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Abstract—In mobile crowd sensing (MCS) applications, a
public model of a system or phenomenon is expected to be derived
from sensory data, i.e., observations, collected by mobile device
users, through regression modeling. Unique features of MCS data
bring the regression task new challenges. First, observations are
error-prone and private, making it of great difficulty to derive an
accurate model without acquiring raw data. Second, observations
are non-stationary and opportunistically generated, calling for an
evolutionary model updating mechanism. Last, mobile devices are
resource-constrained, posing an urgent demand for lightweight
regression schemes. In this paper, we propose an evolutionary
blind regression scheme, called Lotus, in MCS settings. The core
idea is first to select a ‘maximum-safe-subset’ of observations
locally stored over all participants, which refers to finding a
subset containing half of observations, such that the correspond-
ing regression model has a minimum value of residual sum of
squares. It implies the inconsistency between observations in the
subset is minimized. Since such a maximum-safe-subset selection
problem is NP-hard, a distributed greedy hill-climbing algorithm
is proposed. Then, based on the resulted regression model, more
observations are checked. Selected ones will be used to refine
the model. With observations constantly coming, newly selected
‘safe’ observations are used to make the model evolved. To
preserve data privacy, a one-time pad masking mechanism, and a
blocking scheme are integrated into the process of regression
estimation. Intensive theoretical analysis and extensive trace-
driven simulations are conducted and the results demonstrate
the efficacy of the Lotus design.

Index Terms—mobile crowd sensing; blind regression; model
evolution; outlier; opportunistic sensing; non-stationary

I. INTRODUCTION

The paradigm of mobile crowd sensing (MCS) empowers
ordinary people to contribute data sensed or generated from
their mobile devices, e.g., mobile phones, smart vehicles,
wearable devices, etc. Such sensory data, called observations,
can be aggregated and fused on a server for large-scale sensing
or community intelligence mining, for example, smart home
controlling [1], air pollution estimation [2], and biomedical
data based health model forecasting [3], [4].

One of the commonly used statistical learning methods is
regression, which can be used to estimate the relationship
between a dependent variable and multiple independent vari-
ables based on collected MCS data. However, MCS application
scenarios pose four rigid requirements to a practical regression
estimator as follows. 1) Supreme reliability upon outlier-
s: untrained participants are enrolled in sensing tasks with
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Commercial-Off-The-Shelf (COTS) mobile devices equipped
with low-end sensors, leading to untrustworthy low-quality
or outlier observations due to unintentional mistakes (e.g.,
keystroke errors, misplaced decimal points, or wrong data rep-
resentation) or device limitations. To make it worse, it is hard
to know to what extend the sensory data are contaminated. The
regression estimator should work reliably to derive accurate
models with low-quality data. 2) Evolutionary mechanism:
observations, which are collected in an opportunistic fashion
when cheap wireless communication is available or when
some specific conditions occur, are naturally non-stationary,
which means that both the distribution of observations, and
the possibility an outlier occurs might change over time. The
estimator should be able to deal with ever-coming and ever-
changing observations and take an evolutionary methodology
to develop models over time. 3) Strong privacy preservation:
as observations are often obtained through mobile devices,
they are highly related with the private and sensitive infor-
mation of mobile device users (e.g., current location, health
status, etc.). The regression estimator should strongly preserve
the privacy of MCS participants by keeping raw observations
locally stored and processed. 4) Ultralow overheads: mobile
devices are key to MCS regression tasks, where they are not
only involved in sensing tasks but also take part in regression
modeling, but they are also resource constrained in terms
of power, computational and communication capabilities. The
estimator should take the limits of mobile devices into con-
sideration while conducting regression modeling.

In the literature, regression problems with outliers and with
privacy-preservation are investigated separately. For example,
several secure regression methods [3], [5], [6] have been
proposed for mining distributed datasets or for crowd-sourced
systems, in which high-quality data are assumed. In contrast,
a number of schemes [7], [8] have been proposed for outlier
detection and diagnosis but without considering the data priva-
cy issue. Recently, an outlier-tolerant blind regression scheme,
PURE, is proposed [10]. However, PURE fails to consider the
opportunistic and non-stationary features of MCS data. For
PURE, well-estimated models cannot be updated with new
coming data. In order to keep up-to-date, new models have
to be re-estimated. As a result, to the best of our knowledge,
there exists no successful solution, to tackling regression tasks
in MCS settings.

In this paper, we consider typical MCS scenarios where



Fig. 1. Illustration of Lotus used in mobile crowd sensing applications.

sensory data are collected with mobile devices of unpro-
fessional participants who can communicate with the MCS
server via WiFi or 3G/4G. A regression estimator is proposed,
called Lotus, that can be implemented as a set of protocols
running between a server and mobile devices of participants.
To deal with opportunistic and non-stationary observations,
as illustrated in Figure 1, Lotus estimates a model which
can evolve with newly collected observations periodically.
More specifically, to estimate an initial model, we propose
a maximum-safe-subset selection problem. By solving the
problem, an optimal ‘safe’ (not-likely-to-be-outlier) subset of
observations distributed over all participants can be determined
for estimating a rough global regression model. Considering
finding such a maximum-safe-subset is NP-hard, a distributed
greedy hill-climbing algorithm is proposed, where a Maha-
lanobis distance-based selection protocol is carried out to
decide a primary ‘safe’ subset of observations by which a
model is estimated as the starting point of hill-climbing, and
then this model is optimized as observations outside the ‘safe’
subset, which support the model more strongly, being swapped
in the ‘safe’ subset iteratively, until no observations can be
exchanged. After that, by examining the validity of local
observations with this rough estimate, more valid observations
can be identified, and are utilized to refine the global estimate.
Moreover, the model evolves once enough new observations
are available. During model evolution, a ‘safe’ subset of fresh
observations is first determined in the same way as adopted
in estimating the initial model, and then combined with the
current model. With the new rough model, each participant
re-examines the validity of both new observations and those
observations having been involved in the initial model already,
as well.

One main challenge is to achieve reliable model estimates
on contaminated observations with the constraint of privacy-
preservation. On one hand, preserving data privacy forbids
raw data sharing with others including the server. On the
other hand, without acquiring the raw data, it is hard to
identify and to remove outliers, which makes the regression
result unreliable. Lotus tackles this challenge through three
key strategies: 1) participants in Lotus not only take part in
collecting observations but also collaborate with each other
and with the server in making decisions; 2) in Lotus, a

one-time pad masking mechanism is introduced, such that
secure aggregation can be achieved; 3) a blocking scheme
is proposed to enable ‘blind’ optimization of ‘safe’ subset.
Another challenge is to determine which observations are
out-of-date and which are effective in updating the model.
Furthermore, how to eliminate the impact of those out-of-date
observations from the new model and how to affect the new
model with new effective observations in an incremental way
are of great difficulty. In Lotus, during model updating, the
maximum-safe-subset of new observations will be included in
the model, which guarantees that new observations indeed take
effect on the new model. While out-of-data observations in the
old model will be re-estimated according to the new model,
such that those deviate from the new model will be excluded.

The main advantages of Lotus are four-fold. First, Lotus
is resistant to high break-down outliers. Second, the confi-
dentiality of raw observations is strongly protected. Third,
regression model can be incrementally updated and can evolve
over time. Last but not least, Lotus is a lightweight protocol
tailored for mobile devices. We prove that Lotus can protect
private data from being spied and can defend against collusion
attacks theoretically. We evaluate the performance of Lotus
through extensive trace-driven simulations using both real and
synthetic datasets. The results demonstrate the effectiveness
of Lotus to model updating, and the robustness even in the
presence of 40% outliers.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce problem formulation and preliminaries. In
Section III, we elaborate the design of Lotus in detail. Section
IV presents the analysis on defending against recovery and
collusion attacks. In Section V, the accuracy and robustness
of Lotus are examined. We review related work in Section VI.
Finally, we conclude and outline the directions for future work
in Section VII.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Privacy and Threat Model

The main privacy leakage concerns during regression come
from inside adversaries which take part in the estimating
and updating procedures. More specifically, the MCS server
and participants in collaborative regression are included. We
characterize adversaries as follows.
• Honest-but-curious: both MCS server and participants

are considered as ’passive’ adversaries which follow the
semi-honest model. It means that they execute the pre-
designed protocols honestly but are curious about the
private sensory data of others and attempt to learn or
infer such information as much as possible.

• Collusive: participants may also mutual collude (or with
the MCS server) to share knowledge in order to reveal
more private information. However, we assume that the
number of participants in collusion is limited.

B. Multivariate Linear Regression

In MCS, the basic multivariate linear regression problem
refers to a set of participants N = {N1, N2, . . . , Nm} and a



sever S. Ni(i = 1, 2, . . . ,m) collects a number of its own
observations, each of them relates to p (p > 1) independent
variables x1, x2, . . . , xp and a dependent variable y. The j-th
observation o(i)j of Ni is a vector of [x(i)j,1, x

(i)
j,2, . . . , x

(i)
j,p, y

(i)
j ].

S gathers observations from participants in N, to illuminate
underlying association between variables, by fitting a model
to observations. We have the definition as follows:

Definition 1. A multivariate linear regression model in MCS
relates to observed independent and dependent variables, i.e.,
x(i) = [x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
ni ]

T and y(i) = [y
(i)
1 , y

(i)
2 , . . . , y

(i)
ni ]

T

from Ni for i = 1, 2, . . . ,m, where ni represents the number
of observations of Ni, and x(i)

j = [1, x
(i)
j,1, x

(i)
j,2, . . . , x

(i)
j,p], such

that
Y =Xβ + ε (1)

where X = [x(1),x(2), . . . ,x(m)]T , Y =
[y(1),y(2), . . . ,y(m)]T , β = [β0, β1, . . . , βp]

T is the coeffi-
cient vector of regression model, ε = [ε1, ε2, . . . , εκ ]

T ,(where
κ =

∑m
i=1 ni), represents random errors with zero expectation

normal distribution.
A classic estimator is LS, which minimizes the sum of

squared residuals, i.e., Residual Sum of Squares (RSS), and
leads to the estimated value of unknown β as

β̂ = (XTX)
−1

XTY

u =

m∑
i=1

(x(i))Tx(i),v =

m∑
i=1

(x(i))Ty(i)

β̂ = (u)−1v (2)

RSS is calculated as Rss =
∑m
i=1(e

(i))Te(i), where e(i) =
[e

(i)
1 , e

(i)
2 , . . . , e

(i)
ni ]

T , and e
(i)
j , computed by y

(i)
j − x

(i)
j β̂, is

the residual of o(i)j to β̂.
Notice that both (x(i))Tx(i) and (x(i))Ty(i) can be com-

puted by each Ni locally and submitted to S for calculating
β, without leaking the original x(i) and y(i) to S.

Sharing aggregated results, however, should also be very
carefully, since abuse of aggregated results is vulnerable to
observations recovery attacks.

C. Blind Regression with High Break-down Outlier Resistance

An observation is considered to be a regression outlier if
it deviates from the relation followed by the majority of the
data. We do not restrict the fraction of outliers in observations
from certain individual. However, given a set of observations
for regression modeling, the total outliers should be limited
up to 50%; otherwise, it is impossible to achieve a reasonable
regression model.

Property 1 (Blind). A regression modeling is blind if the
raw observations cannot be obtained or inferred by any others
(the server) during the regression.

Property 2 (High Break-down Outlier Resistant). A re-
gression modeling is called high break-down outlier resistant
method if the derived relation still fits the majority of data
even if the portion of regression outliers reaches up to 50%
of all observations.

Definition 2. The problem of blind regression with high
break-down outlier resistance is referred to as, given the
private observations, finding the optimal linear regression
estimate so that it satisfies both Property 1 and 2.

D. Evolutionary Regression with Non-stationary Observations

In MCS, a regression model is updated (evolved) periodi-
cally or once enough fresh observations are available. During
model updating, fresh observations are added into the current
model for improving model accuracy.

Property 3 (Adaptive). Model updating is called adaptive
if it can accommodate to the gradual changes of dependency
between the predictor and criterion variables, resulting from
the non-stationarity of observations.

Definition 3. The problem of evolutionary regression with
non-stationary observations is referred to as, given a group of
new observations, updating a regression model (i.e., β) without
re-estimating from scratch, satisfying Property 3.

Remarks. Model updating should be also blind and high
break-down outlier resistant.

E. Mahalanobis Distance

The Mahalanobis distance [12] of an observation
oi=[xi,1, . . . , xi,p, yi], from a set of observations O with
mean value µ = [µ1, . . . , µp, µp+1] and covariance matrix V,
is defined as:

dM (oi) =
√
(oi − µ)TV −1(oi − µ) (3)

oi with greater dM (oi) from the rest of the observations is said
to have higher leverage, and is suspected as an outlier, since
it has a greater influence on the coefficients of the regression
equation.

F. Design Goals and Challenges

We aim to develop a practical method to address the prob-
lems of Definition 2 and 3, simultaneously, which is however
very hard. The raw observations are not available due to the
data confidentiality consideration, which obstructs outlier iden-
tification. To design a regression estimator satisfying privacy
preservation and outlier resilience is nontrivial. Furthermore,
model evolving should be adaptive to non-stationary obser-
vations. The current dependency between variables should
be captured precisely. It implies the necessity to withdraw
outliers or outdated observations from the new model. Without
the prior knowledge on observation distributions, it’s difficult
to identify those ’bad’ observations. Unfortunately, privacy
concerns make the problem much harder.

Additionally, in MCS scenarios, typical mobile devices have
relatively weak computation abilities and limited power. It
is necessary that methodologies for evolutionary regression-
estimating and privacy-preserving are lightweight. Especially,
we desire an incremental model updating scheme, to maximize
the use of existing computational results without re-estimating
from scratch, and a privacy-preserving scheme free of com-
plicated encryption schemes (e.g., homomorphic encryption),
which induce high transmission and computation cost.



Fig. 2. Overview of Lotus

III. DESIGN OF LOTUS

A. Overview

Lotus incorporates two techniques, i.e., blind regression
model estimating and blind regression evolution, as illustrated
in Figure 2.

Blind Regression Model Estimating. The basic idea to
derive an initial model estimate has two steps. First, con-
sidering that outlier ratio is smaller than 50%, we wish to
choose a ‘safe’ subset with half observations, according to
which, a regression model can be estimated with minimum
RSS, which implies that observations in selected ‘safe’ subset
obey the same trend. In other words, a ‘tight’ and ‘safe’
regression model is estimated and used as a primary model.
However, finding such an optimal subset is nontrivial, and
proven NP-hard. Thus we develop a two-stage heuristic ap-
proach to achieve an approximation of optimal solution. 1)
Initializing regression model over ‘safe’ subset: the server
collects and aggregates the information of some statistics (e.g.,
the mean) of local observations from all participants to get
global statistics. Such global statistics are then distributed to
all participants for data quality checking. Half of observations
(determined in a distributed way) are considered as an initial
‘safe’ subset and used to conduct regression estimation. 2)
Estimating rough global model with optimized ‘safe’ subset:
we design a greedy hill-climbing algorithm to optimize the
‘safe’ subset using the initial ‘safe’ observations as starting
point. 3) Deriving refined global model: by checking the data
quality again using the rough global estimate, more valid local
observations can be found and used to refine the rough model,
resulting the ultimate initial global model.

Blind Regression Evolution. This technique is used for
model updating, and has two functions. 1) Calculating new
rough model: when updating one model, a new ‘safe’ subset is
formed according to a fresh observation group, which follows
the same procedure as in finding the initial ‘safe’ subset.
Then a new rough model can be built by including the new
‘safe’ subset into the current model. 2) Deriving new refined
model: after establishing the new rough model securely, each
participant checks the quality of fresh observations, and non-
outliers which had been used to build the current model, based
on the new rough model locally, to decide which observations

should be involved into or cut out from the new model,
respectively.

In the above stages, in order to protect data privacy, each
participant prepares its local aggregated results used for model
estimating, and masks them with particular random values.
Since those masks from different participants can cancel
each other on the server side, upon receiving the masked
local aggregations, the server can estimate a model precisely.
Moreover, a blocking scheme is proposed to optimize the
‘safe’ subset in a secure manner.

B. Blind Regression Model Estimating

1) Initializing Regression Model over ‘Safe’ Subset: Sup-
pose Ni (1 6 i 6 m) holds a set of observations o(i) =

{o(i)1 ,o
(i)
2 , . . . ,o

(i)
n }, where o(i)j indicates the j-th observation

of Ni. For the convenience of expression, we set the size of
o(i) as n (which is known by S). Actually, Lotus can be easily
extended to fit a general case where the size of each o(i)

might not be equal. Observations from the m participants are
denoted by O =

⋃m
i=1 o

(i). We utilize
⌈
m×n

2

⌉
observations

from O with smallest Mahalanobis distances, i.e., dM , to form
an initial ‘safe’ subset which is presumably free of outliers.

Taking into account privacy issues, each dM should be
calculated by the corresponding observer locally, and the mean
value µ = (µ1, . . . , µp, µp+1) and covariance matrix V of O
should be available to participants. To this end, the following
protocol is performed between each Ni and the server S to
select the ‘safe’ subset.
• Calculating µ: each Ni computes the sum

of each column in o(i) locally, i.e., s(i) =

(
∑n
j=1 x

(i)
j,1, . . . ,

∑n
j=1 x

(i)
j,p,
∑n
j=1 y

(i)
j ), and then Ni

sends s(i) to S. After gathering s(i) from all participants,
it’s convenient for S to calculate µ = 1

m×n
∑m
i=1 s

(i).
Then S sends µ back to each Ni.

• Calculating V : each Ni computes V (i) =
∑n
j=1(o

(i)
j −

µ)T (o
(i)
j − µ) (which is a (p+ 1)× (p+ 1) symmetric

matrix), and submits it to S. S computes V by using

V = E(

m∑
i=1

V (i)) =
1

m× n

m∑
i=1

V (i)

• Calculating V −1: S calculates V −1, the inverse of V ,
and sends it to all participants.

• Calculating dM : Ni computes dM (o
(i)
j ) according to (3),

and sends the median, i.e., M(i)
dM

, to S.
• Estimating the global median of dM : S sorts all dM (o

(i)
j )

received, and broadcasts the median MdM (which is the
global median) to participants.

• Preparing local initial ’safe’ subset: Ni selects those
o
(i)
j whose dM are smaller than MdM to form a local

‘safe’ set o(ci) = {o(ci)1 ,o
(ci)
2 , . . . ,o

(ci)
ξi
}. Ni computes

(x(ci))T (x(ci)), (y(ci))T (y(ci)) and (x(ci))Ty(ci), and
submits the results to S.

• Regression over initial ’safe’ subset: S computes u(c)
0 =∑m

i=1(x
(ci))T (x(ci)), v(c)0 =

∑m
i=1(x

(ci))Ty(ci), and



w
(c)
0 =

∑m
i=1(y

(ci))T (y(ci)). Then, it’s convenient for
S to estimate a regression model with coefficient vector
β̂0 according to (2). Furthermore, S calculates the cor-
responding Residual Sum of Squares, i.e., Rss(0), which
equals to w(c)

0 − (β̂0)
Tv

(c)
0 .

Theorem 1. In order to defend against o(c) (we use o(c) =⋃m
i=1 o

(ci)) from been recovery attacks by S or other attackers,
the number of all observations collected in each period should
be no less than 2p+ 3.

Proof. An attacker aiming to recover o(c) considers the prob-
lem as solving a set of equations, related to the corresponding⌈
m×n

2

⌉
× (p + 1) unknown variables. According to the pro-

tocol, S obtains
∑m
i=1(x

(ci))T (x(ci)),
∑m
i=1(y

(ci))T (y(ci))

and
∑m
i=1(x

(ci))Ty(ci), which refer to (p+1)(p+2)
2 − 1, 1 and

p+ 1 equations related to oc, respectively. It is essential that
the number of variables should be larger than that of the
corresponding equations, otherwise, o(c) could be recovered.
Additionally, o(c) have at least p+1 observations in order to
estimate a regression. Thus, the following equality holds,

d(m× n)/2e × (p+ 1) > (p+ 1) + (p+ 1)(p+ 2)/2 (4)

d(m× n)/2e ≥ p+ 1 (5)

So we set the number of all observations m×n ≥ 2p+3, which
meet the above condition and this concludes the proof. �

In this phase, Ni needs to share M(i)
dM

, along with a
number of aggregated results, i.e., s(i), V (i), (x

(i)
c )T (x

(i)
c )

and (x
(i)
c )Ty

(i)
c , relating to its raw observations o(i), which

may cause privacy problem if the number of variables in o(i)c is
no more than that of the equations built from those aggregated
results.

According to the protocol, the server adds up those aggre-
gated values from all participants together for further process-
ing, without knowing individual ones. It implies that the sum
of certain kind of aggregate values should be computed in
a secure fashion. We use a one-time pad masking technique
for securely calculating the summation of aggregated values
without disclosing individual ones. We explain the key idea
by calculating

∑m
i=1 s

(i) as follows:
The basic idea of masking is that each s(i) is masked with

certain secret vector, such that all masks can be canceled
when they are added on the server side. Suppose each pair
of participants (Ni, Nk) agrees on certain random vector bi,k.
If Ni adds this to s(i), while Nk will subtract it from s(k). In
the design, each participant Ni computes:

Ai = s
(i) +

∑
i<k

bi,k −
∑
i>k

bk,i

and sends Ai to the server, and the server computes:

A =

m∑
i=1

Ai =

m∑
i=1

(s(i) +
∑
i<k

bi,k −
∑
i>k

bk,i) =

m∑
i=1

s(i)

In order to avoid exchanging random vectors bi,k between
participants, which requires quadratic communication over-
head, each pair of participants (Ni, Nk) shares a secret as the
common seed in advance, such that the same pseudorandom
can be generated by both parties.

To this end, we assume that each Ni holds a pair of
public and secret keys (pki, ski), which can be achieved by
commonly used Public Key Infrastructure (PKI). The server
maintains a public key list of participants. Once Ni registers
with the server, pki will be added into the list, and the updated
list will be published to all participants. Then, for each pkk in
the list (except pki), Ni generates a secret si,k, and encrypts it
with pkk, and submits the ciphertext to Nk (directly or relay
by the server). Nk decrypts the ciphertext using skk and gets
si,k. After that, bi,k can be generated based on si,k. A simple
way is to apply a secure hash function h(·) (which is known
to all participants) on si,k, i.e., bi,k = h(si,k). In consideration
of security, bi,k will only be used once. For updating bi,k, new
mask b′i,k is calculated as h(bi,k).

2) Estimating Rough Global model with Optimized ‘Safe’
Subset: First, we give the following definitions:

Definition 4. The problem of finding optimal ‘safe’ subset
is referred to as, given a set N of n observations, select⌈
n
2

⌉
observations to fit a regression model, to minimize

corresponding RSS.
However, above problem is NP-hard, since it can be easily

translated to the top-k nodes problem [13] which has been
proven to be NP-hard. Therefore, we use a greedy hill climbing
algorithm to approximate the optimum solution.

Definition 5. Given β̂ estimated by using n observations,
with corresponding RSS denoted as Rss, Moderate Residual
Expectation (MRE) is referred to as

√
Rss/n.

We use o(c) =
⋃m
i=1 o

(ci), leading to β̂0, as the starting
point of hill climbing. Then, we check the residuals of
remaining observations. Those observations whose residuals
are smaller than the MRE of current regression estimation
will be included into the ‘safe’ subset while the same number
of ‘safe’ observations with largest residuals will be removed
from it, which helps to shrink the RSS. Thus, β̂0 is optimized
towards minimizing RSS. ‘Uncertain’ and ‘safe’ observations
are swapped in and out of the model iteratively until no
observations can be swapped into the model. To this end,
the following protocol is performed between each Ni and the
server S to optimize the ‘safe’ subset.

First, S calculates MRE, denoted as Mre(0), and broadcasts
β̂0 and Mre(0) to all participants.

Second, Ni calculates residual of each o
(i)
j to β̂0, i.e.,

e
(i)
j = y

(i)
j − x(i)

j β̂0, and compares those residuals with
Mre(0). Notice that o(i) is divided into local ‘safe’ subset
o(ci) and remaining subset o(ri). Thus, those o(ri)j whose
residuals are smaller than Mre(0) is formed a swap-in subset
o(ini), and submits the size of o(ini), i.e.,|o(ini)| to S by using
one-time pad masking. .

Third, in order to decide which observations should be
removed from o(ci), a naive solution is to submit e(ci) to S.



After receiving all e(ci) and |o(ini)|, S computes innum =∑m
i=1 |o(ini)|, the total number of observations should be

added into ‘safe’ subset, and sorts all residuals of ‘safe’
observations, and notifies Ni with threshold of residuals etrsd
such that innum observations whose residuals exceed etrsd
should be removed from the ‘safe’ subset.

Fourth, on the side of Ni, according to etrsd, a swap-out
subset o(outi) can be formed, which is composed of those
observations satisfying e

(ci)
j > etrsd. Then Ni calculates

(x(ini))T (x(ini)) − (x(outi))T (x(outi)), (y(ini))T (y(ini)) −
(y(outi))T (y(outi)) and (x(ini))Ty(ini) − (x(outi))Ty(outi),
and submits the results, i.e., |o(ini)|, to S, by using one-time
pad masking.

Consider that

u
(c)
1 = u(c) +

m∑
i=1

((x(ini))T (x(ini))− (x(outi))T (x(outi)))

= u(c) +

m∑
i=1

(x(ini))T (x(ini))−
m∑
i=1

(x(outi))T (x(outi))

Similarly, v
(c)
1 and w

(c)
1 are computed. Thus β̂1 =

(u
(c)
1 )−1v

(c)
1 , and Rss(1) = w

(c)
1 − (β̂1)

Tv
(c)
1 .

Repeat the above steps until no observations can be
swapped. Then regression estimate β̂safe obtained in the last
round is considered as a rough global regression model.

However, publishing residuals of certain observations to
different models gives the chance for attackers to launch ob-
servation recovery attacks. One solution to solve the problem
is to conduct sorting on ciphertext, e.g. Garble Circuit, which
however induces high computation and communication costs.
We design a light-weight and effective scheme by loosening
the accuracy of o(out), i.e.

⋃m
i=1 o

(outi), slightly.
S publishes a set of bins such that a residual can fall into

one and only one bin. Furthermore, the size of the bins are
different, which satisfies that bigger residuals will be thrown
into smaller bins. Each Ni has the knowledge of those bins,
hence can decide the number of observations in o(outi) falling
into each bin locally, and submits those numbers to S by
using masking. Thus S can calculate the total number of
observations falling into each bin. Since S knows the innum,
which is equal to outnum, and follows the rule of small-bin-
first, i.e. observations in smaller bins well be removed first. S
decides the threshold bin bintrsd such that all observations in
smaller and bigger bins will be removed and kept, respectively.
While partial observations in bintrsd will be removed. Then
S broadcasts the bintrsd and the ratio of the observations
rmoratio in it. According to this, Ni selects all observations
whose bins are smaller than bintrsd, and random selects
observations in bintrsd with a probability of rmoratio to form
local swap-out subset o(outi).

3) Deriving Refined Global Model: After achieving the
rough model β̂safe, S broadcasts β̂safe and root mean squared
error RMse (RMse =

√
Rss

(n×m−p−1) ) to all participants.
Then the following refining protocol is carried out between S
and each Ni, in which the outlyingness of observations in o(ri)

(i.e., ‘uncertain’) is tested in accordance with β̂safe. Those
observations fitting β̂safe well will be added into achieve an
initial estimate β̂ini.
Ni calculates standardized residual z(ri)j of o(ri)j

z
(ri)
j = |e(ri)j |/RMse (6)

Ni goes through o(ri), and labels observations with z
(ri)
j

exceeding 1.69 according to [11], which implies inconsistency
with β̂safe, as outliers. Then, observations passing the test are
formed as a refining subset o(fi), which will be added into
the initial regression model. Specifically, (x(fi))T (x(fi)) and
(x(fi))Ty(fi) are computed locally, and are submitted to S by
using masking.
S computes u(ini) = u(c) +

∑m
i=1(x

(fi))T (x(fi)) and
v(ini) = v(c) +

∑m
i=1(x

(fi))Ty(fi), S estimates β̂ini =
(u(ini))−1v(ini).

C. Blind Regression Evolution

Under the current estimate β̂ini, assume that there exists
a group of participants Ñ = {Ñ1, Ñ2, . . . , Ñq}, and each
Ñl (l = 1, 2, . . . , q) holds a set of new observations, i.e.,
õ(l) = {õ(l)1 , õ

(l)
2 , . . . , õ

(l)
n }. In order to update β̂ini by

utilizing new observations, the server S first calculates a new
rough model β̃rgh according to β̂rgh and the new ‘safe’ subset,
and then refines β̃rgh to achieve the new estimate.

1) Calculating New Rough Model: In this procedure, a new
‘safe’ subset is formed and included into β̂ini to construct the
new rough model β̃rgh.

Specifically, S and Ñi cooperate with each other to select
the new ‘safe’ subset (with a size of

⌈
q×n
2

⌉
) from õ(l), follow-

ing the protocols which have been introduced in subsections
III-B1 and III-B2. We denote the new ‘safe’ observation subset
of Ñl as õ(cl). Each Ñl submits

∑q
l=1(x̃

(cl))T (x̃(cl)) and∑q
l=1(x̃

(cl))T ỹ(cl)with masking to S to estimate a new rough
model β̃rgh.

2) Deriving New Refined Model: After updating the new
rough model β̃rgh, S broadcasts it to participants in U =

Ñ
⋃

N. Then the following procedures are performed to es-
tablish a new model β̃new.

Specifically, S communicates with each participant in U,
to test the outlyingness of observations in o(ci)

⋃
õ(rl), in

accordance to β̃rgh, which is alike the procedure obtaining
o(fi) (described in subsection III-B3). Those observations in
o(ci) which unfit β̃rgh will be removed from the new model.
On the other side, observations in õ(rl) which pass the test
will be added into the new model.

IV. SECURITY ANALYSIS

A. Observation Recovery Attacks

In the phase of initializing regression model over ‘safe’
subset, S obtains µ and V of all m × n observations from
all participants for finding a ‘safe’ subset, which refer to
(p+1)(p+2)

2 −1, and p+1 equations related to O, respectively.
Note that the size of O is m× n ≥ 2p+ 3 (which means the
‘safe’ subset have enough data to estimate a regression model).



Therefore, the number of variables is at least (2p+3)(p+1).
As (2p+ 3)(p+ 1) > (p+1)(p+2)

2 + p always holds, it means
that S does not have enough equations to recover O. Similar
method can prove that no one can recover the original data of
the participant during estimating regression model over initial
‘safe’ subset. Additionally, privacy security during estimating
a rough regression model and deriving refined global model
could be ensured, since that observation swapped could be
viewed as add and minus operations on a matrix to an
existing matrix, it is impossible for S to deduce any privacy
information by the differences in two received matrices..

B. Collusion Attacks

Malicious participants can collude to collect slices generated
by Ni in order to rebuild (x(i))T (x(i)) and (x(i))Ty(i),
which can be used to recover the local observations of Ni.
Using (x(i))T (x(i)) as an example, with proposed masking
technology, both in initial model estimating and updating, to
recover (x(i))T (x(i)), malicious participants have to know
all m − 1 masks hold by Nj(j 6= i). But, the number of
participants in collusion is limited in our assumption of threat
model. So it is hard to recovery the raw observations from the
aggregated data.

V. PERFORMANCE EVALUATION

A. Methodology

We examine the performance of Lotus via both real and
synthetic datasets. We use four datasets, three are well-known
and one is generated, which are described as follows:

1) Airfoil self-noise [14]: this dataset includes 1503 ob-
servations. We use attributes of frequency, angle of at-
tack, free-stream velocity and suction side displacement
thicknessto build the influence function of scaled sound
pressure level.

2) Concrete compressive strength [15]: the dataset contains
1030 observations. We use attributes of cement, blast
furnace slag, fly ash and age to build the influence
function of the concrete compressive strength.

3) Synthetic: we generate 1400 observations by using y =
5+5

∑9
i=1 xi+ε, where ε ∼ N(0, 1) and xi ∼ N(0, 1).

Based on above datasets, we generate two kinds of noises.
All the noises are random vectors and each dimension has
independent and identical distributions.

1) Random noise: variables obey uniform distribution with-
in the range [0, vmax − vmin], where vmax and vmin
refer to the maximum and the minimum measures of
one certain attribute in certain dataset, respectively.

2) Normal distributed noise with N(µ, σ2): variables obey
normal distribution with a mean of µ and a standard
deviation of σ, where µ and σ are the estimates of the
mean and standard deviation of one given attribute of
certain dataset.

For each dataset, we generate outliers by adding certain
noise on original observations under predetermined ratio.

We compare the performance of Lotus with the state-of-art
LS estimator, and WLS estimator in which observations with
larger residuals will receive smaller weight in order to reduce
the influence of the suspected outliers in modeling. WLS leads
to the estimated of β as

β̂W = (XTWX)−1XTWY

Weight matrix W is diagonal, where the i-th diagonal
element refers to the influence of the i-th observations. In
specific, W is initialized as an identity matrix, and is updated
according to the current β̂W , and will be used for new model
estimating.

By utilizing LS estimator, we can obtain the models to the
original datasets, which are high quality, as the ground truths.
We evaluate the accuracy of an estimate by calculating the
relative difference of model coefficients between an estimated
β̂ and the ground truth β∗, defined as ‖β∗−β̂‖

‖β∗‖ . For each
dataset, noise type and each simulation configuration, we run
the simulation 20 times and get the average.

B. Accuracy with Model Updating

In this experiment, we examine the performance of Lotus
on the four datasets, with more observations facilitating model
updating. In order to simulate the periodical regression model
updating in MCS, for each dataset, we randomly divide the
observations into groups, each of them satisfies that at least
n ≥ 50 + 8p observations are included, such that the number
of observations for estimating a regression model is sufficient
according to the suggestion from Green [16]. For Airfoil
self-noise, Energy efficiency, Concrete compressive strength
and Synthetic, the number of groups are 15, 6, 10 and 10,
respectively. We then randomly pick up one unused group
from one certain dataset for model estimating or updating.
We compare Lotus with LS and WLS, under both the random
and normal distributed noise settings with the outlier ratio ε
equal to 30% in each observation group, which is considered
to be practical.

Fig. 3 plots the relative difference of model coefficients
between the estimated models and the global optimal models,
estimated by LS according to all original observation groups
(without noises) obtained from the beginning to the current
updating period. The horizontal axis indicates the number
of updates, where zero refers to the initial model without
updating. We can see that, the accuracy of the model esti-
mated by Lotus is continuously improved with new group of
observations being included in model updating. It can also be
seen that Lotus outwits LS and WLS in all settings of three
real datasets. In the synthetic dataset, WLS can achieving a
similar performance Lotus in the early rounds of updating, but
Lotus refines the model much faster than WLS in the following
rounds, and achieves a better estimate in the end. Moreover,
with the model being updated, the performance gaps between
Lotus and other two estimators become even larger.



(a) Airfoil self-noise (b) Concrete compressive strength (c) Synthetic

Fig. 3. Difference from the optimal model vs. the number of updates.

(a) Airfoil self-noise (b) Concrete compressive strength (c) Synthetic

Fig. 4. Difference from the optimal model vs. outlier ratio with normal noise under N(µ, σ2).

C. Robustness under Different Outlier Ratios

In this experiment, we further examine the robustness of
Lotus against outliers under different outlier ratios ε, and
of different types. In specific, we check both the initial
estimates, which are established based on the first groups
of observations without any updating, and the final models
which are updated for several times based on all observations
in the corresponding datasets. For each setting of noise, the
noise ratio ε varies from 5% to 50% at an interval of 5%.
We randomly divide the observations into groups as described
before, for a group of n observations, we generate n∗ε outliers
according to given noise type, and random distribute them to
observations in the group.

Fig. 4 and Fig. 5 plot the relative difference of model coef-
ficients between the estimated models and the corresponding
global optimal models as a function of outlier ratio under
random and normal distribution noise settings, respectively.
It can be seen that Lotus outwits LS and WLS in all settings.
LS is very sensitive to outliers, even under a low outlier ratio
of 5%, LS gets a bad performance, whereas, Lotus can hold
good accuracy even when ε increases to 40%, especially for
the final estimates. In some cases, particularly in synthetic
dataset, WLS can achieve a high accuracy of final models
under low outlier ratio, however, the performance degrades

dramatically as the outlier ratio increasing to 10%. Oppositely,
Lotus is much more tolerant to outliers, and model updating
can significantly improve the accuracy of estimates. Overall,
we find that Lotus is robust to not only the number but also
the randomness of outliers.

VI. RELATED WORK

Privacy-preserving data aggregation problems have been
widely investigated in the literature. Most privacy-preserving
aggregation methods, however, only focus on calculating sim-
ple aggregation functions such as sum, mean and max/min,
which cannot be used for privacy-preserving regression esti-
mation directly. Privacy-preserving outlier detection has been
investigated in distributed systems [9]. Most methods deal with
distanced-based outliers. However, the definition of outliers in
regression is much more complex. Perturbation technologies
are widely used for privacy protecting, where random noises
are used to cover up private data. PoolView [17] protects
privacy of stream data in participatory sensing. The core idea
is to add the random noise with known distribution to raw data,
after which a reconstruction algorithm is used to estimate the
distribution of original data. The disadvantage of perturbation-
based schemes is that additional noises introduced make
regression estimates inaccurate.



(a) Airfoil self-noise (b) Concrete compressive strength (c) Synthetic

Fig. 5. Difference from the optimal model vs. outlier ratio with random noise.

Studies on constructing an accurate regression model with
privacy-preserving are more related to this work. M-PERM
is a mutual privacy-preserving regression modeling approach,
where a series of data transformation and aggregation op-
erations are operated at the participatory nodes to preserve
data privacy [5]. However, it should be emphasized that these
methods are all based on the LS estimator. The correctness of
them relies on the assumption that original data are collected
correctly without gross errors, i.e., outliers. Any incorrect ob-
servations may breakdown the estimation, since LS estimator
is very sensitive to outliers. PURE, an outlier tolerant privacy-
preserving regression scheme, proposed by S. Chang et al.
is most relevant to our work [10]. However, PURE does not
notice the opportunistic and non-stationary features of sensory
data, and cannot deal with model updating. Furthermore, in
PURE, model estimation requires a number of iterations,
which is undesirable on energy-constrained mobile devices,
due to high communication and computation cost.

VII. CONCLUSION

In this paper, we have introduced Lotus, a scheme for
regression and model updating with low-quality, private, op-
portunistic and non-stationary sensory data in MCS. Lotus
provides strong protection on the confidentiality of raw sensory
data by masking aggregated result with cancellable one-time
pads, and by blind optimizing of ‘safe’ subset with a blocking
scheme, and achieves good model accuracy under very low
quality and non-stationary data, through identifying suspected
outliers and withdrawing outdated observations during mod-
el updating. Both analysis and extensive simulation results
demonstrate the efficacy of Lotus. In future work, we will
build a prototype system of MCS in our campus, and further
examine the feasibility of Lotus under real deployment.
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