

We make the important observation that it can greatly save

energy consumption by reusing the sensing service on the

Fig. 2. Two different allocation strategies considered. The left figure consid-
ers the case two overlapped tasks are allocated to two different smartphones,
and the total sensing time is 4 hours, while the right figure considers that two
overlapped tasks are allocated to one smartphone, and thus the total sensing
time 3 hours.
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smartphone, which is to allocate overlapping tasks requir-

ing the same sensing service to the same smartphone. As

illustrated by the example in Fig. 2, there are two sensing

tasks: task 1 requests a sensing service from 10am to 12am,

and task 2 requests the sensing service from 11am to 13pm.

Suppose there are two smartphones A and B. We examine two

strategies. In the first strategy, each smartphone is allocated

one task. In this case, the total sensing time of both A and B
is 4 hours. In the second strategy, both tasks are allocated to

B. The resulting total sensing time is 3 hours. In conclusion,

overlapping the sensing intervals of different tasks can reuse

the sensing service on the smartphone and hence energy

consumption can be reduced. Nevertheless, we also find that

although the total energy is reduced, the issue of unfairness

arises. It is clear that A spends no energy on sensing service

while B spends 3 hours.

The previous observation motivates us to investigate the

crucial problem of allocating sensing tasks for maximizing

energy efficiency while maintaining good fairness among

member smartphones. However, several great challenges re-

main to be solved. First, there is an intrinsic tradeoff between

total energy efficiency and fairness among smartphones. It

is highly desirable to strike a good balance between overall

energy efficiency and fairness in terms of individual energy

consumption. Second, both the number of sensing tasks and

the number of smartphones can be large. The time complexity

would be high if a straightforward exhaustive search is applied.

We rigorously prove that the problem of task allocation for

optimal min-max energy efficiency is NP hard. Finally, in the

real world sensing tasks may arrive to the system at anytime

and the arrival process of sensing tasks can be arbitrary and

unknown beforehand.

Little existing work in recent years has studied the problem

of task allocation in participatory sensing systems. In [13],

the authors consider task assignment in a crowdsourcing

market such as Amazon Mechanical Turk. The problem is to

match heterogeneous tasks to workers with different, unknown

skill sets. The objective is to maximize the total benefits

of the requester who submitted tasks. In [14], the problem

of selecting a service provider from a list of providers is

considered, with the objective of maximizing the consumer’s

satisfaction. There is little existing work for task allocation,

which is applicable to the problem of maximizing overall

energy efficiency and fairness among smartphones. The unique

characteristics of participatory sensing, such as tradeoff and

utilization of overlapping intervals, have never been explored.

In response to the challenges mentioned above, we introduce

a fair energy-efficient allocation framework whose objective is

characterized by min-max aggregate sensing time. Based on

the framework, we propose two sensing task allocation algo-

rithms in participatory sensing systems for different allocation

models: offline allocation and online allocation. For the offline

allocation model, at the time of scheduling the platform has the

complete knowledge of all sensing tasks, including the future

tasks to be allocated. We design an efficient approximation

algorithm with the approximation ratio of 2 − 1
m , where m

is the number of member smartphones in the system. For the

online allocation model, sensing tasks arrive to the system and

the allocation decision is made on the fly. We propose a greedy

algorithm with a polynomial time complexity, which achieves

a competitive ratio of at most m.

The main technical contributions made in this paper are

summarized as follows:

• It is the first work, to the best of our knowledge, that

investigates the important problem of sensing task alloca-

tion in participatory sensing systems, with the objectives

of achieving both energy efficiency and fairness.

• We introduce a novel fair energy-efficient allocation

framework whose objective is characterized by min-max
aggregate sensing time, and rigorously prove that the

problem of optimizing min-max aggregate sensing time

is NP hard even when tasks are known a priori.
• For the offline allocation model, we design an efficient

approximation algorithm with the approximation ratio of

2− 1
m , where m is the number of member smartphones in

the system. For the online allocation model, we propose

a greedy algorithm with polynomial complexity of of

O(mn), which achieves a competitive ratio of at most

m. n is the total number of tasks have allocated.

• We have performed both theoretical analysis and simula-

tions, and the results demonstrate that, compared to the

baseline algorithm, our algorithms achieve good energy

efficiency and fairness. The approximation allocation

algorithm reduces over 81% total sensing time, and the

online allocation algorithm reduces more than 73% total

sensing time. Both algorithms achieve over 3x better min-

max fairness.

The rest of this paper is organized as follows. In Section II,

we present the system model and define the problem. Section

III describes the design of the approximation algorithm for

the offline task allocation model and Section IV describes the

design of the online algorithm for the online task allocation

model. Section V presents and discusses evaluation results.

Section VI reviews related work. In Section VII, we conclude

the paper and present the future work directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we first present the system model, and then

formally formulate the problem considered in the paper. At

last, we give the complexity analysis of the problem.

A. System Model

We consider sensing task allocation problem in a partici-

patory sensing system with cooperative member smartphones.

The platform is located on the cloud, accepting dynamically ar-

riving tasks. The platform is responsible for allocating sensing

tasks to the smartphones. There are m member smartphones

in the system. A smartphone performs the task by sampling

the required sensing data. On the completion of a sensing task,

the smartphone returns the sensing data back to the platform

which then forwards the data to the user who submitted the

sensing task.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1367



In this paper, we consider homogeneous sensing tasks which

require the same sensing service from smartphones. Discus-

sions on heterogenous tasks will be left for future studies.

Each task ri is associated with a sensing interval Ii = [si, ei],
indicating that the sensing service starts from si and ends at ei.
The sensing time of task ri is ei−si. For ease of presentation,

we consider the time as discrete slots of equal size (1 unit

time). Note that a task can only be allocated to one smartphone

and is indivisible.

Before formally defining the problem of the sensing task

allocation, we first introduce some notations similar to [15].

Definition 1 (Cover of sensing tasks). For two tasks r1, r2
with sensing intervals I1 = [s1, e1] and I2 = [s2, e2] and
s1 ≤ s2, if e1 ≥ e2, we call r2 is covered by r1.

Definition 2 (Union of sensing intervals). Define I1�I2 as the
union of two sensing intervals or interval sets. For example,
[2, 5] � [3, 6] = [2, 6], {[2, 4], [5, 7]} � [3, 6] = {[2, 7]}.

Definition 3 (Length of interval). Let l(I) denote the length of
interval I or the length of the union of intervals in set I . For
example, l([1, 3] � [2, 5]) = l([1, 5]) = 4, l([1, 3] � [4, 5]) = 3,
and l([1, 4]) = 3.

Definition 4 (Aggregate sensing time). The aggregate sens-

ing time �i of a smartphone i is the overall sensing time
that i should spend on completing the allocated tasks. Giv-
en tasks allocated to i is {r1, r2, · · · , rn} with intervals
{I1, I2, · · · , In}, then �i = l(

n�
i=1

Ii).

B. Problem Formulation

We next formally define the task allocation problem whose

objective is to optimize energy efficiency and maximize fair-

ness. Since the two objectives are contradictory, we introduce

a novel fair energy-efficient allocation framework whose ob-

jective is characterized by min-max aggregate sensing time. By

achieving the min-max aggregate sensing time objective, we

can jointly take fairness maximization and energy efficiency

into consideration.

Definition 5 (Task allocation problem with the objective of

min-max aggregate sensing time). Consider time period [0, T ]
where T is a sufficiently large future time point of interest.
During [0, T ], the set of sensing tasks that arrive to the system
is denoted by R = {r1, r2, · · · , rn}, with corresponding
intervals I = {I1, I2, · · · , In}. The system has m member
smartphones. The problem is to find a sensing task allocation,
such that the maximum aggregate sensing time of smartphones
is minimized, i.e.,

min max
1≤i≤m

�i, (1)

We consider two task allocation models, i.e., offline alloca-

tion and online allocation.

Definition 6 (Offline task allocation model). In this model,
at the time of scheduling the platform has the complete
knowledge of all sensing tasks, i.e., both R and I.

Fig. 3. Reduction from job scheduling to task allocation

Remarks: The offline task allocation model has limited

applications in reality. We consider this model for studying

the problem complexity and as a baseline for comparison with

the online algorithm to be proposed.

Definition 7 (Online task allocation model). In this model, the
platform makes the allocation decision once the task arrives
to the system. The platform has no access to the knowledge
of future tasks and their corresponding intervals.

Remarks: This model is practical and applicable to real-

world participatory sensing systems.

C. Analysis of NP Hardness

Optimizing the objective of min-max aggregate sensing time

in a participatory sensing system is computationally difficult.

In this subsection, we rigorously prove that the task alloca-

tion with the objective of optimizing the min-max aggregate

sensing time is NP-hard even under the offline model.

Theorem 1. The task allocation problem with the objective
of minimizing the maximum aggregate sensing time of all
smartphones under the offline allocation model is NP-hard.

Proof: We prove the NP hardness by reducing from a

classical NP problem of job scheduling [16] to our problem.

The job scheduling problem can be described as follows: a

sequence of jobs need to be scheduled on m identical parallel

machines. Each job has a processing time. The goal is to find

a optimal schedule which minimizes the makespan, which is

the total processing time of all jobs scheduled on the most

loaded machine.

This reduction takes an instance of the job scheduling

problem as input. Given a set of jobs J and m identical

parallel machines, each job ji has a processing time di.
Order these jobs arbitrarily, such as J = {j1, j2, · · · , jn}, we

construct an instance of the sensing task allocation problem as

follows: for each job ji, there is a sensing task with interval

Ii = [ti, ti + di], di > 0. At the same time, ti + di <
ti+1, i ∈ {1, 2, · · · , n − 1}. The reduction can be completed

in polynomial time. An example is shown in Fig. 3

A job schedule with the makespan minimized can be

translated into a task allocation with the maximum aggregate

sensing time minimized. As there is no overlap between

any two sensing intervals in this instance of task allocation

problem, the sensing time of a task ri is exactly equal to the

processing time di of job ji . Thus, the makespan of an optimal
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scheduling is just the maximum aggregate sensing time of

smartphones.

III. APPROXIMATE OFFLINE TASK ALLOCATION

In this section we consider the offline allocation model.

First, we present the overview of the offline task allocation

algorithm, and next give the algorithm details and finally

present some theoretical analysis.

A. Overview

As previously proved, the task allocation problem with

the objective of min-max aggregate sensing time is NP hard

and thus there is no computationally efficient algorithm for

deriving the optimal solution. In this section, we design a

polynomial-time approximation algorithm for the offline task

allocation model under which the platform has the complete

knowledge of tasks R, including the sensing interval Ii of

each task ri ∈ R.

There are two steps in the design of the algorithm. In

the first step, we construct a task precedence graph G(V ∪
{v0}, E) with |V | = n. Being a directed graph, a task

precedence graph is used to characterize the timing and inter-

cover relations between sensing tasks. In the second step, we

search for m paths which start from v0. These m paths visit

all the nodes in the graph collectively. Each node in V in the

graph can only be included in a path exactly once. We call

the set of such m paths m-path.

With this graph, we are able to convert the original problem

of minimizing the maximum aggregate sensing time to a new

problem of finding paths on a directed graph which is easier

to handle.

B. Constructing Task Precedence Graph

We next explain the construction of the task precedence

graph. Before introducing the construction of the graph, we

introduce an important observation, which is given in the

following claim.

Claim 1. The optimal solution to the task allocation problem
with the objective of min-max aggregate sensing time remains
the same after any task which is covered by another task is
removed from consideration.

Remarks: Suppose that task ri is covered by rj and ri
is removed. The optimal solution with the new set of tasks

without ri remains optimal after ri is added to the system

because it can be allocated to the same smartphone which

rj is allocated to. It is clear that after ri is added back, the

optimal aggregate sensing time does not change. Therefore,

we can remove those tasks which are covered by other tasks

from consideration and the platform only allocate the new set

of tasks. After the allocation is done, the removed tasks then

are allocated into the corresponding smartphones.

Next we show how to convert a set of tasks in which no

task is covered by another task, into a task precedence graph.

Formally, we construct a directed graph G(V ∪ {v0}). Each

node vi ∈ V represents a sensing task ri and is attached with

Fig. 4. The construction of the task precedence graph. Each node in the
graph denotes a task with a start time and an end time. v0 is the virtual node
and denotes a task with the sensing interval [0,0]. The weight is calculated
as definition 2

an interval [si, ei], where si is the start time and ei is the end

time. v0 is an added virtual node with interval [0, 0]. There

exists a directed edge (vi → vj) ∈ E if and only if si < sj .

The edge weight wij is the additional sensing time needed

to complete task rj after completing task ri, which can be

calculated as

wij =

{
l(Ii � Ij)− l(Ii), i 	= j
0, i = j

(2)

As task rj ends later than task ri, we have wij > 0.

We give a simple example to show the constructing process

of the task precedence graph (Fig. 4). Three tasks r1, r2, r3 are

converted to the nodes v1, v2, v3. v0 is a virtual node with the

interval [0, 0]. A node with a small start time has an edge to

a node with large start time. Thus there is an edge from v0
to v1, v2, v3, respectively. The weight of edge (vi → vj) is

calculated as l(Ii�Ij)− l(Ii). For example, w01 = 4−0 = 4.

Claim 2. An allocation with the maximum aggregate sensing
time of smartphones minimized corresponds to a solution to
finding m-path with the objective of minimizing the maximum
length of those m paths.

C. Searching for m-path

In this section we propose an approximation algorithm to

search for m-path. The goal is to minimize the maximum

length of the paths.

The algorithm for searching for paths proceeds in two key
steps.

• In the first step, we search for a Hamilton path, denoted

by P ∗, from the constructed task precedence graph.

• In the second step, we split the obtained Hamilton path

into m sections, each section corresponding to the set of

tasks for a smartphone.

1) Searching for a Hamilton Path: We refer to a Hamilton

path in a directed graph as a directed path that goes through

each node exactly once, and a path is presented as a sequence

of nodes in the remaining part of this paper.

A straightforward method to find the Hamilton path is to

enumerate all paths from node v0 to other nodes in the graph.

Due to the characteristics of the task precedence graph, one

can find the Hamilton path by the branch and bound algorithm

which may have a fast convergent rate. A “branch” can be
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Algorithm 1: Approximation algorithm

Input: The Hamiltonian path P ∗ and its length L∗
1; dmax; the

number of smartphones, m
Output: a set of paths {P1, P2, · · · , Pm};

1: for each j, 1 ≤ j < m do
2: find the last node vp(j) such that the distance from v0 to

vp(j) along P ∗ is not greater than
j(L∗

1−dmax)

m
+ dmax.

3: Obtain the jth section denoted by a sequence Pj .

Pj =

{
< v0, . . . , vp(1) >, j = 1
< v0, vp(j−1)+1, . . . , vp(j) >, 1 < j < m

4: end for
5: Pm = < v0, vp(m−1)+1, . . . , vn >
6: return P1, P2, · · · , Pm.

Fig. 5. An example of path splitting. A Hamiltonian path v0 → v1 → · · · →
vn is split into 3 sections P1, P2, P3. P1 consists of v0, v1, · · · , vp(1). P2

consists of v0, vp(1)+1, · · · , vp(2), and P3 consists v0, vp(2)+1, · · · , vn.

pruned if there exists a node unvisited which has a smaller

start time than those visited nodes on the branch. In this way,

quite a lot of searching branches can be pruned. This is true

because there is no possibility that a path revisits a node with

a smaller start time.

The length of the Hamilton path, denoted by L∗
1, can be

calculated by adding all the weights of the edges of the path.

2) Splitting the Hamilton Path: Next, we describe an ap-

proximation algorithm which employs a path splitting heuris-

tic. Given the Hamilton path P ∗, the algorithm splits it into

m sections, P = {P1, P2, · · · , Pm}. Each section is built

by a subcomponent of P ∗ with v0 added as the source

node. For ease of exposition, let dmax denote the maximum

distance from v0 to other nodes in V . Formally we have

dmax = max
1≤i≤n

w0i. The details of the algorithm are given

in Algorithm 1

For each section Pi, the distance from the first node v0
to the last node vp(i) is actually the aggregate sensing time

of corresponding tasks. The nodes in section P1, P2, · · · , Pm

returned by the algorithm is the allocation scheme for the

tasks. To ease the understanding, an example of splitting a

path into 3 sections is shown in Fig. 5.

D. Optimization

Constructing the task precedence graph requires O(n2)
and searching for a Hamilton path in a directed graph is

not in polynomial time [17]. Fortunately, we find that a

Hamilton path can be constructed simply by sorting all the

tasks according to the start time in an increasing order. Inspired

by this observation, we propose an optimization for finding the

Hamilton path, which has a low complexity of O(n log n).

Claim 3. There is only one Hamilton path in the task prece-
dence graph, which starts from v0 to the node with the largest
end time.

As the directed edge (vi → vj) ∈ E exists when the start

time of vi is smaller than that of vj , the Hamilton path must

go through all nodes in the order sorted by the start time, and

v0 is the first node of the Hamilton path. Thus one can sort all

the tasks by the start time in an increasing order. Then, these

tasks comprise the nodes of the Hamilton path. The weights of

edges on the Hamilton path are calculated as Definition 2. The

total time complexity is O(n log n), where n is the number of

tasks.

E. Analysis

Theorem 2. Suppose λ is the maximum aggregate sensing
time of smartphones achieved by Algorithm 1, and λ∗ is
the maximum aggregate sensing time achieved by an optimal
allocation. Then we have

λ

λ∗ ≤ 2− 1

m
(3)

where m is the number of smartphones.

Proof: From the algorithm, we can see that the distance

from v0 to vp(1) along P ∗ is no greater than (L∗
1−dmax)/m+

dmax. For each section j, 1 < j ≤ m − 1, the distance from

vp(j−1)+1 to vp(j) is no greater than (L∗
1 − dmax)/m. The

distance from vp(m−1)+1 to vn is still (L∗
1 − dmax)/m. Thus

for each section j, the maximum length is no greater than

(L∗
1 − dmax)/m+ dmax. Therefore,

λ ≤ (L∗
1 − dmax)/m+ dmax

≤ L∗
1/m+ (1− 1/m)dmax

(4)

Due to dmax ≤ λ∗ and λ∗ ≥ L∗
1/m, then we have λ ≤

λ∗ + (1 − 1/m)λ∗ = (2 − 1/m)λ∗ and λ
λ∗ ≤ 2 − 1/m. The

proof is completed.

Theorem 3. The time complexity of the approximation algo-
rithm is O(nlogn), where n is the total number of tasks.

Proof: The time complexity of finding the Hamilton path

and calculating the length of it is O(n log n), and the splitting

process needs the time complexity of O(n). Thus, the total

time complexity of the algorithm is O(n log n).

IV. ONLINE TASK ALLOCATION

In this section, we consider the online task allocation model.

First, we present the overview of the online allocation algo-

rithm. Next, the details of the algorithm design are presented.

Finally, we provide theoretical analysis on the algorithm.

A. Overview

We propose a greedy algorithm, which allocates tasks to

smartphones based on three basic rules.
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• Rule 1: allocating a task to the smartphone if it can be

covered by tasks which have already been allocated to

that smartphone.

• Rule 2: allocating a task to the smartphone which has the

smallest aggregate sensing time if the task were allocated

to the smartphone.

• Rule 3: if multiple smartphones meet Rule 2, then allo-

cate the task to the smartphone with the least increased

sensing time.

The priority of these three rules decreases from the first one

to the last one.

B. Algorithm Design

We present the detailed design of the greedy algorithm. Each

smartphone maintains a list which stores the ordered tasks that

have been allocated to it. A task with a smaller start time is

ordered ahead of the one with a larger start time. The insertion

of a new task can be completed in linear time. When there is

an incoming task rt, which denotes the tth task that has arrived

in the system, the algorithm first calculates the aggregate

sensing time �ti of each smartphone i,∈ {0, 1, · · · ,m − 1},

and obtains the increased sensing time Δt
i, and Δt

i = �ti−�t−1
i

of smartphone i if rt is allocated to it. Then, the algorithm

allocates the task to the right smartphone. The pseudocode is

given in Algorithm 2.

The algorithm performs the task allocation following the

three rules discussed above. If Δt
i = 0, which means the

incoming task can be covered by tasks allocated to smartphone

i, then the algorithm allocates rt to smartphone i. Otherwise,

if smartphone i is the one with the smallest �ti, the task rt
will be allocated to i, and then the algorithm returns. In the

third case, there exists multiple smartphones have the smallest

aggregate sensing time. For example, �ti = �tj = min �t, the

algorithm further checks their increased sensing time Δt
i and

Δt
j . If Δt

i < Δt
j , allocate rt to smartphone i, otherwise to

smartphone j.

C. Analysis

In this section, we first present the competitive analysis

on the greedy algorithm. Next, we show its computation

complexity.

An online algorithm A is called ρ−competive if for a task

sequence σ =< r1, r2, · · · , rn >,

A(σ) ≤ ρ ·OPT (σ), (5)

where A(σ) is the maximum aggregate sensing time generated

by A and OPT (σ) is the maximum aggregate sensing time

generated by an optimal allocation for σ.

Theorem 4. The competitive ratio of the greedy algorithm
is at most m for the online sensing task allocation problem,
where m is the number of member smartphones.

Proof: Let �∗i be the aggregate sensing time of smartphone

i generated by the optimal offline algorithm, and L∗
m presents

the maximum aggregate sensing time of the online allocation.

Algorithm 2: Greedy online allocation algorithm

Input: The set Ri of allocated tasks on each smartphone i; the
current aggregate sensing time �t−1

i of each smartphone i; the
incoming task rt;

Output: The smartphone which task rt should be allocated.
1: minload = INF;

store the minimum sensing time
2: for each smartphone i, i ∈ {0, 1, · · · ,m− 1} do
3: store the current aggregate sensing time �t−1

i ;
4: calculate the aggregate sensing time of smartphone i after

allocating rt to it, �ti;
5: Δt

i = �ti − �t−1
i

6: if Δt
i = 0 then

7: choice = i;
8: break;
9: else

10: if �ti < minload or �ti = minload and Δt
i is smaller

then
11: choice = i;
12: minload = �ti;
13: end if
14: end if
15: resume the aggregation sensing time to �t−1

i .
16: end for
17: return choice.

We have,

mL∗
m ≥

m∑
i

�∗i ≥L∗
1, (6)

where L∗
1 is the total minimum aggregate sensing time of all

the tasks.

On the other hand, we can easily conclude that the max-

imum aggregate sensing time Lm resulting from the greedy

algorithm will never exceed L∗
1, i.e., Lm ≤ L∗

1. By induction,

Lm ≤ L∗
1 ≤ mL∗

m and Lm
L∗
m

≤ m.

Theorem 5. The time complexity of the greedy algorithm for
per task allocation is O(nm), where m is the number of
smartphones and n is the number of sensing tasks that have
been allocated so far.

Proof: The calculation of the aggregate sensing time �ti
on each smartphone i during the allocation of task rt can

be completed in O(n), and the total time complexity for

calculating the aggregate sensing time of tasks on smartphones

is O(m × n). Thus, the total time complexity of the greedy

algorithm for per task allocation is O(nm).

V. PERFORMANCE EVALUATION

A. Methodology and Simulation Setup

We use a random allocation algorithm as the baseline for

performance comparison with both the offline and the online

allocation algorithms. With the random allocation algorithm,

a task is randomly allocated to one of member smartphones

in the system.

Two metrics are used for performance evaluation, i.e., min-
max fairness and total sensing time. Each smartphone has

its aggregate sensing time, and the min-max fairness is the

maximum aggregate sensing time. A smaller min-max fairness

is desirable. The total sensing time is the sum of the aggregate

sensing time of all smartphones in the system, which indicates
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TABLE I
DEFAULT SETTINGS

Parameter value

Number of tasks 400
Number of smartphones 30

Maximum length of intervals (min) 60

the energy efficiency of the participatory system as a whole.

A smaller total sensing time indicates better energy efficiency.

The default setting is as follows. We set the simulation

time 24 hours for both the offline and the online algorithms.

The time slot is one minute. Three impacting factors are

investigated, i.e., number of tasks, number of smartphones and

maximum length of intervals denoted by lmax. The length of

the sensing interval of a task is chosen randomly in [10, lmax]
minutes. We assume the minimum length of intervals is 10

minutes, and the arrival of tasks obeys the Poisson process for

both the offline and the online models. The default setting is

summarized in Table I. Each data point is an average over 20

independent runs.

B. Impact of Number of Tasks

We first investigate the impact of the number of tasks on

the performance. The number of tasks is changed from 200 to

700. The results are shown in Fig. 6 and Fig. 10.

In Fig. 6, one can find that as the number of tasks increases,

the min-max fairness of smartphones becomes better. This

is easy to understand because the total number of tasks to

be executed becomes larger, the aggregate sensing time on

each smartphone rises correspondingly. The approximation

algorithm achieves the best min-max fairness, which is closely

followed by the greedy algorithm. The random algorithm

produces almost five times larger min-max fairness compared

with the approximation algorithm when the number of tasks

is 400. The increment of min-max fairness is not significant

for both greedy algorithm and approximation algorithm as the

number of tasks grows up. This shows our algorithms have

good scalability. In Fig. 10, the total sensing time of all the

smartphones increases with the number of tasks increasing.

The total sensing time of the approximation algorithm is still

the smallest. The greedy algorithm performs better than the

random algorithm.

C. Impact of Number of Smartphones

To study the impact of the number of smartphones on the

performance of algorithms, the second set of simulations varies

the number of smartphones from 10 to 60. The results are

shown in Fig. 7 and Fig. 11.

Fig. 7 shows that the min-max fairness decreases as the

number of smartphones increases. The approximation algo-

rithm achieves the best performance, and the greedy algorithm

follows it. The random algorithm performs the worst. When

the number of smartphones is 10, the min-max fairness of

random algorithm is around five times as large as that of

the approximation algorithm. The difference becomes smaller

as the number of smartphones increases. In Fig. 11, with the

TABLE II
CONFIGURATION OF PARAMETERS

Cases Number of tasks Number of smartphones

Case 1 10 2
Case 2 15 2
Case 3 10 3
Case 4 12 3

increasing number of smartphones, the total sensing time in-

creases. However, the approximation algorithm has the smaller

increase rate of the total sensing time while the random

algorithm has the largest increase rate. Because tasks are

allocated to more smartphones, the overlap between intervals

becomes smaller, and hence the total sensing time increases.

D. Impact of Maximum Length of Intervals

Finally, we study the impact of the length of intervals on the

performance of algorithms. An intuition is that the more tasks

with longer intervals, the larger overlap between two tasks.

As a consequence, more sensing time is saved. In this set of

simulations, the maximum length of sensing intervals is varied

from 20 to 120 minutes with the increment of 20.

From Fig. 8 and Fig. 12, we can see that when the maximum

length of intervals becomes larger, the min-max fairness of

smartphones becomes larger. With the approximation algorith-

m, the min-max fairness increases by 80 when the maximum

length of intervals changes from 20 to 120. With the random

algorithm, the increase is as high as 700. The total sensing

time, shown in Fig. 12, also increases with the increasing

maximum length of intervals. Compared with the random al-

gorithm, however, our algorithms have a much modest increase

rate.

E. Comparison to the Optimal Solution

To show the efficiency of our algorithms, we compare the

performance of our algorithms to the optimal solution derived

from an exhaustive search algorithm. Four small-scale cases

are designed, with the maximum length of intervals 40 minutes

and the minimum length of sensing intervals 5 minutes. The

total simulation time is 100 minutes. We change the number

of tasks and the number of smartphones. The configuration of

the parameters in the four cases is given in Table II.

The results are reported in Fig. 9 and Fig. 13. In Fig. 9, we

can see that the min-max fairness is generally smaller when

the number of smartphones becomes larger by comparing case

3, 4 with case 1, 2. As the number of tasks increases, the min-

max fairness becomes worse. This also confirms the results we

have observed in the previous simulations. Besides, the min-

max fairness both for the greedy allocation algorithm and the

approximation allocation algorithm is close to the optimum

min-max fairness. The greedy allocation algorithm produces a

similar min-max fairness as the approximation algorithm. This

result is much better than what we expected, as the competitive

ratio analyzed in Theorem 4 is at most m, where m is the

number of member smartphones. In Fig. 13, the total sensing

time achieved by the approximation algorithm closely follows

the optimal total sensing time in all four cases. Although the
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total sensing time produced by the greedy allocation is slightly

larger, it is at most 120% of the optimal value.

VI. RELATED WORK

Participatory sensing has recently attracted extensive re-

search attention from both industry and academic due to its

attractive applications [3] [7] [8] [18]. Much existing work

has been done to address various kinds of participatory sensing

issues, such as the privacy problem [19]–[22] and the incentive

mechanism design [10] [11] [23]. This paper focuses on the

sensing task allocation in participatory sensing systems.

Recently, there are a few work on data sharing have been

proposed in wireless sensor networks (WSNs) [15] [24]. In

[24], the problem of data sharing among multiple applications

is discussed. This work assumes each application needs to

sample discrete data at some time points, and these data can

be shared by multiple applications. The work proposed in

[15] considers a continuous interval of sampling data. The

overlapped interval of data can also be shared by applications.

The goal is to minimize the total sampling time for completing

all the sensing tasks. However, they only consider the sampling

optimization in the view of a node, instead of the whole the

wireless sensor networks, such as the load balancing problem

of energy consumption.

Quite a lot of works on job/task assignment which aim to

achieve load balancing have been proposed [25]–[28], both

in offline and online cases. Most of them assume the multiple

jobs cannot be performed on a machine concurrently [27] [28],

i.e., there is only a job run at a time. In addition, theoretically,

a job can be performed at any time, which is different from

the task model defined in this paper. Although there also exist

works which discuss the assignment of temporary tasks which

have limited duration in time [26] [29], they also assume no

more than one job/task can be executing at any time.

Some existing work has studied the problem of task al-

location in crowdsourcing markets [13] [14] [30], and much

of them consider how to maximize the benefits obtained by

service requesters. In [13], the authors consider how to assign

heterogeneous tasks to workers with different, unknown skill

sets in the crowdsourcing markets such as Amazon Mechanical

Turk. Given a fixed set of tasks and the times of each task

need to be completed, and workers arrive online and one

at a time, the goal is to allocate the workers to tasks such

that the total benefit that the requester obtained maximized.

A two-phase exploration-exploitation assignment algorithm is

presented, which is proved to be competitive with respect to

the optimal offline algorithm which knows the skill levels of

each worker. The problem considered in [14] is to select a

service provider from a list of providers which can provide

maximum satisfaction to the service requester. An adaptive

task scheduling which based on the customer satisfaction

feedbacks is proposed. In [30], Ho et al. investigate the task

assignment and label inference for heterogenous classification

tasks. Labels are provided for instances (such as “websites”)

by workers. By applying online primal-dual techniques, a near-

optimal adaptive assignment algorithm is derived. In [10],

T. Luo and C. Tham link incentive to users’ demand for

consuming services. The problem is to assign an amount

of service quota to users with the objective of maximizing

fairness or social welfare.

In summary, little existing work has studied the problem of

sensing task allocation in participatory sensing systems with

the objective of maximizing energy efficiency of smartphones

and fairness among smartphones.
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VII. CONCLUSION AND FUTURE WORK

In this paper we have studied the task allocation which is of

paramount importance to both energy efficiency and fairness

among smartphones. We have rigorously proven that the task

allocation problem of minimizing the maximum aggregate

sensing time is NP hard even under the offline model. We

consider two task allocation models including offline model

and online model. Under the offline allocation model, we

have designed a polynomial-time approximation algorithm

that approximates the offline optimum within a small factor

of 2- 1
m , where m is the number of smartphones in the

system. Under the online allocation model, we have designed a

polynomial-time greedy algorithm that achieves a competitive

ratio of at most m. We have presented theoretical analysis

for both the offline algorithm and the online algorithm. We

have also conducted extensive simulations and comparison of

different allocation algorithms. The results demonstrate our

algorithms can achieve high energy efficiency while keeping

good fairness among smartphones.
In our future work, we will explore the following directions.

First, sensing task can be heterogeneous, differing in required

sensors, host operating systems and etc. This suggests that a

task can only be allocated to a subset of the smartphones. In

addition, two different events may require different hardware

or components on the smartphone to process them. Although

two different events have overlapping intervals, the overlap-

ping porion may consume additional power. We shall study

the impact of heterogeneous events. Second, currently we have

focused on the reduction of sensing time on smartphones and

no energy saving has been measured. We shall include pro-

totype based measurements for energy consumption savings.

Finally, events with flexible starting and ending times will be

investigated, and our work will be extended to support such

events.
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