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Abstract—Smartphones have been widely used with a vast array of sensitive and private information stored on these devices.

To secure such information from being leaked, user authentication schemes are necessary. Current password/pattern-based user

authentication schemes are vulnerable to shoulder surfing attacks and smudge attacks. In contrast, stroke/gait-based schemes are

secure but inconvenient for users to input. In this paper, we propose ShakeIn, a handy user authentication scheme for secure unlocking

of a smartphone by simply shaking the phone. With embedded motion sensors, ShakeIn can effectively capture the unique and reliable

biometrical features of users about how they shake. In this way, even if an attacker sees a user shaking his/her phone, the attacker can

hardly reproduce the same behavior. Furthermore, by allowing users to customize the way they shake the phone, ShakeIn endows

users with the maximum operation flexibility. We implement ShakeIn and conduct both intensive trace-driven simulations and real

experiments on 20 volunteers with about 530,555 shaking samples collected over multiple months. The results show that ShakeIn

achieves an average equal error rate of 1.2 percent with a small number of shakes using only 35 training samples even in the presence

of shoulder-surfing attacks.

Index Terms—User authentication, smartphone application, single-handed shakes, inertial sensors, biometrics
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1 INTRODUCTION

LAST decade has witnessed the booming development of
smartphones. With the powerful computing and sens-

ing capabilities and a large storage of a modern smartphone,
instead of just making phone calls, a rich set of complex
applications, such as taking photos, investing in stocks,
sending emails and banking, are made possible to run on
such devices. According to the report of the European
Union Agency for Network and Information Security [1],
data leakage resulting from device loss or theft and uninten-
tional disclosure of data has been the top two information
security risks for smartphone users. The security problem of
private information (e.g., personal photos, contact list,
emails and bank accounts) stored on smartphones therefore
is of great importance to smartphone users.

In both the industry and the literature, there is a rich set
of user authentication schemes. The most widely adopted
scheme is to let a smartphone lock itself after a short period
of inactivity and prompt a user to input a password or some
graphic pattern to unlock the phone. For example, iPhones

use a four-digit password and Android systems use a geo-
metric pattern on a grid of nine points. On one hand, when
short passwords or simple patterns are adopted, these
schemes are vulnerable to shoulder-surfing attacks where
the passwords or the graphical patterns are easy to spy [2],
[3]. Moreover, studies have also shown that finger smudges
left on the touch screen of a smartphone can be used to infer
short passwords and simple graphic patterns [4]. On the
other hand, long passwords or complex patterns are incon-
venient for users to input frequently, leading to unpleasant
user experience. Recently, another new category of user
authentication schemes based on user biometrics has
received much attention. Either physiological characteristics
(e.g., fingerprints and face recognition) or behavioral char-
acteristics (e.g., voices, typing and stokes on touch screens)
can be utilized to label or describe individuals. In general,
these schemes focus on how users input as the authentica-
tion secret. Physiological-characteristics-based schemes can
achieve satisfactory performance. For instance, newly dis-
tributed iPhones have a fingerprint sensor integrated with
the Home button, which can actively read the fingerprint of
users and unlock the phone [5]. Nevertheless, such schemes
heavily rely on special sensors embedded on smartphones
and often suffer from biometrics hacking attacks.

Current behavioral-characteristics-based schemes such
as gait recognition, keystroke dynamics and phone usage
statistics need an enormous amount of time to determine
the legitimacy of a user and have low accuracy. Most recent
schemes based on strokes on touch screens such as [6] can
achieve very high accuracy but need two-handed opera-
tions which limits its applicable scenarios.

In this paper, we propose a smartphone user authentica-
tion scheme, called ShakeIn, based on customized single-
handed shakes. As shown in Fig. 1a, a shake refers to a
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to-and-fro movement with one hand holding a smartphone
and swinging the x- and y-axis coordinate plane of the
phone around the elbow in the air. In essence, ShakeIn
adopts a machine learning methodology, consisting of a
training phase and an authentication phase. More specifi-
cally, in the training phase, ShakeIn first asks a legitimate
user to choose his/her preferred shaking styles and collects
a small number of shakes. For each of such shakes, unique
and reliable biometrical features are derived from the raw
readings of the embedded 3D accelerometer and the gyro-
scope sensors, and then utilized to establish a Supporting
Vector Machines (SVM) classifier. In the authentication
phase, ShakeIn use the pre-trained classifier to verify the
legitimacy of shaking attempts from a user and unlock the
phone if the user passes the verification. The key insight
behind ShakeIn is that people have consistent and distin-
guishing physiological characteristics (e.g., the physical
structure of the arm) and behavioral characteristics (e.g.,
shaking behavior patterns) while doing shakes.

To implement ShakeIn, there are three main challenges.
First, as most smartphones are equipped with low-end
motion sensors, both acceleration and rotation readings are
error-prone. How to eliminate such errors while the attitude
of the phone keeps changing is very difficult. In this work,
by leveraging an inherent characteristic of shaking move-
ments, we can find periodical transition points from which
the shaking direction starts to reverse, which can be well
exploited to remove accumulative errors. Second, how to
choose features that can characterize the user is not straight-
forward. In ShakeIn, with transition points, we divide con-
tinuous shakes into segments and extract two behavioral
patterns of motion velocity and angular speed and one physio-
logical pattern of shaking radius based on shaking segments.
Last, smartphones are often used in various conditions. For
example, normal transport mobility (e.g., on a bus or sub-
way train) can greatly affect the motion sensor readings and
therefore the performance of ShakeIn. To tackle this chal-
lenge, we notice another tricky characteristic of shaking
movements that the time duration between two consecutive
transition points are quite short (e.g., about 100 ms), which
means that the transport mobility change in such a short
period of time can be negligible. As a result, shaking seg-
ments can be calibrated even without knowing the underly-
ing transport mobility before features are extracted.

Compared with the state-of-art smartphone user authen-
tication schemes, the novelty of ShakeIn is four-fold. First,
ShakeIn is more difficult to compromise as it is very hard
for an imposter to generate the same shakes as legitimate
users do, especially for user-customized shakes, through
shoulder surfing or biometrics hacking attacks. Second,
ShakeIn allows a user to unlock his/her phone with single-
handed operation, making it an easier choice for people
with missing digits or in various scenarios where only one

hand is available. Moreover, ShakeIn has no mandatory
instructions on how users should shake, which endows
users with the maximum flexibility. Third, ShakeIn is quite
reliable and works well with various modes of transport
such as cars, buses and subway trains, and in different user
postures such as sitting and standing. Last but not least, as
accelerometers and gyroscopes are widely available sensors
in most off-the-shelf smartphones, it is easy to deploy
ShakeIn. Furthermore, ShakeIn is lightweight, needing only
a small number of shakes for training models and authenti-
cating users. We implement ShakeIn on two Google Nexus
4 phones running Android, and evaluate the performance
of ShakeIn via real-world experiments and trace-driven
simulations with 530,555 shaking samples collected from 20
volunteers over multiple months. The results show that
ShakeIn is very resilient to shoulder-surfing attacks and can
achieve an average equal error rate (EER) of 1.2 percent
with a few shakes of three different shaking styles.

The remainder of this paper is organized as follows.
Section 2 compares ShakeIn with related work. We present
the data collection and pre-processing in Section 4. Section 5
introduces the architecture of ShakeIn. Deriving effective
signals representing shaking movements from raw sensory
data is elaborated in Section 6. Section 7 describes how to
extract and select effective features from motion signals.
The procedures of training classifiers for single and multiple
shaking styles and verifying the legitimacy of a user with
those classifiers are introduced in Section 8. We discuss the
reliability of ShakeIn under various conditions that may be
encountered in real-world deployment are discussed in
Section 9. Section 10 presents the performance evaluation
and experiment results. Finally, we present concluding
remarks of our work and summarize the directions for
future work in Section 11.

2 RELATED WORK

2.1 Physiological Characteristic Based

Several schemes [7], [8] have been proposed that utilize the
accelerometer in smartphones to recognize human biomet-
ric gait. In general, these schemes have low true positive
rates as it is sensitive to many uncontrollable factors such as
the phone placement and the types of the ground surface
and shoes. Other physiological characteristics such as fin-
gerprints [9], face and sound could be utilized for authenti-
cation. However, requirements like large memory usage,
high processing latency, and external devices make these
kinds of authentication schemes unrealistic to be widely
deployed on smartphones.

2.2 Behavioral Characteristic Based

Typing behavior with physical keyboards can be utilized to
authenticate users [10], [11] but the performance of these
schemes when applied to smartphones is uncertain as typ-
ing behavior on touch screens is more difficult to model.
Some schemes [6], [12], [13] have been proposed to draw
special gestures on the touch screen of a smartphone for
authentication. For instance, GEAT [6] authenticates users
based on distinguishing features such as finger velocity,
device acceleration, and stroke time extracted when doing
gestures. GEAT can achieve very low equal error rate and

Fig. 1. Illustration of four shaking styles.
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defend shoulder-surfing attacks. Sae-Bae et al. [13] propose
to use the timing of performing five-fingered gestures on
multi-touch capable devices for authentication. The limita-
tion of these schemes is that they certainly require two-
handed operations and their reliability under different
modes of transport is unknown.

OpenSesame [14] and uWave [15] are the two schemes
mostly related to our work. OpenSesame allows users to
shake or roll their phones with no special requirements and
derives four types of geometric features with three-axis raw
acceleration readings. Probability density functions (PDFs)
of those feature samples are further used to train classifiers
and verify a user. UWave can verify the legitimacy of a user
by comparing the time series of three-axis acceleration read-
ings of a testing gesture drawn in the air to a pre-defined
template library by employing dynamic time warping
(DTW). These schemes have relatively high false positive
errors especially under shoulder-surfing attacks. ShakeIn
differs from both schemes essentially in how features are
extracted. In ShakeIn, both physiological and behavioral
characteristics are considered, which makes ShakeIn easy to
use and at the same time resilient to shoulder-surfing attacks.

2.3 Machine-to-Machine Authentication Based
on Shakes

ShaVe and ShaCK [16], [17] are two methods that use shak-
ing for mutual authentication between a pair of mobile devi-
ces. Similarly, Bichler et al. [18] present an approach to
establish a secure connection between two devices by shak-
ing them together. Shot [19] is a scheme where accelerome-
ter readings are leveraged to assist in the secure exchange
of information between smartphones while maintaining the
limited user involvement. Although these schemes are not
for user authentication, they are very interesting and valu-
able for study.

3 SYSTEM MODEL

In the system of user authentication of smartphones, we
consider the following three key entities:

� Smartphones: are the devices to be protected. We
require such a target smartphone to have an onboard
accelerometer, a gyroscope, and a digital compass,
which can constantly measure the motion and atti-
tude of the smartphone, respectively. We have very
limited requirements on the computation and stor-
age capabilities of the smartphone and rely on no
other special hardware.

� Legitimate users: have the right to access a smartphone.
We require a user to be relatively stable during the
training phase and the authentication phase, which
means that, for one particular shaking style, the user
should keep the way how he/she shakes as consistent
as possible. Note that as we do not mandate any shak-
ing styles, users can choose their preferred or habitual
shaking styles which tend to be stable during a short
period of time. We will demonstrate this point
through intensive trace analysis and performance
evaluation in Sections 9 and 10, respectively.

� Imposters: are deliberate or unintentional attackers
who try to unlock an unauthorized smartphone. We

assume imposters cannot have physical access to a
smartphone during the training phase of ShakeIn.
After the training phase, imposters have the follow-
ing three capabilities. First, they can have physical
access to the phone in cases such as thieves stealing
a smartphone, finders finding a lost smartphone,
and friends holding a smartphone when the owner
temporarily leaves. Second, imposters can launch
shoulder surfing attacks by spying or even recording
the owner when he/she performs shakes. Third,
imposters have necessary equipment and technolo-
gies to launch biometrics hacking attacks.

4 DATA COLLECTION

In this section, we describe the process for collecting and
pre-processing raw shaking data from smartphones.

4.1 Collecting Shake Data

We collect shake data with Google Nexus 4, a standard
Android smartphone, with which raw readings on each axis
of the 3D accelerometer and the gyroscope embedded on
the phone can be recorded. The sampling frequency is
200 Hz and the measure range of the 3D accelerometer is
½�4G; 4G�, where G is the gravitational constant.

We recruit 20 volunteers, five females and fifteen males,
aged from 18 to 43, including five undergraduate students,
nine graduate students, three faculty members, and three
office staff. In general, each volunteer helps collect their
shaking data for three times a day, i.e., in the morning, after
lunch, and in the evening. For each time, each volunteer is
asked to shake a phone in two postures (i.e., sitting or stand-
ing) and for each posture, the following four shaking styles
as illustrated in Figs. 1b, 1c, 1d, and 1e are performed: verti-
cal where the phone is shaken in a vertical plane, horizontal
where the phone is shaken in a horizontal plane, inclined
where the phone is shaken in a plane inclined from upper
right to lower left before the body, and customized where the
phone is shaken in an arbitrary plane chosen by the volun-
teer. For each style, each volunteer was asked to shake the
phone for twenty times. It should be noted that we require
volunteers to shake in the first three given styles only for
comparison and have no such requirement when applying
ShakeIn in practice.

We collect two data sets of shakes over two periods in the
year of 2014, i.e., two weeks from Jul. 1 to Jul. 14 (denoted as
trace A) and over one month from Sep. 15 to Oct. 20
(denoted as trace B).

4.2 Removing Noise

The time series of acceleration and angular speed along
each axis can be treated as signals, which contains high-fre-
quency noise. This can be seen in Fig. 2a which shows the
y-axis acceleration readings of several vertical shakes. We
consider frequencies above 15 Hz as noise because it can be
seen that most energy is contained in frequencies below
15 Hz as we can see from the fast Fourier transform (FFT)
result shown in Fig. 2b. We need to remove such high-fre-
quency noise as it would affect the results of shaking veloc-
ity and angular speed calculation.
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5 SHAKEIN ARCHITECTURE

In general, ShakeIn consists of two phases: training phase
and authentication phase as shown in Fig. 3. In the training
phase, shaking motion of a legitimate user is first captured
by the motion estimator (ME) which outputs three motion
signals from the raw readings of the embedded accelerome-
ter and gyroscope. With those derived motion signals, the
feature extractor (FE) further profiles the user’s shaking
behavior based on a group of pattern-based features. Com-
bined with the shaking style information which is estimated
by the phone attitude estimator, features are used to train a
corresponding SVM classifier corresponding to this shaking
style. In the authentication phase, a user needs to shake the
phone in order to unlock the phone. These testing shakes
are also used to resolve the shaking styles and features,
which are sent to the verifier to determine the legitimacy of
the user based on pre-trained classifiers.

Motion Estimator.ME performs two key functions. First, it
determines whether or not a user is shaking the phone. Sec-
ond, if shakes are detected, it produces three motion signals,
i.e., the angular speed, the tangential velocity and the shak-
ing radius, to represent the shaking motion from the raw
sensor readings. The key to ME is that it should always get
accurate motion estimation despite how the user shakes the
phone and what posture the user lies in or what transport
vehicle the user is taking (described in Section 6).

Feature Extractor. The key function of the FE is to extract
effective features to characterize the user. With the real-
world traces we have collected, different types of features
are studied. FE extracts three pattern-based features from
corresponding motion signals, which are preferable for
authentication, i.e., being both consistent for the same user
over time and distinguishing between different users, as
described in Section 7.

Phone Attitude Detector (PAD). In ShakeIn, users are
allowed to customize the way they shake a phone for
authentication. The main function of PAD is to track the
shaking attitude of the phone by calculating the Euler angle

of the z-axis of the phone in the terrestrial coordinate sys-
tem, which is presented in Section 8.

Training Classifiers. As ShakeIn are designed to authenti-
cate users, therefore, feature vectors derived from legitimate
users are used to train classifiers. In ShakeIn, we train a one-
class SVM classifier for each shaking style of a legitimate
user, as described in Section 8.

Legitimacy Verifier (LV). The function of LV is to verify the
legitimacy of a user trying to unlock the phone. The decision
can be made based on the classification result of testing
shakes in one shaking style or the result of multiple voting
on individual classification results of multiple shaking
styles. We describe the procedure in Section 8.

6 MOTION ESTIMATION

Before any meaningful features can be extracted, we need to
characterize the shaking behavior with certain motion sig-
nals instead of using raw sensory data. In ME, as shown in
Fig. 4, we estimate three related signals, i.e., the tangential
velocity, the angular speed, and the shaking radius, denoted
as V , V and R, respectively. As the angular speed can be
directly obtained from the z-axis gyroscope readings, we
elaborate the process of deriving the tangential velocity and
the shaking radius.

6.1 Deriving Tangential Velocity

Suppose the y-axis of the accelerometer is along the shaking
direction of the phone as shown in Fig. 4. To obtain the tan-
gential velocity at time instant ti, one basic solution is to cal-
culate the integral of the acceleration readings along y-axis
ay over time

V tið Þ ¼
Z ti

t0

ay tð Þdtþ V ðt0Þ; (1)

Fig. 2. Unfiltered and filtered shaking signals of acceleration.

Fig. 3. Architecture of ShakeIn. Solid arrow lines show the data flow in
the training phase and dashed arrow lines presents the data flow in the
authentication phase.

Fig. 4. Signals of interest in a shake.

2904 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017



where ayð�Þ is the acceleration function of time and V ðt0Þ is
the initial velocity at time instant t0. As the accelerometer
takes the acceleration samples at a certain sampling rate
instead of producing a continuous function ayð�Þ, therefore,
V ðtÞ can be calculated as

V tð Þ ¼
Xt�k
i¼0

1

k
� ay ið Þ þ V ðt0Þ; (2)

where k is the sample rate of the accelerometer and ayðiÞ is
the ith received reading from the accelerometer’s y-axis.

Though the basic solution is simple, it is very challenging
to achieve high-accuracy velocity estimates of the phone
due to the inherent noise from sensor readings. As a result,
the estimation errors are accumulated when integrating the
accelerometer’s readings over time. For example, the solid
curve in Fig. 6 shows the tangential velocity estimates
obtained with the basic solution over three shakes. It can be
seen that the integral estimates grow rapidly over time.
Therefore, in order to get accurate shaking velocity, the
accumulative error must be eliminated.

To this end, we thoroughly investigate the motion of shak-
ing a phone and have two key observations. First, we refer to
the time pointwhen the direction of a shake is going to change
as an intra-shake transition point, and the time point just before
the next shake starts as an inter-shake transition point. In gen-
eral, transition points are the moments when the direction of
shaking movement starts to change and therefore the tangen-
tial and the angular velocities of the phone should both be
zero. Second, agreed with observations found in prior work
[20], [21], we find such accumulative errors of integral is an
approximate linear function of time. For example, the integral
velocities at transition points in Fig. 6 can be well fitted by a
linear function of time. Given the fact that the true velocities
at transition points are zero, the linear model of errors can be
derived and utilized to infer true tangential velocities. In spe-
cific, transition points can be identified when the angular
speed along z-axis reaches zero as illustrated by the dots in
Fig. 5. Let p1 and p2 denote two transition points and V ðp1Þ
and V ðp2Þ denote the integral velocity values at p1 and p2 cal-
culated using (2), respectively. With linear accumulative
errors, the slope of the linear model, i.e., the constant reading
errors of the accelerometer, can be estimatedwith

erra ¼ V p2ð Þ � V p1ð Þ
p2 � p1

: (3)

As a result, the true tangential velocity between p1 and p2
can be estimated as

V �ðtÞ ¼ V tð Þ � V p1ð Þ � erra � ðt� p1Þ: (4)

Thanks to the inherent nature of shaking motion, we can
constantly get transition points and therefore obtain correct
tangential velocities (as illustrated by the dashed curve
shown in Fig. 6).

6.2 Deriving Shaking Radius

Shaking can be regarded as back-and-forth movements of
complex arcs, involving several parts of an arm such as the
forearm, the elbow, the upper arm and even the shoulder.
Therefore, the shaking radius information contains rich
physiological characteristics of the user and could be utilized
to label the user. Although the whole shaking trajectory in
practice cannot be a perfect circular arc, if we divide time
into short time slots, then the movement in such a short time
slot can be treated as circular. With this approximation, we
can calculate the shaking radius at time instant t as follows:

RðtÞ ¼ V � tð Þ
VðtÞ ; (5)

where V �ðtÞ and VðtÞ are the corrected tangential and angu-
lar velocities of the phone at time instant t. The angular
speed of the phone can be retrieved from z-axis gyroscope
readings. Since the calculation of RðtÞ involves division
operation, in order to avoid divide-by-zero errors at transi-
tion points, we use a sliding window to average V �ðtÞ and
VðtÞ before doing division.

6.3 Pre-Processing Motion Signals

For the convenience of further analysis, we first divide long
time series of all three motion signals of multiple shakes
into short ones of individual shakes, according to inter-
shake transition points. As the durations of shakes vary, in
order to compare two shakes, we re-sample the correspond-
ing time series of motion signals to a fix and sufficiently-
large size of N elements. Hereafter in this paper, without
specification, all time series of motion signals are segmented
and re-sampled with the same length.

7 FEATURE EXTRACTION

With derived motion signals about shaking, we examine
what features can effectively capture the unique biometrics
of users in this section.

Fig. 6. Corrected velocity estimation.

Fig. 5. Identifying transition points.
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7.1 Extracting Biometric Features

We examine three potential types of features as follows:
Duration-Based. Intuitively, people tend to shake a phone

at a constant frequency in a normal mood and therefore the
durations of shakes might be utilized to authenticate a per-
son. For one shake, we extract two time durations from the
angular speed signal, i.e., one from the starting of the shake
to the intra-shake transition point and the other from the
intra-shake transition point to the end of the shake. There-
fore, a vector of 2k duration values can be obtained for a
consecutive k shakes.

Magnitude-Based. Different participants may produce
shakes with distinct magnitudes of all motion signals. To
extract magnitude-based features, we divide each shake
into two sub-shakes according to the intra-shake transition
point and calculate the average, the variance, and the
extrema of all motion signals based on sub-shakes. As a
result, for each of such magnitude-based features, we can
obtain a vector of 2k values for a consecutive k shakes.

Pattern-Based. To represent the differences between two
shakes performed by distinct users, pattern-based features
such as histograms and cumulative distribution functions
(CDFs) ofmotion signals overmultiple shakes can be used. In
order to capture both temporal and structural patterns, we
use the normalized sequences of motion signals of one shake. In
specific, in addition to the re-sampling operation (as intro-
duced in Section 6.3) which makes the length of all shakes
equal to N values, all time series of motion signals of one
shake are normalized. As a result, all values within the
resolved time series lie in the range of ½0; 1�, which removes
the bias caused by uneven magnitude of different shakes.
After that, the normalized time series are further divided into
M segments with each segment having N=M values. Thus,
we obtain the normalized sequences ofM values of allmotion
signals of one shake, each value of which is calculated as the
average of theN=M values in the corresponding segment.

7.2 Selecting Effective Features

Being consistent for the same user over time and space and
being distinguishing among different users are essential to
good features for authentication. To examine the efficacy of
above features, given the same shaking style, we calculate
the root mean squared (RMS) values between feature vec-
tors extracted from shakes performed at different time by
the same participant and between feature vectors extracted

from shakes performed by different participants, over all
participants and time.

In specific, let X1 and X2 denote two feature vectors. We
calculate the root mean squared value of those vectors by
subtracting the normalised values of X1 from the normal-
ised values ofX2 as follows [6]

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2

Xn2

i¼1
ðX̂2½i� � X̂1½i�Þ2

r
; (6)

where X̂½i� presents the ith value in the feature vector of X.
We study the RMS distribution of different types of features
using all traces of all participants and have the following
observations.

Shaking Durations are not Stable. For example, Fig. 7a plots
the CDFs of RMS values of duration-based features.We have
two following observations. First, shakes performed by the
same participant are more similar than those performed by
different participants as the RMS values between feature vec-
tors extracted from the same participant are smaller than
those extracted between different participants. For instance,
over 60 percent RMS values are less than 0.25 when a partici-
pant shakes a phone at different time in the customized style
whereas the value is 0.32 when comparing customized
shakes between different participants. Second, the effective-
ness of the shaking duration feature largely depends on how
users shake. For instance, the differences between the CDFs
obtained when the phone is shaken in the customized and
horizontal styles are relatively larger than those achieved
when the phone is shaken in the vertical and inclined styles.

Magnitude-Based Features are not Distinguishing. For exam-
ple, Fig. 7b plot the CDFs of RMS values of the average
angular speed. It can be seen from both figures that this fea-
ture has very good consistency performance over time. For
instance, over 90 percent RMS values obtained from shakes
of the same participant are less than 0.07 despite different
shaking styles. However, this feature has very limited capa-
bility to distinguish different users as the RMS values
obtained from shakes of different participants are very close
to those obtained from shakes of the same participant. We
have similar observations about other motion signals and
other magnitude-based features and omit their CDFs of
RMS values due to the page limitation.

Pattern-Based Features are Reliable and Unique. For exam-
ple, Figs. 8a and 8b plot the CDFs of RMS values obtained

Fig. 7. Efficacy of magnitude-based features.
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with the normalized sequences of the shaking radius and
the angular speed, respectively. We have three main obser-
vations as follows. First, pattern-based features have excel-
lent consistency as the overall RMS values are quite small.
Second, these features also have strong capability to distin-
guish different users, which is confirmed by the obvious
gaps between the CDFs obtained from the same participant
and those obtained from different participants. Third, these
features also have supreme stability over various shaking
styles. As a result, pattern-based features can perfectly cap-
ture how users behave when they shake their phones. We
have similar observations for the tangential velocity.

As a result, we extract pattern-based features from all
three motion signals to profile users.

8 CLASSIFIER TRAINING AND AUTHENTICATION

In this section, we describe the details of ShakeIn on training
its classifiers and how ShakeIn conducts authentication.

8.1 Detecting Phone Attitude

It should be noted that the recognition of shaking styles is
automatic, which means in both the classifier training phase
and the authentication phase, the user does not need to be
interrupted. In specific, when the user shakes the phone in
one arbitrary plane, ShakeIn constantly tracks the Euler
angle of the z-axis of the phone in the terrestrial coordinate
system. One simple scheme is to utilize the Android system
call to get the rotation matrix transforming the geomagnetic
vector into the same coordinate space as gravity. Suppose
the ration matrix is

R ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

0
@

1
A; (7)

the z-axis Euler angle of the phone can be calculated as
arc tan ðr21=r11Þ. Due to the presence of magnetic materials
often affects the compass of the phone, we adopt the scheme
proposed in [21] to mitigate the error.

8.2 Training Single Shaking Style Classifier

Since training samples are all from the legitimate user of a
smartphone, one-class Support Vector Machine (SVM) clas-
sifier [22], [23] with the Radial Basis Function (RBF) kernel
function [24] is effective and efficient [6], [25]. In ShakeIn,

for each training shake, one feature vector which combines
the normalized sequences of the shaking radius, the angular
speed and the tangential velocity is obtained. We train a
one-class SVM classifier using a group of training shakes for
each shaking style of the user. We use the open source
implementation of one-class SVM in libSVM [26].

In the RBF kernel function of SVM, there are two parame-
ters, i.e., the penalty parameter c and the gamma parameter g,
which impact the effect of training model. To obtain the
appropriate parameters of c and g for one-class SVM, we
adopt the scheme proposed in [6] and conduct a grid search
over the same range of ½2�8; 28� with cross validation on the
training group. As all shaking samples are all from the same
user, cross validation during the grid search only measures
the true positive rate (TPR). As learned from our empirical
experiments with the trace, a SVM classifier even with a
rough configuration of both parameters trained using pat-
tern-based features of shakes can easily reject a testing shake
performed by an imposter. In ShakeIn, we choose the param-
eter values of c and g when the grid search finds the highest
value of TPR as the best configuration to train SVMclassifiers.

8.3 Verifying Legitimacy of Users

Authentication with Single Shaking Style (SSS). Given a set of
testing shakes of a specified shaking style, we extract the nor-
malized sequences of the desired motion signals from the
testing shakes and form a set of feature vectors. Then we
feed each feature vector to the classifier trained for the legiti-
mate user. If the ratio of the number of accepted vectors to
the total number of test vectors is higher than an acceptance
threshold, ShakeIn accepts this testing shake as legitimate and
unlocks the phone; otherwise, the user performing this
group of test shakes is considered as illegitimate.

Authentication with Multiple Shaking Styles (MSS). In
ShakeIn, we allow a legitimate user to define multiple
shaking styles to increase the security level for user authen-
tication. In the training phase, for each shaking style,
ShakeIn trains a separate classifier. In addition, ShakeIn
associates the phone attitude information with the trained
classifier. In the authentication phase, the legitimate user
sets a value of n, the number of shaking styles that the user
needs to do in each authentication attempt. When a user
tries to unlock a phone, ShakeIn prompts the user to shake
the phone in n shaking styles. Then, testing shakes are asso-
ciated to the corresponding classifiers according to the

Fig. 8. Efficacy of pattern-based features.
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phone attitude of z-axis Euler angle. Last, ShakeIn classifies
each shaking style as described in Section 8.2 and uses
majority voting to determine the final legitimacy of the user.

9 RELIABILITY

The reliability of ShakeIn under various working conditions
is critical for real world deployment. In this section, we dis-
cuss the scenarios that ShakeIn might encounter in practice.

9.1 Different Postures

In ShakeIn, as a user mostly uses his/her smartphone in one
of the two postures, i.e., sitting or standing. We compare the
similarity of time series of motion signals achieved while a
participant is sitting and while he/she is standing. Fig. 9a
plots the CDFs of RMS values of all motion signals obtained
in the postures of sitting and standing over all participants in
our traces. It can be seen that there do exist slight differences
between the motion signals achieved in sitting posture and
achieved in standing posture, especially for the shaking
radius. The reasonmight be that themotion of the arm is con-
strainedwhen seated due to the limited room available.

To deal with different postures, one possible solution is
to train a separate classifier for each posture. When testing,
the shake input of a user is classified with each of those clas-
sifier. If one of the classifiers labels the input as legitimate,
we accept the user and skip the rest classifiers. If no classi-
fier accepts the input, then this user is treated as illegitimate.
Although doing this would increase the reliability of the
authentication scheme, it also significantly increases the
burden of users for training classifiers. In contrast, another
solution is to train a unified classifier for both postures,
which simplifies the training procedure but comes at a cost
of performance loss. We further examine the performance
of both solutions in the performance evaluation.

At current stage, one main limitation of ShakeIn is that
we do not consider other postures such as walking and run-
ning. The reason is two-fold: first, shaking behavior in those
postures can vary significantly affected by too many factors
such as different types of surfaces and shoes; second, it is
easy and safe for a user to temporarily stop before the user
trying to use the phone.

9.2 Transport Mobility

In ShakeIn, as shaking features are derived from motion
sensors, the mobility of transport vehicles could also be per-
ceived, polluting the desired tangential velocity of shakes.

We examine that ShakeIn is immune to normal transport
mobility. According to (3) and (4), the tangential velocity of
shakes can be estimated even without knowing the true
velocities at transition points, as long as the condition
V ðp1Þ ¼ V ðp2Þ holds. With fast repeated shaking move-
ments, the time duration between two consecutive transi-
tion points (one is intra-shake and the other is inter-
shake) is quite short at a scale of one or two hundred
milliseconds. As shown in Fig. 9b, the acceleration or
deceleration process of a transport vehicle, however, is
mild and normally happens at a much larger time scale
of seconds. Thus, even when on a vehicle, the velocity
change between two consecutive transition points is neg-
ligible, i.e., V ðp1Þ � V ðp2Þ. We further examine the impact
of transport mobility to the performance of ShakeIn in
the performance evaluation.

10 EVALUATION

We evaluate the performance of ShakeIn through both
trace-driven simulations and real-world experiments, con-
sidering three metrics, i.e., false positive rate (FPR), referring
to the probability of treating an imposter as the legitimate
user when testing, false negative rate (FNR), referring to the
probability of rejecting the legitimate user when testing,
and equal error rate, referring to the error rate when FNR
equals FPR. For each experiment, we repeat that experiment
for 10 times and present the average error rates.

10.1 Effect of Kernel Functions and Acceptance
Threshold

In this experiment, we examine the effect of different kernel
functions adapted in training classifiers and the acceptance
threshold through trace-driven simulations. In specific, we
use trace B and divide the trace into two parts, i.e., shaking
samples for training collected in the first two weeks
(denoted as set T ¼ fT1; T2; . . . ; T14g, where Ti is the set of
shakes collected on the ith day since Sep. 15), and shaking
samples for testing collected in the following two weeks
(denoted as set S ¼ fS1; S2; . . . ; S14g, where Si is the set of
shakes collected on the ith day since Sep. 29). For each shak-
ing style of each volunteer, we randomly select 50 shakes
from T to train a one-class SVM classifier. For testing, we
treat each volunteer as a legitimate user once and treat the
rest as imposters for the current legitimate user, conducting
10-shake SSS authentication, where 10 consecutive shakes

Fig. 9. Reliability of ShakeIn in various conditions.
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randomly selected from S are used in SSS authentication. To
be fair, we do authentication 95 times for a legitimate user
and 5 times for each imposter, which makes the number of
tests from the legitimate user and that from all imposters
equal. We adopt both the linear kernel function and the RBF
kernel function. For the RBF kernel function, we conduct
the grid searching as described in Section 8.2 to find the
most appropriate parameter. We vary the acceptance
threshold from zero to one with an interval of 0.05 and cal-
culate the average error rates. Fig. 10 plots the average
FPR and FNR as functions of the acceptance threshold. It
can be seen that using RBF kernel function can achieve the
best EER of about 4.6 percent with an acceptance threshold
value of 0.1.

10.2 Effect of Training Data Age and Size

In this experiment, we first study how shakes evolve along
time. The experiment setting is similar to the above experi-
ment except that we vary the training data set. Specifically,
for each shaking style of each volunteer, we build a separate
SVM classifier using 20 shakes randomly selected from each
T14�aþ1 for a ¼ 1; . . . ; 14, where a is denoted as the age of
the training data. In addition, given an age a for
a ¼ 1; . . . ; 14, we also aggregate those chosen shakes
selected from T14 to T14�iþ1 to train a SVM classifier. In test-
ing, in addition to 10-shake SSS authentication, we also con-
duct 4� 3 MSS authentication, where four shakes of each of
the three shaking styles (i.e., customised, horizontal and
vertical) randomly selected from S are used in MSS authen-
tication. Fig. 11a plots the average EER as a function of the

data age. It can be seen that, in general, the average EER
increases as the training data ages, especially when the
training data are older than one week. In addition, using
aggregated history data to train classifiers can achieve better
performance.

We then study how many shakes are sufficient to profile
a user. Suggested by the above observation, we use training
data set of one week T 0 ¼ fT8; . . . ; T14g and vary the number
of shakes used in training classifiers from 5 to 40 with an
interval of five shakes. Fig. 11b shows the average EER as a
function of the number of training shakes. We have several
observations. First, the average EER drops as the training
size increases and gradually stabilizes. Second, different
shaking styles have distinct authentication effectiveness.
The reason might be that a user performs more stably when
shaking his/her phone in an easier or more natural way.
Last, MSS authentication can significantly decreases the
EER, even when individual classifiers have poor accuracy
performance. For example, the average EER is 1.3 percent
for the 4� 3 MSS authentication using 35 training shakes
for each shaking style.

The results suggest that ShakeIn can retain classifiers
using most recent shakes which have successfully unlocked
the phone during the last few days. According to the recent
report that people might need to deal with on average 63.5
notifications per day with their smartphones [27], ShakeIn
can easily obtain required shakes for retraining.

10.3 Effect of Authentication Complexity

We further examine the authentication complexity for a
user to unlock a ShakeIn-enabled phone. For each shaking
style, we use 35 shakes randomly selected from T 0 to train
a classifier and vary the number of shakes used for a SSS
authentication from one to six. Fig. 12 plots the average
EER as a function of the number of shakes performed in
authentication. It can be seen that, for SSS authentication,
a small number of six shakes of single style can achieve
satisfactory accuracy with an average EER value of 4.3
percent. With the 4� 3 MSS authentication as described
in the previous experiment, ShakeIn achieves an average
EER value of 1.3 percent. In particular, when we set the
true positive rate to 90 percent with other configuration
being the same, the average FPR decreases to 0.9 and 0.4
percent for SSS and MSS authentication, respectively. As
a result, ShakeIn can achieve excellent accuracy with low
authentication complexity.

Fig. 10. FPR and FNR versus system parameters.

Fig. 11. Impact of history data on training classifiers.
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10.4 Impact of Operation Postures

In this experiment, we examine the effect of operation pos-
tures to the performance of ShakeIn. For each shaking style,
we train different models, i.e., separate and unified. For the sep-
arate model, we train a separate SVM classifier for sitting and
standing, respectively. In the unifiedmodel, we do not distin-
guish postures and train a single classifier for all shakes. We
set up the experiment similar with the above experiment.
Fig. 13 shows the average FPR and FNR of the 4� 3 MSS
authentication as functions of the acceptance threshold
achieved with both models. It can be seen that the separate
model can achieve better average EER value of 1.3 percent.
Using the unified model can achieve similar accuracy with
the average EER value of 2.6 percent. Therefore, it is beneficial
to distinguish different postures and build separate classifiers.

10.5 Impact of Transport Mobility

We investigate the impact of transport mobility to the per-
formance of ShakeIn. We examine three different transport
vehicles, i.e., subway trains, private cars and buses. Real-
world shakes conducted on different transport vehicles
were collected from 10 of our volunteers for one week
(denoted as trace C). For each transport mode, a volunteer
was asked to conduct shakes in the four required styles dur-
ing the acceleration, the deceleration and the complete stop
periods. For comparison, we train new SVM models for
each shaking style of each volunteer, using shakes collected
during complete stops in the first three days. We conduct
six-shake SSS authentication using the rest of the trace. We
repeat the experiment for 10 times and calculate the average

true positive rate over all shaking styles. Fig. 14 shows the
bar plots of the average TPR when applying the original
model trained with trace B and the new model trained with
trace C, respectively. It can be seen that using new models
has better performance, which indicates that the shaking
behavior of a user when standing still is slightly different
from that when he/she takes a transport vehicle. However,
it can also be seen that using original models can still
achieve good accuracy, especially when taking a private
car. This verifies that ShakeIn is very reliable to use for com-
mon transport modes.

10.6 Real-World Attack Experiment

We implement ShakeIn on five Google Nexus 4 Android
smartphones equipped with a quad-core 1.5 GHz CPU and
2 GB memory, adopting the RBF kernel function. The aver-
age time for training one single SVM classifier with 35 train-
ing samples and verifying the legitimacy of a user with six
shakes is 5.3 and 0.7 s, respectively.

We examine whether ShakeIn can defend shoulder-surf-
ing attacks via real-world experiments, following the sug-
gestions proposed in [28]. In specific, we randomly select
five volunteers, two females and three males, as legitimate
users, and 10 volunteers, three females and seven males, as
imposters. For each legitimate user, we first let him/her to
choose three most comfortable shaking styles and postures,
and train corresponding SVM models for each shaking style
on one of the five smartphones. Then, we ask each legiti-
mate user to perform both 6-shake SSS authentication and
4� 3 MSS authentication for twenty times each and record
the whole process on tape. For imposters, they are allowed
to perform live observations on how a legitimate user
unlock his/her phone. In addition, they are allowed to
watch the taped video as many times as they want as well.
We then let imposters rehearse before requiring them to
perform one hundred authentication attempts. The results
turn out that the average TPR over all five users is 98 per-
cent. Fig. 15 shows bar plots of the average FPR of each
imposter over all five users. The average EER for SSS and
MSS authentication schemes over all 10 imposters turned
out to be 4.1 and 1.2 percent, respectively. The results show
that ShakeIn is very resilient to shoulder-surfing attacks.

10.7 Comparison with Existing Schemes

We compare the performance of ShakeIn with two most
related schemes, i.e., uWave [15] and OpenSesame [14]. We

Fig. 12. Average EER versus authentication complexity.

Fig. 13. FPR and FNR in different postures.

Fig. 14. TPR under different modes of transport.
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recruit the same volunteers as the above experiment. For
uWave, each legitimate volunteer defines three password
gestures as suggested in [15] and performs each gesture for
35 times. To unlock the phone, each volunteer draws each
pre-defined gesture for four times. To be fair, we also adopt
the majority voting for all gestures in determining the legiti-
macy of users. For OpenSesame, each legitimate volunteer
is also asked to perform shakes in three personalized styles.
We use 35 shakes to train SVM models and conduct 4� 3
MSS authentication. We conduct shoulder-surfing attacks
on each scheme with a similar setting with the above experi-
ment. The average TPR of uWave and OpenSesame is 93
and 88 percent, respectively. As to the security, Fig. 15 also
shows bar plots of the average FPR of each imposter over all
five users, achieved by using MSS-enabled uWave and
OpenSesame, respectively. The average FPR of uWave and
OpenSesame is 19.6 and 15.4 percent, respectively. It can be
seen that ShakeIn outperforms both schemes.

11 CONCLUSION

In this paper, we have proposed a smartphone user authen-
tication scheme, called ShakeIn, based on customised one-
hand shakes. ShakeIn is resilient to shoulder-surfing and
biometrics hacking attacks as it adopts both physiological
and behavioural characteristics to profile users. Further-
more, ShakeIn is handy as it allows customised shakes and
single-hand operations. ShakeIn is quite reliable and can
work well with different modes of transport. As ShakeIn
needs only off-the-shelf devices, it is easy to gain a wide
deployment. Nevertheless, ShakeIn also has several limita-
tions. For example, if a user forgets how he/she shakes dur-
ing the training phase, it is very likely for ShakeIn to refuse
this user for unlocking. We suggest that a user chooses the
most comfortable shaking styles as his/her “passwords”.
Another limitation of ShakeIn is that currently it can work
with two common people postures, i.e., sitting and stand-
ing. It would be more practical if more postures are sup-
ported. In addition, extending ShakeIn to other mobile
devices bigger than smartphones in size such as tablets is
also challenging. Moreover, we would also investigate to
use more advanced classifiers such as Structural Minimax
Probability Machine [29] in the future.
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