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PURE: Blind Regression Modeling for Low
Quality Data with Participatory Sensing
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Abstract—Participatory regression modeling is a cost-efficient mechanism to establish the relationships among multiple dimensions of
sensory data collected from volunteers. Getting an accurate model estimate is challenging for two main reasons. First, with the concern
of confidentiality of individual private data, the original data are nearly unavailable; second, low quality data with outliers are inherently
embedded in the collected data. In this paper, we propose an innovative scheme, PURE, which can accurately estimate the global
regression model without the need for knowing local private data (referred to as blind regression modeling) even when there is a large
portion of outliers embedded. The wisdom of PURE is to let individual participants peer judge and further improve the global estimate
via negotiations. Meanwhile, during the whole process, all information is exchanged in an aggregated way. By design, PURE is secure
and can well protect individual privacy. Furthermore, PURE is a lightweight protocol suitable for mobile devices. Extensive trace-driven
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simulation results show that PURE can achieve an outstanding accuracy gain of two orders of magnitude even with random outliers
near a ratio of 50 percent compared with the state-of-the-art least square estimator.

Index Terms—~Participatory sensing, blind regression modeling, data confidentiality, low quality data

1 INTRODUCTION

ARTICIPATORY sensing is a revolutionary paradigm,

where ordinary people are empowered to voluntarily
collect and share sensory data about their surrounding envi-
ronments using mobile devices (e.g., smartphones and
tablets). Bunches of appealing participatory sensing applica-
tions have been proposed recently, e.g., spanning intelligent
transportation [1], air quality monitoring [2], grocery bar-
gain hunting [3], [4], data delivery [5], and social network-
ing [6]. The typical system model of a participatory sensing
application is illustrated in Fig. 1, where the server is pres-
ent to assign sensing tasks to and collect data from partici-
pants. The common task of a large majority of such
applications is to conduct blind participatory regression
modeling, which is to establish the statistical relationship
among multiple dimensions of those voluntary sensory
data without the data confidentiality being violated.
For example, GreenGPS [1] is a fuel-saving navigation ser-
vice which relies on voluntary data collected from individu-
als to construct the linear model between fuel costs and
routing decisions.
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Solving the blind participatory regression modeling
problem, however, is very challenging for three reasons.
First, individual sensory data might be private and sensitive
and should be strongly protected; otherwise, people would
be reluctant to take part in such participatory sensing appli-
cations. For examples in GreenGPS, drivers might not want
to expose their location and velocity information to others.
With the concern of confidentiality of individual private
data, participants would not directly send their original
data to a central server for regression modeling. Thus, it
would be very difficult to estimate an accurate regression
model without knowing the data. Second, as the sensory
data are collected from untrained ordinary people with
various mobile devices, errors tend to be inevitable (e.g.,
keypunch errors, misplaced decimal points and wrong data
representation). Therefore, the data quality is usually very
low with a large portion of outliers. Furthermore, there may
be malicious participants who deliberately contribute falsi-
fied data, misleading the server to conclude a biased regres-
sion result. Without dealing with those outliers, the final
statistical results might be of little use. Li and Cao [8]
proposed a privacy-aware incentive mechanism for mobile
sensing, which promotes participants providing high qual-
ity data while prevents the possible privacy leakage. How-
ever, it cannot guarantee the elimination of the gross error,
generated unintentionally. Last, the limited power and
computation capabilities of mobile devices (e.g., power and
computation) as well as the communication cost for upload-
ing sensory data also pose an urgent demand for light-
weight participatory regression modeling scheme.

In the literature, several schemes [9], [10], [26] have been
proposed to address data confidentiality issues when min-
ing in distributed databases. However, the quality of data is
ensured by the administrator of such databases, who can
pre-delete suspicious outliers. Thus, such schemes usually
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Fig. 1. The typical system model of a participatory sensing application.

do not consider the influence of incorrect data on the statis-
tics. Several distributed privacy-preserving outlier detection
schemes have also been proposed [7], [17], where outliers
can be found by checking the pairwise distances of all data
samples. However, those data far away from the majority of
data may still follow the general pattern (relation) in the
data. In other words, an distance-based outlier is not neces-
sarily a regression outlier. In the area of wireless sensor
networks, the data aggregation [12], [13], privacy-preserv-
ing [15], [16], and outlier detection [14] problems have been
widely investigated, however, they are usually considered
as independent problems and are investigated separately.
Moreover, most work on privacy-preserving data aggrega-
tion problem can only calculate some preliminary statistics
results [15], [16], such as sum and max/min, instead of com-
plex regression models. As a result, there exists no success-
ful solution, to the best of our knowledge, to addressing the
blind participatory regression modeling problem with low-
quality data.

In this paper, we propose an innovative scheme, PURE,
effectively tackling the challenges of linear blind participa-
tory regression modeling problem, where the multiple
dimensions of data are assumed to follow a linear model.
The core idea of PURE is to let individual participants not
only collect sensory data but also help establish the global
optimal estimation of the linear regression model. More spe-
cifically, participants with consistent observations would
build their local regression models. Then, those local mod-
els are distributed over all participants for peer reviewing
using the peers’ own observations. After that, one of those
local models is chosen by the server as the current global
model estimate based on the peer-reviewing results. Given
the global estimate, the server lets all participants judge
their own observations according to the current global esti-
mate. Upon request, each participant adjusts the weights of
its observations so that those which are far away from the
current global estimate will have lower weights, and gener-
ates its comment about the current estimate accordingly. By
collecting those “comments” in an aggregated way, the
server can refine the global estimate. After a few rounds of
such “negotiations”, all participants can achieve an agree-
ment about the current global estimate, which leads to the
optimal global estimate in terms of the distance to the
majority of observations.

As, in PURE, each participant reports only intermedi-
ate results rather than private raw data, we theoretically
prove that PURE can ensure data confidentiality of partic-
ipants and defend against collusion attacks. Moreover,
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PURE is a lightweight protocol designed for mobile devi-
ces, which only involves simple computation on local
observations and requires a very limited number of inter-
actions with the server. We evaluate the performance of
PURE through extensive simulations using realistic traces
and the results demonstrate the robustness of PURE in
the presence of outliers even near a ratio of 50 percent.
On average, PURE can achieve an accuracy gain of two
orders of magnitude for random outliers and three times
for normal distributed outliers compared with the mostly
used least square (LS) estimator [11].

The remainder of this paper is organized as follows. In
Section 2, we introduce problem formulation and prelimi-
naries. Section 3 describes the models and design goals.
In Section 4, we elaborate the design of PURE. Section 5
presents the security analysis. In Section 6, we show
the performance evaluation. We review related work in
Section 7. Section 8 concludes and outlines the directions
for future work.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 Background of Linear Regression
We first introduce the basic regression modeling problem in
a participatory sensing application, where m participant
nodes { Ny, Ny, ..., N, } (e.g., mobile devices) and a server S
are involved. Each participant N; for i = 1,2,...,m collects
a number of its own readings (observations) about p inde-
pendent variables c!,c?, ..., ¢ and one dependent variable
y;.The kth observation of N; can be denoted as a tuple of
(cflk), cfi), , cfl?, yix)- We have the following assumption:
Assumption 1. Participants are independent (i.e., they measure
those variables on their own). Measurements performed by the
same participant at different time are also independent (i.e.,
previous measurements have no effect on later ones) and obey
the same distribution.

The server S gathers 1 observations from each participant
to illuminate any underlying association between variables
by fitting equations to the observed variables, according to
a specific model. If a linear model is adopted, we have the
definition as follows:

Definition 1. A linear regression model relates the dependent or
“response” variables y; to explanatory variables xI, = (1,

x§2,x§?£,7x§?,2)fori =1,...,mandk=1,..,n,suchthat

Yik = Xﬂ;ﬂ + €k, (1)
where BT =[B,..., V] is the coefficient  vector,
zft,z = ft(cit,i) fort=1,...,pand error € is a random vari-

able with expectation of zero. Note that as the explanatory vari-
ables 152 fort=1,...,p can be any known function f,(-) of

the independent variable c,ﬁt), the regression model is linear
with respect to the regression coefficient vector p.

2.2 Linear Blind Regression Modeling with Low
Quality Data

We first describe the definition of regression outliers as

follows,
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Fig. 2. The derived model using LS is severely biased from the majority
of data when there are outliers.

Definition 2. An observation is called to be a regression outlier if
it deviates from the relation followed by the majority of
the data.

Remark 1. In participatory sensing applications, different
participants may have different fractions of outliers in
their observations. The total number of outliers, how-
ever, should be limited up to 50 percent; otherwise, it
would be impossible to distinguish between “good” and
“bad” data even if the server had all original data.

Before the definition of our problem, we introduce two
properties, i.e., low-data-quality-tolerant and blind, as follows,

Property 1. A participatory regression modeling is low-data-
quality-tolerant if the derived relation still fits the majority of
the data even if the portion of regression outliers reaches up to
50 percent of all observations.

Property 2. A participatory regression modeling is blind if the
original observations of each participant cannot be obtained or
inferred by any other participant and the server as well during
the estimation of regression model.

In this paper, we aim to achieve an accurate linear regres-
sion model which is resilient to low quality data and ensure
data confidentiality of participants at the same time. We
define our problem as follows,

Definition 3. The problem of blind linear regression modeling
with low quality data is referred to as, given the original
private observations, finding the optimal linear regression
estimate so that it has both the blind and low-data-quality-
tolerant properties.

In general, it is very difficult to address the above prob-
lem. Approaches based on high-quality data cannot be
directly adopted as outliers can significantly bias the regres-
sion results. For example in Fig. 2, the gray dashed line
depicts the regression result with the LS estimator on a data
set of 47 two-dimension observations with outliers. It can be
seen that the derived model is severely pulled away from
the majority of data by outliers. Moreover, the original
observations are not available due to the data confidentiality
concern, making the problem even harder.

2.3 Background of M-Estimation
Given all observations, the unknown coefficient vector g can

. ~T 2 2 . .
be estimated as B = [, ..., ;3(1’)}, by using various regres-
sion estimators, e.g., Least Squares estimator. Thus, the
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expected value of y;, called the fitted value, is §; ) = 1, B
and the residual can be calculated as r;; = yi; — Ui

In this paper, we exploit a particular M-estimator [30] to
achieve the optimal model coefficients by minimizing the
estimating function defined as

m n ﬂ
Zzp<ﬁ), @
S

i=1 k=1

where p(-) is an objective function, rf‘? denotes the residual

calculated with B at participant N; using the kth observa-
tion, and s is the dispersion of residuals which is used to

normalize 7, k) Specifically, s is defined as the solution to

(B)
zlk ) _ K, (3)

1 m n
o

1=1 k=

where K is set to E(p(u)), which is the expected value of
p(u) in which u has a standard normal distribution [31].

With outlier observations, the objective function p(u)
should be chosen so that larger residuals (from potential
outliers) will receive smaller influence on the estimation.
Moreover, p(u) should strictly increase when the absolute
value of u is smaller than a threshold a and be a constant
otherwise. We adopt the Tukey bisquare [32] as the objec-
tive function, defined as

2t S el <
p<u>—{2 v iflul <o

ah ) Zf|u| > a,

4)

where a is chosen so that p(a) = 2K. With this setting, esti-
mate of s can tolerate up to 50 percent outliers [30]. Particu-
larly, setting a = 1.547 (accordingly K = 0.199) satisfies
both the requirements on a and K [33].

In order to achieve the minimum of (2), we have the fol-
lowing partial differentiation equations with respect to each
of the p + 1 parameters of ,B,

m n

szjﬁzw( >:o,j=0,...,p, ()

=1 k=
where ¢(u) = %
As no closed form solution to (5) exists, Iteratively
Reweighted Least Squares (IRLS) is required to find an approxi-
mate solution. In specific, the procedure is that, given an ini-

(B(o))

tial estimate ,B(O), residualsr; " are calculated and B(l) can be

determined by solving (5). Then, ﬁ(l) can be used in the sec-
ond iteration and get ,3(2). This procedure continues until a
convergence criterion has been met. With this M-estimator,
when the initial estimate [3(0) can tolerate high ratio of outliers,

the resolved regression model can also resistant to the same
portion of outliers [32].

3 MODELS AND DESIGN GOALS

3.1 Models

We consider typical participatory sensing application sce-
narios where participants are mobile device users and they
can communicate with the server and other users via WiFi
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and 3G/4G. We characterize the participants and server
from the following perspectives:

o  The server is greedy but rational. The first goal of the
server is regression modeling. The server also wishes
to obtain private data of participants as many as
possible.

e All participants are curious about the content of pri-
vate data. They try to infer the private information of
others by observing intermediate results during
regression modeling. They may collude (or with
server) to share information in order to deduce more
private information. We assume that the number of
participants in collusion is limited.

e  Malicious participants are selfish and rational. They
may contribute falsified data, misleading the server
to conclude a regression model as they wish. We
assume that the number of malicious participants is
also limited.

Note that, we do not distinguish whether outliers are

caused by normal errors from honest participants or delib-
erately corrupted data from malicious ones.

3.2 Design Goals

An efficient and practical scheme to addressing the prob-
lem defined in Definition 3 needs to meet the following
requirements:

e  Strong data confidentiality. In a participatory sensing
application, leaking private information will lead to
reductions in participants and frustrate the applica-
tion. As a result, such a regression scheme should
strongly protect the data confidentiality of partici-
pants so that other participants including the server
cannot obtain the original observations of one partic-
ular participant.

e  Good modeling accuracy. As the existence of outliers
embedded in observations is prevalent, it is essential
to achieve good modeling accuracy. Such a scheme
should be resilient to low-quality data and achieve
good modeling accuracy even when almost half of
the data are outliers.

e  Low communication cost. In typical participatory sens-
ing scenarios, participants are mobile device users
and exchange messages with the server via wireless
communications which may incur extra communica-
tion fees and power consumption. Therefore, such a
scheme should have a low communication overhead.

4 DEsIGN OF PURE

4.1 Design Overview

In the case of participatory sensing, an effective linear
regression modeling scheme should have both low-data-
quality-tolerant and blind properties. We propose an inno-
vative scheme, called PURE, which completely satisfies
this rigid requirement with low computation and commu-
nication costs. The core idea of PURE is to let participants
not only collect sensory data but also to be involved in the
whole process of modeling decision. As no original data
are available, it is impossible to directly get the global
optimal regression model at the server. As a result, PURE
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conducts an iterative procedure and lets participants and
the server negotiate about the fitness of the current global
estimate for individual local observations in a few number
of rounds until the final agreement requirement is met.
During all negotiations, participants only report aggre-
gated results to the server, which well preserves the local
data confidentiality. To achieve this, PURE integrates three
effective stages:

Collecting effective local estimates. To protect the privacy of
participants, instead of naively sending all observations to
the server, each participant estimates a local regression
model and reports the estimated model to the server. Those
local estimates can be further used to achieve the initial
global estimate. In the case where outliers are embedded in
local observations, those locally estimated models might
severely deviate from the true model. In order to reduce
such effect, we check the data consistency of each partici-
pant and collect effective local estimates only from those
participants whose observations follow the same trend.

Establishing an initial global estimate. Given all local esti-
mates, to perform the M-estimation, the server needs to
select one preferable local estimate as the initial global
estimate so that it can be as “close” to the optimal global
model as possible. To this end, the server distributes all
collected local estimates over all participants and asks all
participants to peer review on each local estimate by
checking the distances between each local estimate and
their own observations. Finally, the local model having
the minimal median of such distances over all local
models is chosen as the initial global estimate.

Refining the global estimate. As the initial global estimate
may not best fit all observations, the server coordinates an
iterative negotiation with all participants to further refine
the global estimate. In each iteration, given the current
global estimate, all participants first judge the quality of
their own observations. Observations which are far away
from the current model are potential outliers and will be
assigned smaller weights. Then, participants report the
server with the corrected residuals of their own observa-
tions to the current global estimate in an aggregated way.
With those corrected residuals, the server can refine the cur-
rent estimate and start the next iteration. After a few rounds
of such refinement, when all participants can achieve an
“agreement” on the weights of observations, the global opti-
mal estimation is achieved.

By design, PURE is robust to outliers and can strongly
protect the privacy of each participant. We conduct inten-
sive security analysis and extensive trace-driven simula-
tions to demonstrate the efficacy of PURE design, which are
elaborated in Sections 5 and 6, respectively.

4.2 Collecting Effective Local Estimates

In order to avoid participants with obvious outliers to gen-
erate local estimates, we first check the data consistency of
each participants. To this end, each participant N; for
i=1,...,m first collects a group of p+ 2 independent
observations of its readings and gets p+ 2 tuples of the
response and explanatory variables {; j, :1351,3 , zﬁ), , 1’5]2 } for
k=1,...,p+2. Then, N; draws a subgroup of p + 1 obser-
vations out of the group (without loss of generality, assume
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the index of the observations in the subgroupis 1,...,p + 1)
to solve the following system of equations
v = oV +en + el
: (6)
0 D
viprr = 0 602+l

and gets a hyperplane of p + 1 dimensions with coefficients

0; = {950),051),...,9§">}. As there are 05121 =p+2 of such
hyperplanes with corresponding coefficients denoted as
0;1,0i2,...0ip12, N; checks the consistency of those hyper-

planes by measuring the cosine similarity between vectors

0;,and 0;, for u,v € {1,...,p + 2}, defined as
0.0,y
Ousbi) =g, 01 ]

If Sim(6;,,0;.) > o where o is a predefined threshold for
any pair of 0;, and 0;,, then N; is considered as a consistent
participant.

Remark 2. It should be noted that those participants with
their observations following the same trend could be con-
sistent, even though this local trend may be severely bias
from the global trend.

After checking local observations, consistent participants
are required to report their local estimated models to the
server. More specifically, if IV, is consistent, N, estimates
the regression model fitting all p + 2 observations using the
LS estimator and generates locally estimated model
6. = {0Y,...,0P} and reports . to the server.

After the above consistency checking, inconsistent partic-
ipants would be cancelled out from involving in the selec-
tion of initial estimate of global regression model. This can
significantly reduce the complexity of the problem. How-
ever, whether a good initial estimate can be found from
only consistent participants is not clear. We have the theo-
rem as follows,

Theorem 1. Given that all observations are independent and
observations from the same participant obey the same distribu-
tion, if the number of explanatory variables is p, the portion of
outliers among observations of one participant is at most ¢,
and the probability that at least one participant has no outliers
in its observations (called a “clean” participant) is n, then the
number of participants m involved in the participatory sensing

Mﬁ%’ and the expectation of the

number of clean participants is at least m(1 — €)

should be no less than

p+2

Proof. For a specific participant, the probability that an
observation is not an outlier is at least 1 — ¢ and the proba-
bility that all p + 2 observations are not outliers is at least

(1 — £)""*. The probability that a group is “contaminated”
(i.e., the local observations of the participant contain at

least one outlier) is at most 1 — (1 — £)”*. Then the proba-

bility that all m participants have their observations

contaminated is at most (1 — (1 —&)”"*)™, which means

the probability 7 that at least one group is clean is at least

1—(1—(1=¢)"")™ Thus, we have m > —e1=1)

log (17(175)77+2). As

1203

participants are independent and the probability that one
participant is clean is at least (1 — £)”*?, the distribution of
the number of clean participants can be lower bounded
by a binomial distribution B(m, (1 —¢)” *2). Then the
expectation of the number of clean participants is at least
m(1 — )"*? and this concludes the proof. 0

This means as long as we have a sufficiently large
number of participants, with high probability, we will
have at least one clean participant submitting its local esti-
mated model to the server for further processing. For
example, when nine explanatory variables are involved in
the model and the outlier ratio of all participants cannot
exceed 30 percent, if the probability that at least one par-
ticipant has no outliers is 0.95 (i.e., with high probability),
then the number of participants should be no less than
150 and the expected number of clean participants is at
least three.

4.3 Establishing an Initial Global Estimate
In order to determine which local consistent estimate can
best fit the majority of observations among all participants
and therefore is more appropriate to be chosen as the initial
estimate of the global regression model, the server distrib-
utes all local estimates to all participants, who assist the
server in determining the best initial estimate.

Specifically, for each consistent estimate 6, for
c=1,...,m, participant N; calculates the residuals using its
p + 2 observations as follows,

A Tiol() Yi1 1 ... Z'Epl) égm
rgec) — . = : S E _ : ol ®
TE%iQ Yip+2 1 ... xE];]) 2 é((,p )

where TE? denotes the residual calculated with model coef-
ficients 6, at participant N; using the kth observation.

To determine the best initial estimate, one straightfor-
ward solution for the server is to collect all residuals calcu-
lated with a specific local estimate and calculate the least
mean of square of all residuals and then choose the local
estimate with the least mean of square of residuals as the
best initial estimate. The problem with this solution,
however, is very obvious. First, the least mean of square of
residuals is very sensitive to outliers; second, if the num-
ber of local estimates is sufficient large, then it is possible
for the server or other adversaries to infer the original
observations of all participants. For example, if 7 > p+1,
then it is easy to solve the following system of equations
and get y; ; and x/

: 0 - . 1
o) Yik o o 07| o

S Bl N Bl B N ©
o] L Lo a0 ol |

In PURE, we choose the Least Median of Squares (LMS) of
residuals to evaluate local estimates, which is a robust
measure of central tendency and can tolerate an outlier ratio
of 50 percent [22]. In order to find the median of squares
of residuals of one specific consistent estimate 6. and
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meanwhile to prevent the private value (y;, x],,) from being
revealed by others, the residuals should be submitted to the
server in a way that (9) cannot be constructed by any others.
To this end, N; randomly re-arranges the sequence of
the residuals of its p + 2 observations. In specific, for each
estimate 6., N; conducts a random permutation scheme on
Corresponding set of residuals, ie., transforms the ordered

(0c) (6c) (6e)
set {T117 12 1t 7p+2} to {r10'17 1,0 ;7"'7 0,0 pt2

there is a bijection from {1,2,,p+ 2} to {o.1,0¢2,,0cps2}
Then N; sends the re-arranged residual sets to the server
instead of the original ones. In this way, for each 9(,, the server
obtains all residuals of N; in another order. It is hard for the
server to deduce the relationships between the original and
rearranged residual pairs. We give a detail analysis on the dif-
ficulty of recovering the original observations in Section 5.

After getting all residuals from every participant, it is
easy for the server to conclude the median of squares of
residuals for each local estimate .. The server chooses the
local estimate with the LMS of residuals, denoted as 85, as
the initial estimate of the global regression model.

}, where

4.4 Refining the Global Estimate
As introduced in Section 2.3, in order to solve (5) (particu-
larly, n = p+2) and get the optimal global estimation, an
iterative IRLS procedure is required. We elaborate the
procedure in this section.

To reduce the significance of outliers to the global estima-
tion, we defme a ‘weight’ function as w(u) = yleldmg

Wi = w( "), and then substitute this in to (5). We have
m  p+2 1
SN awinyir(yir —xB) = =0, =0,....p
i=1 k=1 §
m  p+2 m  p+l
xlkkayLk szykwlkxlkﬁ]_o
i=1 k=1 i=1 k=
Define
Xi1 Yil w; 1 0
gjp+2 Yip+2 0 Wi p+2
then
m m
(X WiXi = 3 (X

B— (i(Xf)TWiXi)l S E)TW

i=1

(0)

Given the initial global estimate f}(o) =05, wy, can be

0

determined by r; ( ) and thus B can be iteratively calculated

as:

m -1 m
By = (Z(Xi)TVW("’I’Xi) S (xX)" WYY for g > 0.

i=1 i=1

In the above procedure, the server flrst calculates the
parameters of s by requiring residuals r% from N; for
i1 € [1,m], and solving (3). Then, the server dlstrlbutes s to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.4, APRIL2016

all participants. Note that sharing rﬁ? with the server

only provides one equation in (9), hence it would not
violate the private data (y;,x.,) of N;. In order to calcu-
late each B(q) for ¢ > 0, the server needs to know x;; and
r%”*)) of all participants. Instead of sending those local
data to the server, with s, each participant N; can locally
compute its own (X)W VX, and (X,)"W“ VY. In
addition, if N; reports those results to the server in each
iteration, then it is possible for the server to retrieve the
original observations when ¢ is sufficiently large. To
avoid this, participants need to further securely aggregate
their local results. To this end, we use a secure summa-
tion scheme based on the slicing technical. For example,
we explain the key idea of data slicing in calculating
S (X)W X, as follows:

First, each participant N; dynamically selects [;, other
participants nearby to distribute its local result. It is
assumed that any pair of participants nearby can achieve a
unique pairwise key used for secure data transmission.

Second, N; slices its data into [;;, + 1 random slices, i.e.,

(X)) WiX; = ZZ”’H LD, where Agj ) is a matrix of dimension

(p+2)x(p+2)
Third, N; keeps one of A

other slice Ai ,j # i to the corresponding participant NV; it

to itself while sending each

has selected. Meanwhile, N; can also receive [, slices Af/-i)
from [, different participants. Then V; recalculates its local

matrix using its own slice AEZ) and [, slices received from

others, i.e., A(i) + ZZ”’” A(i) and sends it to server.

Finally, server adds up all the recelved values. It is easy
to check that the result is the sum of (X;)" W, X; for all 4.

With this iteration procedure, two factors are crucial
to the accuracy of the resolved model, i.e., the initial
estimate [3(0) and the convergence of iterations. As to the
initial estimate .B(o)/ we use 0; obtained from the above
section which is expected to be close to the optimal. With
regard to the convergence of iterations, it is guaranteed
with such an M-estimation using the proposed weight
function [32]. In PURE, the iteration stops when
Sim(f}(q), B(q_l)) is larger than a threshold. Intuitively, by
increasing the number of iterations, the approximate
solution can be arbitrarily close to the optimal solution.
However, this will also cause a large number of interac-
tions between the server and participants, which leads to
unpleasant regression costs in terms of delay and net-
work overhead. We will further study the tradeoff
between model accuracy and regression costs in the per-
formance evaluation section.

4.5 Computation Complexity on Mobile Device of
Participants

As mobile devices owned by participants are resource-con-
straint, we analyze the computation complexity mainly on
the participant side. In PURE, the main computation is mul-
tiplication, the computation complexity can be represented
as the number of multiplication operations. We analyze the
computation complexity on each step of PURE as follows:
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4.5.1  Checking Consistency of Local Observations

In this step, N; firstly solves (p + 2) systems of linear equa-
tions using (6) to compute (p + 2) vectors ;,, (1 < u < p+2,
each one is in dimension of (p + 1)), and then calculates the
similarity among them. These two operations take
Olp+2)p+1*+(m+2)(p+1)% multiplications at maxi-
mum. In addition, the local regression modeling needs
O((p+2)% multiplications.

4.5.2 Determining 65

In this step, N; needs to conduct 7 matrix (each in dimen-
sion of (p+2)x (p+2)) multiplications, which takes
O(z(p + 2)*) multiplications.

4.5.3 Refining the Global Model

In this step, N; should iteratively determine the accuracy of
current global model and present the “comment” on it. In
each iteration, there are three matrix multiplications (each
matrix in size of (p +2,p+ 2)), and seven multiplications
for each observation. Thus, the computation complexity
should be O(3(p +2)° + 7(p + 2)).

In fact p indicates the number of explanatory variables

{1L T k, T k} of which the number is restricted by appli-
cations and usually less than one hundred.

5 SECURITY ANALYSIS

In this section, we analyze the security of PURE under three
typical attack types.

5.1 Observation Recovery Attacks

In the stage of deciding 0s, given the residuals about those
local estimates reported from each participant, the server
tries to recover the original observations. Note that for each
local estimate, a participant conducts a random permutation
on the corresponding residuals and reports a new order of
residuals to the server. To recover one observation of NV,
e.g., yir and xzk, as shown in (9), the server needs to know

at least p corresponding residuals, e.g., r,ﬁﬁf), j=1,...,p. As
the probability for the server to correctly guess the position
of the corresponding residual r(-a,f) in the random permuta-
(65) (65)

7402’ e ’T7”z‘p+2

bility that the server can correctly guess all p residuals and
recover y; . and x]; would be a small probability of (;15)".

tion of residuals {r r pis 5 L5, the proba-

l(rc]’

For example, even when p = 3, the probability is only 0.008.

Nevertheless, the server can conduct a brute-force search

attack. Specifically, the server first re-arranges all received

residual permutations on p local estimates and guesses

p + 2 observations of N; one by one by solving (9). Then,
!

it estimates the regression model 6, fitting the recovered
A’ ~
observations. Last, it compares 6, with the local model 6,. If

!
9C = 0., the server believes that all recovered observations
are correct; otherwise, it repeats the whole process. The effi-
ciency of such attack relates to the probability P(R) that the
server correctly recovers all p + 2 observations, which is
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P(R) = [0 = [y
0.48 x 10~%, which is very slim.

" For example, when p = 3, P(R) is

5.2 Collusion Attacks

Malicious participants can collude to gather slices sent by
participant N; to retrieve (X;)" W ) X; which can be used to
recover the local observations of N;. In PURE, with the pro-

posed summation scheme, to recover (Xy;)TWi(q)Xi, mali-
sent by N;

as well as all [,,; slices A;i) received by N;. However, it is

cious participants have to collect all ;,, slices Agj )

hard to know all AJ@ as they are encrypted. Given M collud-
ing participants, the probability P(M
can deduce (Xl-)TVVi(‘I)Xi equals to the probability that all

) that M adversaries

participants connecting to [N; have colluded, ie,
lout +lin
P(M) = gzm 7 As M < m, P(M) is extremely small.

5.3 Data Manipulation Attacks

The regression result can be influenced by data manipula-
tion. Malicious participants can falsify observations or inter-
mediate results to mislead the server, incurring a bias
regression model as they wish. In PURE, the false data,
however, can be treated as common outliers as long as those
false data are less than 50 percent of all observations.

6 PROTOTYPE IMPLEMENTATION

To validate the practical feasibility of PURE, we have imple-
mented the PURE protocols on 36 Android smartphones
(owned by graduate students and faculties of our laboratory,
and undergraduate students in the teaching class of authors)
and a HP 7230 desktop computer (equipped with an
Inter Core i7 3.2 GHz CPU and 8 GB RAM, running on
Windows 8). We use all smartphones to serve as different par-
ticipants in a participatory sensing task and set the desktop as
the server to collect sensory data from participants and coor-
dinate the regression modeling procedure accordingly. Data
communication between participants and the server is based
on the WLAN of our laboratory or 3G network.

With this prototype system, we conduct a small scale
experiment based on the data set of vending time [37], which
consists of 25 original observations. For each observation,
three measures about the time required to service a vending
machine, the number of products stocked and the distance
walked by the route driver are recorded, respectively (p is 2
as defined in Definition 1).

To make the scenario more practical with outlier obser-
vations, we further conduct two data operations as follows.
First, in PURE, for each participant, p +2 observations
should be collected, which means that, for 36 participants,
144 independent observations are needed. Due to the lack
of sufficient original observations, 119 synthetic observa-
tions are generated by first applying an LS estimator to the
25 original observations and then randomly producing
additional observations according to the derived model. It
should be noted that, as the original observations has no
outliers, synthetic observations derived in this way are
perfectly homogenous with those original observations.
We random divide the 144 observations into 36 groups
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Fig. 3. Difference of model coefficients S vs. outlier ratio.

(each contains four observations) and distribute them to all
participants. Second, as the original and synthetic observa-
tions are rather ideal for a linear model, noise should be
injected into the data. We choose three different types of
noise to generate, and superpose them on observations, i.e.,
random noise, normal distributed noise satisfying N(0,1) and
N(0,4), respectively (please refer to Section 7.1 for more
details on noise generation). We vary the outlier ratio e
from 5 to 50 percent at an interval of 5 percent. For this pur-
pose, under each setting of noise (outlier ratio ¢ and types of
noise), the server generates 144 - € tokens and randomly dis-
tributes them to all participants (i.e., each participant gets at
most four tokens). For each token, a participant randomly
picks one observation and produces an outlier observation
by superposing the noise generated according to the given
noise type.

In PURE, given an outlier rate ¢, the number of explan-
atory variables p, and the number of participants m
involved in the participatory sensing, the probability 7
that at least one group of obseravtions is clean is at least

1—(1—(1—¢e)""™)™ (please refer to Theorem 1). Hence,
consider the maximum outlier rate 50 percent, p =2 and
m =36, n is over 90 percent under all noise settings,
which guarantee that with high probability, one clean
group can be obtained. There are two thresholds should
be per-decided before the experiment. First, we set the
constant threshold o, in the stage of collecting effective
local estimates, for participants to check its consistency
to 0.9. Second, we set the convergence criteria of the
iterations for the server to stop iterations (defined in
Section 4.4) to 0.001. For each noise setting and outlier
ratio, the server performs linear regression modeling
adopting PURE and LS, respectively. The accuracy of an
estimate B is evaluated by calculating the Euclidean dis-
tance S between B and the ground truth B*, which is
obtained using an LS estimator on all original observa-
tions without any noise. We run the experiment 10 times
and calculate the averages.

Fig. 3 plots the average difference of model coefficients
between the estimated model and the global optimal g* as a
function of outlier ratio under different noise settings. In
Fig. 3a, it can be seen that, under the random noise setting,
PURE can achieve excellent accuracy even when ¢ increases
to 40 percent. The estimated model derived by PURE can be
two orders of magnitude closer to the optimal than that
derived by LS. Figs. 3b and 3c illustrate the cases in normal

20
Outlier ratio (%)

(b) Normal noise under N(0,1)

o

30 40 50 5 10 15 20 25 30 35 40 45 50
Outlier ratio (%)

(c) Normal noise under N(0,4)

distributed noise settings with variance equal to one and
four, respectively. It can be seen that PURE outwits LS in all
settings. For instance, PURE can tolerate more than three
times of outliers than LS when the variance of noise is one
and more than five times when the variance of noise is
increased to four.

We also measure the average running time on each
smartphone and count the average number of iterations
for PURE to finalize the modeling progress. For example,
the average running time for a Galaxy Nexus 3 (G3)
smartphone (equipped with a 1.2 GHz dual-core CPU
and 1 GB RAM, running on Android 4.2) to first check its
local consistency and to review the intermediate global
estimate received from the server in each iteration is
0.9 us and 4.33 us, respectively, and that for the server to

determine 65 is about 0.38 ms. With the rigid convergence

criteria is set as S(B,), B,—1)) < 0.001, the average number
of iterations for PURE to converge with three noise types
is 2.7, 2.4 and 3.1, respectively. From the results of this
experiment, we have the experience that PURE is not
only robust to a large number of outliers but also light-
weight in terms of computation and communication costs.
We further extensively investigate the performance of
PURE on more data sets in the following section.

7 PERFORMANCE EVALUATION

7.1 Methodology

We examine the performance of PURE via trace-driven sim-
ulations. We use four well-known data sets as follows:

1)  Car price [34]. This data set includes 804 observations.
Each observation has eight measures about the influ-
ence function of the retail price of cars.

2)  Car mile per gallon (mpg) [34]. In this data set, each
observation has eight measures about the influence
function of the mpg of cars. The number of observa-
tions is 398.

3) Body fat [35]. In this data set, each observation has
fourteen measures about the influence function of
the percentage of body fat. The number of observa-
tions is 252.

4)  Octane rating [36]. Each observation has five meas-
ures about the influence function of the three raw
materials to the octane rating of a particular petrol.
There are 82 observations.
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Fig. 4. Model deviations vs. the number of iterations.

Based on the Car mpg,Body fat and Octane rating data sets,
we also synthesize three data sets, where various degrees of
noise are added. Specifically, all the noises are random vec-
tors that all dimensions have independent and identical dis-
tributions. Thus we have the following three types of noises:

1) Random noise. Variables obey uniform distribution
within the range [0, vy — Vpin], Where vy, and vy,
refer to the maximum measure and the minimum
measure in the data set, respectively;

2)  Normal distributed noise with N(0,2). Variables obey
normal distribution with a mean of zero and a vari-
ance of two;

3)  Normal distributed noise with N(0,4). Variables obey
normal distribution with a mean of zero and a vari-
ance of four.

We evaluate the accuracy of an estimate f by calculating
the Similarity Sim between B and the global optimal esti-
mate Bupti,,,ml according to (7). We compare PURE with the
state-of-art LS-based private data preserving participatory
regression modeling schemes [9], [10].

7.2 Number of Iterations Needed for Convergence
As a larger number of iterations means more interactions
between participants and the server, this results to a longer
delay and larger communication cost in modeling. In this
experiment, we examine how PURE converges in refining
the global estimate. We use all four data sets and randomly
separate the observations in a data set into groups according
to the number of explanatory variables of an observation p,
i.e., each group has p + 2 observations. In data set of Car price,
Car mpg, Body fat and Octane rating, the number of observa-
tions in each group is therefore 9, 9, 15 and 6, respectively.
We vary the number of iterations from one to 10 at an interval
of one and run the experiment 10 times and get the average.
Fig. 4 plots the relative deviations of B(q) and fi(q_l),
1Bg)—Bia—1)
181y
tions, where ¢ is the number of iterations and f}(o) is the ini-

defined as as a function of the number of itera-

tial global estimate 5. It can be seen that, for all data sets,
the value of deviation drops down very quickly as the num-
ber of iterations increases. Given the rigid convergence cri-
teria the deviation is less than 0.001, for original data set Car
price, and Car mpg, Body fat, Octane rating with 20% N (0, 2)
noise, the number of iterations before PURE converges is 2,
1,1, and 3, respectively.
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Fig. 5. CDF of residuals of observations in Car price data set.

7.3 Modeling Accuracy under Different Datsets

We first conduct LS and PURE (run 10 times and get the
average) estimator on the four datasets. Fig. 5 plots the
cumulative distribution function (CDF) of deviations of
observations in Car price, i.e., |y; — ¥i|, to LS estimator and
PURE. It can be seen that Car price is a low-quality data-
set which leads to a severe bias of the model derived
using LS estimator. For example, more than 50 percent
observations have larger than 3,000 deviations with the
LS model. It can also be seen that the regression model
estimated by PURE are more fitted to the majority of
observations (e.g., only 30 percent deviations of observa-
tions are larger than 3,000).

Fig. 6 plots the CDF of relative deviations of observa-
tions in other three datasets. It can be seen that 1) all three
datasets are relative high-quality that LS estimator can
build an accurate regression model where more than
90 percent observations have smaller than 0.45 relative
deviations; 2) for high-quality dataset, PURE has the
same performance with LS.

7.4 Robustness under Different Outlier Ratios

In this experiment, we further examine the robustness of
PURE against outliers under different outlier ratios e,
defined as the ratio of the portion of outliers to the total
amount of data, and of different types. In specific, we
choose the three high quality datasets, and use the global
optimal model B* estimated by LS estimator as the ground
truth. In PURE, given an outlier rate ¢ and the number of
explanatory variables p, the number of observation groups

should be at least - log (1—n)

(™) / so that at least one clean
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Fig. 6. CDF of relative residuals of observations in Car mpg, Body fat and

Octane data sets.
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Fig. 7. Difference from the optimal model vs. outlier ratio with random
noise.

group is included with probability 7. Due to the limited
number of observations in the original datasets, for large ¢,
we need first to generate extra observations according to the
optimal model B*. We also add small uniformly distributed
random noise in the range [0, 1] on the generated observa-
tions to imitate the real data. We set 0 = 0.9, n = 0.9 and
vary the outlier ratio € from 5 to 50 percent at an interval of
5 percent. For each ¢, we generate a trace accordingly to sat-
isfy the requirement on the amount of observations for
10 times. We then randomly divide the trace into groups as
introduced in the above experiment and run the experiment
10 times and get the average over all traces.

Fig. 7 plots the relative difference of model coefficients
between the estimated model and the global optimal g*
as a function of outlier ratio under the random noise set-
ting. Note that the plot is on a linear-log scale. We can
see that at a given outlier ratio, PURE can achieve perfect
accuracy even when ¢ increases to 40 percent. The esti-
mated model derived by PURE can be two orders of mag-
nitude closer to the optimal than that derived by LS.
Figs. 8 and 9 plot the relative difference of model coeffi-
cients as a function of outlier ratio under the normal dis-
tributed noise settings with variance equal to two and
four, respectively. It can be seen that PURE outwits LS in
all settings. In addition, when the variance of noise is
increased from two to four, the performance gaps
between PURE and LS become even larger. LS estimator
is sensitive to outliers. When the outliers have a big
difference to normal data, LS gets bad performances even
under a low outlier ratio (e.g., 5 percent), whereas PURE
maintains an good accuracy under different ¢, which can
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Fig. 8. Difference from the optimal model vs. outlier ratio with normal
noise under N(0, 2).
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be two orders of magnitude than LS. Overall, we find that
PURE is robust to not only the number of outliers embed-
ded in the data but also the randomness of outliers.

7.5 Performance Comparison

We compare PURE with several state-of-art linear regres-
sion modeling schemes with regard to the following
aspects: capability to protect participants’ privacy, capa-
bility to tolerate outliers, capability to resist a malicious
server, computational cost on the participant side, and
communication cost. We present the results in Table 1.

Xing et al. [9] have proposed an LS-based privacy-pre-
serving regression modeling approach, named M-PERM,
where tree-structure aggregations are conducted. Specifi-
cally, individual participants are organized into hierarchical
clusters. A participant first locally computes its private
aggregation result, and then transmits the result upward to
the aggregation point in the current cluster. In such a way,
private data are aggregated layer by layer until to the
server. In M-PERM, the messages should be securely
transmitted within the network. In order to achieve this,
symmetric encryption and key distribution schemes, which
increases the computational cost. At each level of the hierar-
chy, each participant only needs to transmit its aggregation
result once and therefore the transmission cost is low.

Ahmadi et al have proposed a scheme [10] where partici-
pants only need to compute some features about their sensi-
tive observations and submit the derived features instead
of the original data to the server in one packet. The most
computationally expensive operation requires one matrix
multiplication MM, (M: an n x p matrix, where n is the
number of observations, p is the number of explanatory var-
iables). Hence, both the computational and communication
cost are low.

The above two schemes are focus on secure and dis-
tributed realizations of LS estimator. In order to protect
the private data of participants, participants locally com-
pute a set of aggregation results base on their observa-
tions, and provide them instead of original observations
to the sever. After obtaining all aggregation results, the
server can conclude the regression model, which is
exactly the same as the model derived from traditional LS
estimator. Meanwhile, others including the server cannot
deduce the original observation according to the aggrega-
tion results. As the original data are kept secret at
each participant, the privacy protection of data is strong.



CHANG ETAL.: PURE: BLIND REGRESSION MODELING FOR LOW QUALITY DATA WITH PARTICIPATORY SENSING

1209

TABLE 1
Performance Comparison

Schemes Privacy protection ~ Outlier tolerance  Against malicious server =~ Computational cost ~Communication cost
PURE Strong Yes Yes Low Medium
M-PERM Strong No Yes High Low

H. Ahmadi’s Strong No Yes Low Low
PoolView Medium No No Low Low

Nevertheless, because this scheme is based on the LS
estimator, it has weak capability to deal with outliers.

Several privacy-preserving techniques based on data
alteration have been proposed for participatory sensing
applications. For example, PoolView [24] can protect
private data by injecting particular noise into the original
data set. Specifically, the server determines a noise model
and shares the structure and probability distributions of
all parameters of the model with all participants. By
choosing random values for these parameters from the
specified distribution, one participant can generate its
own private noise which is used for perturbing its origi-
nal data. The server collects all perturbed data and adopts
a LS-estimator to obtain the trend of the perturbed data.
Since the distribution characteristics of noise are statisti-
cally known, it is possible to subtract the average of noise
from the sum of perturbed data, yielding an approxi-
mated trend of the data. Because PoolView adopts a LS-
estimator, it can hardly handle outliers. In general, Poor-
View can defend against traditional filtering attacks such
as PCA and spectral filtering. However, the strength of
privacy protection depends on the noise model generated
by the server. For instance, a malicious server may dis-
tribute a noise model with a deliberate set of parameters
so that, using the parameter distributions sent by the
server, a participant can only generate a very small set of
noise streams. In this way, the private data is vastly less
blurred and therefore can be easily exposed to the sever.
As noise is locally generated by participants and all
perturbed data are transmitted to the server in one time,
the computational and communication costs are low.

8 RELATED WORK

Privacy-preserving data aggregation issues have been
widely investigated in wireless networks. PriSence is a pri-
vacy preserving data aggregation solution in people centric
urban sensing systems based on the idea of data slicing and
mixing [15]. iPDA is an integrity-protecting private data
aggregation scheme in which data integrity is achieved
through redundancy by constructing disjoint aggregation
paths [16]. Ozdemir and Yang [25] proposed a polynomial
regression based secure data aggregation protocol. Most of
the privacy-preserving aggregation schemes only focus on
calculating additive or non-additive aggregation functions
such as sum, and max/min. Existing solutions cannot be
used for private regression estimation directly.
Privacy-preserving outlier detection has been studied in
distributed systems. Most schemes deal with the distance-
based outliers, which are defined as data points having fur-
ther distance than a number of other data points. However,
in regression modeling, such a data point can be a “leverage”

point. Furthermore, the proposed secure solution in [7], [17]
requiring pair-wise comparison between data and homo-
morphic encryptions on observations, which leads to low
efficiency. Density-based outliers detection is investigated to
identify local outliers [18], [19]. Group outliers may break
down those schemes.

The random-value perturbation techniques are used for
protecting privacy of data by masking the sensitive data
using random noise. Agrawal et al. [20] proposed a perturba-
tion based method in which privacy-preserving multidimen-
sional aggregations on data are partitioned across multiple
agents. Kargupta et al. challenged the utility of such tech-
nique in privacy protection [22]. They pointed out that some
random-data distortions preserve little data privacy. Huang
et al. proposed two data reconstruction methods based
on data correlations [23]. They claimed that when the
correlations are high, the original data can be reconstructed
more accurately, i.e., more private information can be dis-
closed. Evfimievski et al. developed an approach, named
“amplification”, to limit the privacy breaches when tackles
with the problem of mining association rules [21]. PoolView
provides privacy guarantees on stream data in participatory
sensing applications, where participants cooperatively mea-
sure aggregate phenomena of interest [24]. The core idea is to
add random noise with a known distribution to the user’s
data, after which a reconstruction algorithm is used to esti-
mate the distribution of the original data. This perturbation
method is resilient to traditional filtering techniques, such as
Kalman filter, and Spectral filtering. However, using such
perturbation techniques in privacy preserving regression
will introduce error in the regression model, which leads to
the inaccuracy of modeling.

Studies which focus on the privacy-preserving accurate
regression model construction are more related to our work.
Du et al. [26] studied the Secure two-party Multivariate Lin-
ear Regression and Secure two-party Multivariate Classifica-
tion problems. Sanil et al. [28] addressed the problem that
multiple data owners have data on certain subjects but on dif-
ferent sets of attributes of those entities. They proposed an
algorithm that enables data owners to conduct a linear regres-
sion analysis with complete records without disclosing the
values of their own attributes. Recently, two most relevant
works have been proposed [9], [10]. In these schemes, data
privacy issues are addressed in participatory sensing and
regression coefficients estimation is achieved. A series of data
transformation and aggregation operations are operated at
the participatory nodes (and clusters), which help keeping
the data of participants private while not introducing any
additional error to model construction. In [9], [27], secure
regression model fitting and diagnosing are investigated.

However, it is worth pointing out that these schemes
are based on the least square estimation. The correctness
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of them relies on the assumption that original data are
collected correctly by participants, and no gross errors
(which occur as the result of mistakes) are involved in the
original data set. Any unusual observations may break
down the estimation, since least square estimation is very
sensitive to outliers.

9 CONCLUSION AND FUTURE WORK

In this paper, we have proposed PURE scheme of blind
regression modeling under low quality data in participa-
tory sensing. PURE can provide strong protection on data
confidentiality by only exchanging aggregated informa-
tion and achieve extraordinary accuracy with a large
portion of random outliers by refining the global model
in iterations. Both security analysis and extensive simula-
tion results demonstrate the efficacy of PURE. In future
work, we will establish a prototype system of participa-
tory sensing on our campus, and further examine the fea-
sibility of PRUE based on the real deployment.
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