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ABSTRACT
Smartphones with dual cameras are increasingly popular due to the
need of supporting 3D vision. The depth information is critical for
3D vision. However, the two cameras on a smartphone are too close
to accurately estimate the depth information especially for objects
beyond two meters. In this paper, we propose an innovative system,
called HyperSight, to estimate the depth information of objects
using a dual camera smartphone. HyperSight realizes a virtual long-
baseline stereo vision rig by having a user to move the phone in the
air. The phone movement is continuously tracked and estimated
using the short-baseline dual camera seeing nearby objects. We
implement HyperSight as software on a Commercial-O�-The-Shelf
(COTS) smartphone and conduct real-world experiments. The re-
sults show that when measuring feature-rich objects at a distance
of �ve meters, HyperSight achieves a mean depth error of 6cm,
which is up to 10⇥ and 18⇥ improvement in the accuracy compared
with the stereo vision system using the native dual cameras and
the Measure app based on ARKit 1 on mobile devices, respectively.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Mobile devices.
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1 INTRODUCTION
Motivation. Smartphones with dual cameras on the back are gain-
ing great popularity in recent years. Though this trend is not com-
pletely ubiquitous yet, it is well on its way. For example, with a
wide-angle lens and a telephoto lens, iPhone since 7 Plus is able
to o�er optical zoom and background blur; Huawei P9 and higher
version smartphones equip one RGB camera and another mono-
chrome camera, and combine the images together with algorithms
for a better picture. As the original purpose of the extra camera is to
bring astounding mobile photography, this requires a short separa-
tion between the cameras. With dual cameras, however, it has great
potential to let a phone have an understanding of its surroundings
by getting the depth and 3D coordinate information about what it
sees or where it locates, breeding new mobile applications, such
as indoor navigation [2], object recognition and tracking [10], and
Augmented Reality (AR) services [1] [7]. For instance, a user can
measure the size or establish a 3D model of an object of interest far
from her with her phone.

However, getting depth and 3D coordinate information of sur-
roundings on a smartphone is challenging due to the following
requirements. First, it requires high accuracy in a large range. Due
to the short separation, these native dual cameras can not accu-
rately estimate the depth of distant objects. The 3D vision region
with such cameras is quite short as illustrated in Figure 1(a). Second,
it should be implementable on COTS smartphones and do not rely
on other dedicated sensors. Third, it should be computationally
tractable. Real-time response and power consumption are critical
for resource-constrained mobile devices.

In the literature and industry, there have been a number of
schemes in obtaining depth or 3D coordinate information on mo-
bile devices. The Simultaneous Localization and Mapping (SLAM)
technique [16] has been implemented on both Android and iOS
platforms, such as Wikitude [25] and Kudan [15]. More advanced
SLAM techniques like Google ARCore [7] and Apple ARKit [1]
can identify walls and objects in the environment. These schemes
combine inertial measurement unit (IMU) sensors and one single
camera to track the phone movement and derive the 3D informa-
tion of an environment. The derived information is normally not
accurate due to large IMU sensor reading errors. With dual cameras
available on a phone, classic stereo version algorithms [23] [11]
can be used. However, such schemes need a large distance between
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Figure 1: Illustration of e�ective 3D vision regions with na-
tive dual cameras and with HyperSight, respectively.

the two cameras, which cannot be easily deployed on smartphones.
Another category of schemes in 3D reconstruction [4] [22] lever-
age dedicated sensors such as RGB-D cameras and time-of-�ight
laser sensors, which are not available on COTS smartphones. Some
research studies attempt to get 3D maps using a single camera [19]
[20]. However, it is di�cult to get 3D information in absolute scale
with only one camera.

Our approach. In this paper, we propose HyperSight, a system
to improve the depth estimation accuracy for far away objects using
o�-the-shelf dual-camera smartphones. Due to the extremely short
baseline between the dual cameras, it is very di�cult to accurately
measure the depth of objects far from the phone using classic stereo
vision algorithms. The core idea of HyperSight is to constitute a
virtual long-baseline stereo vision system by having a user to casu-
ally slide a phone with hand in the air. During the slide operation,
images are continuously taken by the dual cameras and processed
to track the motion of the phone. After getting the moving distance
and orientation of the phone, the e�ective 3D vision region of the
phone is largely extended through a virtual long-baseline stereo
vision system, as illustrated in Figure 1(b).

Challenges and contributions. The �rst challenge is how to
get the precise transformation (i.e., the translation and rotation) of
the phone when it is moving. In traditional stereo vision systems, a
native stereo vision is formed by two images simultaneously taken
by two cameras, and the relationship between the two cameras
is �xed and can be estimated via camera calibration. However, in
HyperSight, a virtual stereo vision is formed by the two images
taken by the same camera (e.g., one of the dual cameras, referred to
as the reference camera) before and after a hand movement. Hand
movement is unpredictable and cannot be estimated in advance,
which makes it challenging to apply the existing work.

To address this challenge, we develop a novel approach inspired
by the near-far diversity phenomenon of stereo vision (i.e., the depth
resolution is low for distant keypoints but very high for nearby
keypoints). We use a native stereo vision captured by the dual
cameras to calculate the 3D coordinates of nearby keypoints. Then,
with a su�cient number of such keypoints appearing in a virtual

stereo vision, the corresponding phone transformation constituting
this virtual stereo vision can be accurately derived.

The second challenge is the contradiction between the long-
baseline requirement for ranging distant objects and that only short
translations of the phone can be accurately estimated. Asmentioned
above, to have a su�cient number of nearby keypoints appearing
in a virtual stereo vision, the corresponding transformation has to
be short to have enough overlapping view �elds.

To tackle this challenge, we automatically divide a long sliding
operation into multiple short segments. The transformation of each
segment, referred to as a sub-transformation, is accurately estimated
and aggregated to derive the overall phone transformation after
the slide.

We implement a prototype system based on Google Pixel 3 XL, a
COTS Android smartphone. In our implementation, HyperSight is
built on the OpenCV3 library and leverages a 8-core CPU to speed
up image processing. HyperSight is easy to use and can be used
as a building block for other AR applications. We evaluate the per-
formance of HyperSight through intensive real-world experiments
in di�erent environments. The results show that with the help of
feature-rich nearby objects, HyperSight can achieves a mean depth
estimation error of about 6cm for feature-rich distant object at a
distance of �ve meters, which is up to 10⇥ and 18⇥ more accurate
than the stereo vision system using the native dual cameras and
the Measure app based on ARKit 1 [1], respectively.

In summary, our major contributions consist of (i) a novel al-
gorithm to accurately estimate the depth of an object using dual
cameras on a smartphone, (ii) a prototype implementation, and (iii)
a systematic evaluation that shows the high accuracy of HyperSight.

2 PRELIMINARIES
2.1 Camera Model
A general camera model can be characterized by a simple pinhole
camera model plus with lens distortions. In the pinhole camera
model, as illustrated in Figure 2, a point Q in the physical world is
projected through the pinhole, referred to as the projection center,
to a point q on the image plane. For the ease of representation, we
depict an equivalent virtual image plane in front of the pinhole
plane. Given the coordinates of point Q in the world coordinate
system, (X ,Y ,Z ), if the camera coordinate system coincides with
the world coordinate system, the pixel location of the projected
point q on the virtual image plane, (x ,�), satis�es the following
equations:

x = fx ·
X

Z
+ cx , � = f� ·

Y

Z
+ c� , (1)

where fx and f� are the focal length represented in the units of
pixels along the x� and ��axis of the image plane and cx and c�
are the possible displacement between the image center and the
foot point. These are called the intrinsic parameters of the camera.

In case where the camera coordinate system does not coincide
with the world coordinate system, an cartesian 3D point in world
coordinatesQw can be transformed in camera coordinatesQc via a
rotation and translation:

Qc = R (Qw �Cw ) or Qc = RQw + t , (2)



HyperSight: Boosting Distant 3D Vision on a Single
Dual-camera Smartphone SenSys ’19, November 10–13, 2019, New York, NY, USA

Image plane Pinhole plane Virtual image plane

Q = (X, Y, Z)

q 

q = (x, y)

Optical 
axis

Projection 
center

f
Z

Foot 
point

f

Image 
center

(cx, cy)

y
x

z

Figure 2: The fundamental pinhole model of a camera.

where Cw is the projection center in world coordinates; R is a
3 ⇥ 3 rotation matrix describing the orientation of the camera in
space and t = �RCw is a translation vector denoting the translation
between two coordinate systems. The R and t are called the extrinsic
parameters of the camera.

In practice, a lens instead of a small pinhole is used to focus a
large amount of light on a point, but it comes at the cost of introduc-
ing radial and tangential distortions. The radial distortion occurs
because rays farther from the center of the lens are bent more than
those closer from the center with a spherical lens. Such distortion
is zero at the optical center of the imager and increases as it moves
toward the periphery, which can be characterized and corrected by
the �rst few terms of a Taylor series expansion according to the
following equations:

xcorrected = x (1 + k1r2 + k2r4 + k3r6)

�corrected = � (1 + k1r2 + k2r4 + k3r6)
(3)

where (x ,�) is the original location of the distorted point and
(xcorrected,�corrected) is the new location as a result of the correc-
tion; r is the distance from the point to the optical center; k1, k2
and k3 are three distortion coe�cients.

The tangential distortion is due to manufacturing defects result-
ing from the lens not being exactly parallel to the image plane,
which can be characterized and corrected by the following equa-
tions:

xcorrected = x + [2p1� + p2 (r2 + 2x2)]

�corrected = � + [p1 (r2 + 2�2) + 2p2x]
(4)

where p1,p2 are two distortion coe�cients.
Both the camera’s intrinsic and extrinsic parameters and the

distortion parameters can be estimated through a process of camera
calibration.

2.2 Near-far Diversity with Stereo Vision
In binocular stereo vision, keypoints in two images taken at the
same time from two separate cameras are matched and the di�er-
ences are analyzed to yield depth information.

For example as illustrated in Figure 3, we assume that the image
planes of two identical and undistorted cameras are exactly coplanar
with each other and the optical axes of those cameras are parallel
and a known distance apart. We further assume the images are

Projection center

Optical axis Optical axis
Q

Right virtual 
image plane

Left virtual 
image plane

B Projection center

Zxl xr

f fxr

Figure 3: Derivation of the depth Z with a simpli�ed binoc-
ular stereo rig of equal focal lengths.

row-aligned and that every pixel row of one camera aligns exactly
with the corresponding row in the other camera. In this simpli�ed
case, if a point Q in the physical world is viewed in the left and the
right images at (x l ,�l ) and (xr ,�r ), respectively, the depth Z can
be derived by using similar triangles. In speci�c, we have

Z =
B · fx
x l � xr

, (5)

where B, referred to as the baseline, is the distance between both
cameras; fx is the focal length as de�ned in (1); d = x l � xr is
referred to as the disparity between both views. Note that if the
dual cameras have distinct focal lengths, which is often the case for
the dual cameras on smartphones, the depth Z can also be easily
derived.

From the above equation, it can be seen that the depth is in-
versely proportional to the disparity between views, i.e., the further
the object is the smaller the disparity would be, which makes such
stereo vision systems have high depth resolution only for objects
relatively near the cameras but very low depth resolution for ob-
jects far away from the cameras, due to the rounding errors when
measuring the disparity in pixels. We refer to this phenomenon
as the near-far diversity of depth estimation in binocular stereo
vision. To verify this, we measure the depth of objects of di�erent
ranges with our experimental binocular stereo module (see §5.1)
with a short baseline of about 2.5cm, and plot the cumulative distri-
bution functions (CDFs) in Figure 4. It can be seen that the error
of measurement dramatically increases with the depth of objects.
For example, with a 90% precision, the depth error is about 5.8% for
objects of 1m away while that drops to about 29.4% for objects of
7m away.

If we increase the baseline of such a binocular stereo rig with all
other settings unchanged, the the disparity between views would
also increase, which leads to better depth estimation accuracy. Un-
fortunately, the dual cameras on smartphones are designed mainly
for special photo e�ects but have more severe near-far diversity
problem for depth estimation with a very short baseline (e.g., nor-
mally less than 1.5cm), resulting in very inaccurate results for rang-
ing distant objects.
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Figure 4: CDF of depth estimation errors with short baseline
stereo vision.

3 SYSTEM DESIGN OF HYPERSIGHT
3.1 Overview
HyperSight is a depth estimation system built on smartphones with
dual cameras, which overcomes the short baseline issue for ranging
far objects. The core idea is to constitute a virtual long-baseline
stereo vision rig by moving such a phone in the air. To this end, the
main challenge is to estimate the extended baseline of this virtual
stereo vision rig in very high accuracy. In HyperSight, we solely
rely on the dual cameras and the distance diversity of seen objects
to tackle this challenge.

Figure 5 illustrates the operation �ow of HyperSight. To use
HyperSight, a user needs to hold a dual-camera phone, selects a
target object on the device screen (e.g., the �ve-pointed star in
Figure 5), and freely slides the device in the air along the indicated
direction displayed on the screen while both cameras conduct video
recording. As a result, a consecutive series of frames (denoted as
Fi , i = 1, . . . ,k is the index of a frame) are generated. Each frame
contains two images, denoted as F li and F ri , taken by the two cam-
eras, respectively. Being aware of the near-far diversity problem
in stereo vision, HyperSight leverages nearby objects seen by the
dual cameras to continuously tracks the translation (e.g., tj ) and
rotation (e.g., Rj ) of the phone between two frames (e.g., from FDj
to FMj+1). Then the overall geometric transformation of the phone

y
x

z

R1, t1 ...

. . .

F1 F2 Fm Fk

Nearby 
objects

Far target object

Rm, tm

Arm movement
Indicated path

(F1) (Fm+1)

Figure 5: Illustration of HyperSight’s operation work�ow.
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Figure 6: The system architecture of HyperSight.

can be estimated by accumulating all intermediate translations and
rotations. Finally, images taken before the and after the overall
transformation (e.g., images taken at F1 and at Fk ) and the overall
transformation information are used to estimate the depth of target
object.

The architecture of HyperSight, illustrated in Figure 6, consists
of four main components as follows:

O�line Stereo Calibration. Stereo calibration estimates the
intrinsic and distortion parameters of each camera and �nds the
rotation matrix and translation vector between the two cameras.
Such parameters are �xed once the dual cameras are manufactured
and therefore stereo calibration only needs to be conducted once
for future use.

Image Preprocessing. During video recording, each image
taken by both cameras is converted to gray scale and undistorted
according to the distortion parameters derived from the camera
calibration. Then distinctive keypoints that are invariant to loca-
tion, scale and rotation, and robust to a�ne transformations and
changes in illumination are identi�ed. All subsequent operations
are then based on extracted keypoints.

PhoneTransformationPerception.This component estimates
the transformation of the phone in 3D space caused by the slide
operation of the user. To derive accurate transformation informa-
tion, the slide is automatically broke into smaller segments and
the sub-transformation of each segment is respectively estimated,
according to those common nearby keypoints in images taken at
both ends of a segment. Finally, the overall transformation in terms
of phone translation and rotation is perceived by splicing each
sub-transformation.

DepthEstimation:Given the transformation information about
the slide operation, keypoint matching is conducted to identify com-
mon far keypoints on the two images taken before and after the
slide, and the depth of such keypoints can be calculated according
to the stereo vision geometry.

3.2 O�line Stereo Calibration
It is fundamental to know the intrinsic and distortion parameters
of each camera as introduced in the camera model. In addition,
cameras will almost never be exactly aligned in the frontal paral-
lel con�guration depicted in Figure 3. Therefore, it is also neces-
sary to acquire the relative rotation and translation between the
twocameras. To calibrate such parameters, a user (or the phone
manufacturer) needs to take a few images of a “chessboard" (i.e., a
planar object with a pattern of alternating black and white squares)
at various orientations with the dual cameras.
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We �rst adopt the classic single-camera calibration approach [27]
to separately estimate the intrinsic and distortion parameters of
each camera. In principle, three chessboard interior corners yielding
six constraints (because each point on the image has both an x and
a � coordinate) are all that is needed to solve the �ve distortion
parameters. Therefore, one image of a chessboard is all that we need
to compute the distortion parameters. As the chessboard moves in
each image, we need to solve four invariant intrinsic parameters and
six extrinsic parameters for each image.With the planar chessboard,
because four points are su�cient to express a planar perspective
view, we get eight constraints from each image. Thus, two images
of a 3 ⇥ 3 chessboard are the minimum that could solve the single-
camera calibration problem. In practice, for high-quality results, we
take twenty images of a 8⇥9 chessboard. Finally, all the parameters
are re�ned by minimizing the re-projection error of all chessboard
corners using a robust Levenberg-Marquardt iterative algorithm.

To get the relative rotation R⇤ and translation t⇤ between the
two cameras, given the intrinsic and extrinsic parameters of both
cameras for each image, a chessboard corner point P can be put in
the camera coordinates P l = RlP + t l and Pr = Rr P + tr for the
left and right cameras, respectively. Because P l = (R⇤)T (Pr � t⇤),
we have R⇤ = Rr (Rl )T and t⇤ = tr � R⇤t l . We then take the mean
values of R⇤ and t⇤ over all chessboard corner pairs to mitigate
image noise and rounding errors.

3.3 Image Preprocessing
To compare di�erent images taken by the dual cameras at the same
time or at di�erent time, we need to preprocess each image to
extract keypoints of interest. More speci�cally, each image is con-
verted to gray scale for the ease of calculating the image gradients
and undistorted according to (3)(4) and the calibrated distortion
parameters.

In HyperSight, we adopt the SIFT algorithm [18] to identify dis-
tinctive keypoints that are invariant to location, scale and rotation,
and robust to a�ne transformations and changes in illumination
for each image. As a result, keypoints are localized as maxima and
minima of the result of di�erence of Gaussians function applied in
scale space to a series of smoothed and resampled images. For each
keypoint, the gradient magnitude and direction is calculated around
the point, and the dominant orientation is assigned to this keypoint.
Moreover, a keypoint descriptor is calculated and associated with
each keypoint, which is a vector of 128 values, describing the gradi-
ent orientation distributions of 16 surrounding blocks of 4 ⇥ 4 size.
With keypoint descriptors, keypoints between di�erent images can
be matched by identifying the smallest Euclidean distance of their
descriptors. The RANSAC algorithm [6] can be employed to remove
false matching.

3.4 Phone Transformation Perception
The key component in HyperSight is to perceive the transformation
caused by the user’s slide operation. One straightforward scheme
is to estimate the phone motion and rotation using inertial sensors,
which are power e�cient and readily available on smartphones. For
example, an intuitiveway to estimate themoving speed of the phone
along one axis is to calculate the integral of linear acceleration along
that axis over time. In addition, according to our prior work [8] [26],

(a) Translation estimation error us-
ing 3D accelerometer

(b) Rotation estimation error using gy-
roscope

Figure 7: Large estimation errors are produced when using
inertial sensors to estimate phone transformation.

there is accumulative error of integral, which is approximately a
linear function of time. Given the fact that the true velocity at both
ends of a slide is zero, the linear model of errors can be derived and
utilized to infer accuratemoving speed. As a result, the displacement
between any two time instants during a slide can be derived by
taking the integral of corrected moving speed over time. Similarly,
the rotation of the phone can be estimated by calculate the integral
of angular speed readings from the gyroscope over time. Figure 7(a)
and (b) depict the translation and rotation estimation errors using
above scheme, respectively. The ground truth of sliding distance is
obtained by sliding an experiment phone on a slider and the ground
truth of rotation degrees is obtained by rotating the phone on a
turnplate. It can be seen that mean translation estimation errors
are over 10% and the mean rotation errors are over 0.8 degree in all
cases. Consequently, due to sensor reading errors, it is very hard
for the above scheme to meet the high accuracy requirement for
phone transformation estimation.

In contrast, HyperSight solely relies on the following two com-
puter vision techniques to get accurate phone transformation esti-
mation.

3.4.1 Slide Configuration and Segmentation. One major concern is
how far a user should slide a phone so as to achieve the desired depth
estimation accuracy? We have the following observation.

Observation 1. The depth estimation error can be reduced to
any desired ratio as long as the baseline of the dual cameras can be
su�ciently prolonged.

Recall that the disparity of a keypoint between images is mea-
sured as d = x l � xr (see Figure 3), where x l and xr are in units of
pixels. Due to image noise and digitization error, the disparity is
accurate only to within one pixel. Assume that Z 0 is the estimated
depth when the measured disparity d 0 is one pixel deviated from
the ground truth d , i.e., d 0 = d ± 1, according to (5), we have

Z

Z 0
= 1 ± 1

d
= 1 ± Z

Bfx
. (6)

This means that, given fx (note that cameras on smartphones usu-
ally have an invariant lens and focal length due to the restricted
size) and a desired depth estimation error ratio � , i.e., 1/d 6 � , B
should be no less than Z/� fx .
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Figure 8: Phone transformation estimation accuracy versus
the number of keypoints used in solving the PnP problem.

Implication: From Observation 1, it seems that the longer the
user slides the phone, the better the depth estimation results would
be. The lower bound of the sliding distance is Z/� fx .

However, the above observation is only true when B and the
rotation of the phone can be accurately estimated after the slide
operation. We investigate how to accurately estimate the transfor-
mation of the phone and have the following observation.

Observation 2. The phone transformation can be accurately es-
timated when su�cient common nearby keypoints exist before and
after a slide operation.

As illustrated in Figure 5, given a well calibrated dual cameras,
the 3D coordinates of a common keypoint on the two images of
one frame can be established with the native stereo vision. If a set
of such n keypoints are also seen on one of the images of another
frame, the transformation of the phone between the two frames
can be estimated by solving a Perspective-n-Point (PnP) problem
(detailed in § 3.4.2). Due to the near-far diversity problem in stereo
vision, only nearby keypoints can be used and their 3D coordinates
can be accurately estimated. In addition, as the number of keypoints
increases in solving the PnP problem, the accuracy of the trans-
formation estimation also increases. For example, we examine the
transformation estimation accuracy through simulations, where
our experimental binocular stereo module sees 1,500 randomly gen-
erated points (<2m away from the module) before and after a group
of random transformations. Figure 8 plots the mean rotation and
mean translation estimation errors as functions of the number of
keypoints used in solving the PnP problem.

Implication: To see su�cient number of common nearby key-
points, it is evident that the dual cameras cannot be slid too far,
which contradicts Observation 1. In HyperSight, this contradic-
tion is resolved by breaking a long-distance slide into small seg-
ments, estimating the transformation of each segment (called sub-
transformation), and splicing all sub-transformations to derive the
transformation of the slide.

Observation 3. The transformation estimation error gradually in-
creases as the number of sub-transformations increases due to residual
camera calibration error.

As camera calibration error exists, systematic errors are accumu-
lated each time a sub-transformation is estimated and aggregated.
In summary, as illustrated in Figure 9(a), the depth estimation error
dramatically decreases and then gradually increases as the sliding
distance keeps increasing. We measure distinct target objects of
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Figure 9: Relation between the sliding distance and the over-
all depth estimation accuracy.

5m away from our prototype system in di�erent scenarios. Figure
9(b) shows that the experimental measurement is highly consistent
with the simulation result. It can be seen that, given a target sce-
nario, the optimal sliding distance and slide segmentation scheme
exist. However, it is hard to �nd the optimal slide con�guration and
segmentation scheme because the target scenario information, the
residual camera calibration error, and how a user would move the
phone are unknown.

In practice, HyperSight adopts a threshold-based scheme. Specif-
ically, to determine the sliding distance, the sets of keypoints on
image F l1 and F

r
1 , denoted as FF l1 and FF r1 , respectively, are matched

and the depth information of matched keypoints is estimated with
the native stereo vision according to (5). According to Observa-
tion 1, given the average depth of keypoints on the target object,
denoted as Z 0, the sliding distance can be determined as Z 0/� fx ,
where � is the desired error threshold. To segment the slide, the
set of nearby keypoints on the beginning frame of a new segment
are �rst identi�ed with the native stereo vision. We denote the
beginning frame of the ith segment as FDi (e.g., FD1 = F1 as illustrated
in Figure 5,) and the set of nearby keypoints found on FDi as NFDi .
Then, the ending frame of the ith segment, which is also the be-
ginning frame of the i + 1th segment FMi+1, is the frame that has
the maximum frame index such that at least � nearby keypoints
identi�ed in FDi can be found on the left (or the right) image of such
a frame through keypoint matching, i.e.,

Mi + 1 =max {x : FF lx \NFDi > � }. (7)

In this way, a slide can be continuously divided into segments and
estimated by aggregating all sub-transformations of each segment
(see §3.4.2) until the required distance Z 0/� fx is reached.

It should be noted that the slide is automatically segmented and
do not need a user to pause during the slide. In addition, HyperSight
do not have a rigid requirement on how the slide operation should
be conducted. In general, as images are taken during the slide
operation, it is satisfactory as long as the user controls the sliding
speed so that taped images are not blur until the required sliding
distance is reached. For instance, the user can choose an arbitrary
direction to start a slide operation in 3D space.

3.4.2 Sub-transformation Estimation and Splicing. As stated above,
given the beginning and ending frames of the ith segment, i.e., FDi
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and FMi+1, sub-transformation of the ith segment is estimated in the
following three steps:

1) Resolving the 3D coordinates of nearby keypoints in
one frame: Keypoints between the two images F lDi and F rDi of FDi is
matched, and their 3D coordinates in the coordinate system of the
left camera at frame FDi can be resolved according to the camera
model (2). The set of nearby keypoints, i.e.,NFDi , are then identi�ed,
if the depth of a keypoint is less than a distance threshold � . To
choose a � is a tradeo� between system usability and performance.
Speci�cally, a short distance threshold �nds less near objects to use,
i.e., poor usability while a large distance threshold leads to coarse
3D coordinate estimations, i.e., poor performance. In practice, we
select a distance threshold so that the errors is less than 2% when
using the native dual cameras for depth estimation.

2) Identifying commonnearbykeypoints in the beginning
and ending frames: Then, the common nearby keypoints are
found between image F lDi and F lMi+1 through keypoint matching.

3) Estimating sub-transformation: After that, given the 3D
coordinates of common nearby keypoints and their 2D projections
on image F lMi+1, the rotation and translation of the dual cameras
from FDi to FMi+1 can be estimated by solving a PnP problem. In
HyperSight, we adopt the EPnP algorithm [17] to solve the PnP
problem because of its high accuracy and low computational cost.
The key idea of EPnP is using four control points to represent all
input points, dramatically reducing the computation complexity.
We brie�y introduce the EPnP algorithm in the Appendix. In gen-
eral, as the number of keypoints increases, the performance of
EPnP improves. Finally, we adopt bundle adjustment (BA) [24] to
adjust the 3D coordinates of all input points and the estimated sub-
transformation (i.e., the estimated rotation Ri and the translation
ti ) to minimize the re-projection error.

With known sub-transformations, Ri and ti , 1 6 i 6 m, the
transformation of the slide R and t can be derived as

R =
mY

i=1
Rm+1�i

t = tm +
m�1X

i=1
(

mY

j=i+1
Rm�j+i+1ti ).

(8)

With R and t , the depth of the target object can be estimated by
matching the keypoints of the target object on image F l1 and F

l
k and

calculating the depth of all matched keypoints with stereo vision
geometry.

4 IMPLEMENTATION
Hardware: Though there are a rich set of COTS smartphone mod-
els that are equipped with dual cameras, we implement a prototype
of HyperSight on Google Pixel 3 XL, running Android 9 Pie which
provides the Multi-camera API to obtain simultaneous images from
the front dual cameras. The smartphone has a 2.8GHz 8-core CPU,
4GB memory and an Adreno 630 GPU. The dual cameras have a
short baseline and the left and the right cameras have a �xed opti-
cal focal length of 2.03mm and 2.97mm, respectively. Figure 10(a)
depicts our prototype implementation and the operation screen.

Dual-camera 
smartphone

1.616cm
left camera right camera

(a) HyperSight implemented
on an Android phone

Dual camera module

2.5cm

20.5cm

(b) Native stereo vision system using
a dual camera module with adjustable
baselines

Figure 10: (a) Our prototype implementation; (b) Native
stereo vision system developed for comparison.

Software:We implement HyperSight as an app using the Multi-
camera API introduced with Android Pie to access the dual camera.
More speci�cally, we turn o� the auto focus feature and set the focal
distance of both cameras to in�nity. Images can be taken by both
cameras with a wide set of resolutions, ranging from 3264⇥2448 pix-
els to 176⇥144 pixels. For the ease of performance comparison with
a native stereo vision system, images are taken with a resolution
of 1280⇥720 pixels at 5fps. We �rst run the o�ine camera calibra-
tion module for the dual cameras. After calibration, the intrinsic
parameters (fx , f� , cx , c� ) of the left and the right cameras are
(724.0586, 725.2506, 655.3243, 361.0285) and (1059.9694, 1062.4389,
650.7577, 363.0094) in units of pixels, respectively. The baseline of
the dual cameras is 1.6163cm. The relative rotation and translation
between the two cameras are also calibrated. With this resolution,
we conduct depth estimation using the native dual cameras and
learn an appropriate distance threshold � = 2.5m with a 95% con�-
dence interval. We build the OpenCV3 library for basic algorithms
including camera calibration, keypoint extraction and matching,
and the EPnP algorithm.

It should be noted that it is natural to operate HyperSight with
real dual cameras. It would be a little bit awkward when operating
HyperSight with front dual cameras as a user cannot see the screen
when he/she slides the phone.

5 PERFORMANCE EVALUATION
5.1 Methodology
We �rst investigate how system parameters a�ect the performance
of HyperSight and then examine whether the type and distance of
nearby and far objects also change the result of depth estimation
in our laboratory. With parameters properly con�gured, we then
conduct real-world experiments in two common indoor environ-
ments, i.e., a campus co�ee shop and a supermarket. We recruit 10
volunteers, i.e., three females and seven males, aged from 18 to 43,
including �ve undergraduate students, four graduate students, and
one faculty member, as HyperSight operators in all experiments.
Each volunteer operates the sliding maneuvers based on his/her
own preference.



SenSys ’19, November 10–13, 2019, New York, NY, USA Zifan Liu, Hongzi Zhu, Junchi Chen, Shan Chang, and Lili Qiu

1 1.5 2 2.5 3 3.5 4

α (%)

0
0.1
0.2
0.3
0.4
0.5
0.6

E
rr

o
r 

(m
)

Figure 11: E�ectiveness of � .

1 2 3 4 5 6 7 8 9 10

δ (100 points)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

E
rr

o
r 

(m
)

Figure 12: E�ectiveness of � .

For comparison, we also implement a native stereo vision system
using a commercial dual camera module as shown in Figure 10(b),
which supports the UVC protocol to obtain simultaneous images
from both cameras and has a variable baseline ranging from 2.5cm
to 20.5cm. Images can be taken by both cameras with a resolution of
1280⇥720 pixels. After calibration, the intrinsic parameters (fx , f� ,
cx , c� ) of the left and the right cameras are (1121.3967, 1121.5880,
777.1217, 294.9875) and (1131.5911, 1131.2504, 547.7323, 330.4111)
in units of pixels, respectively. The relative rotation and translation
between the two cameras are recalibrated each time we change the
baseline between both cameras. We compare HyperSight with the
following schemes:
• Short-baseline stereo vision (SSV): In this scheme, we
take a frame of two images with the dual camera module
calibrated with a baseline of 2.5cm. Images are preprocessed
andmatched keypoints are directly applied to naive stereo vi-
sion for depth estimation. BA is also used to further improve
depth estimation accuracy.
• Long-baseline stereo vision (LSV): In this scheme, we
conduct similar operations as in the short-baseline stereo
vision, except that the baseline of the dual camera module is
set to the largest distance of 20.5cm and recalibrated.
• ARKit Measure app: ARKit [1] is a set of software devel-
opment tools based on SLAM technology to enable devel-
opers to build augmented-reality apps for iOS. Measure is
an ARKit application allowing users to measure objects in
the real world using a single camera on iOS device. We use
the Measure app based on ARKit 1 to measure a tape on the
ground in the corresponding experiment environment with
an iPhone 7.
• ORB-SLAM2:ORB-SLAM2 [21] is a real-time SLAM system
that computes the camera trajectory as well as a sparse 3D
reconstruction map with true scale. Its stereo version takes a
series of stereo recti�ed images as input. The system extracts
keypoints in stereo input with ORB, an e�cient alternative
to SIFT, and provides loop closure and re-localizing of the
camera in real time.

We consider the metric of accuracy, de�ned as the di�erence
between the estimated depth of a target object and the ground
truth. It is not straightforward, however, to get the ground truth for
two reasons. First, as HyperSight needs a user to slide the phone
and estimates the depth of a far object relative to the image plane
of F l1 and F lk , the actual location of the baseline B is uncertain.
Second, for an arbitrary object, there would be many keypoints of
di�erent depth associated with the object on images, i.e., the depth
or size of the object. To better obtain the ground truth, we manually
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objects.
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select those keypoints identi�ed on F l1 and F lk that locate on the
front surface of the object and calculate the depth of the object as
the mean depth estimation of these front keypoints. The ground
truth is measured from a laser range �nder to a target object at the
estimated center location of a slide operation.

5.2 Parameter Con�guration
In this experiment, we study the e�ectiveness of system parameters,
i.e., the desired error threshold � and the number of common nearby
keypoints between frames � . We consider two target objects �ve-
meter away from an operator and use several packing boxes one-
meter away from the operator as nearby objects. First, we set � =
1000 points and vary � from 1% to 4% with an increment of 0.5%.
For each pair of � and � , we let each operator conduct HyperSight
to measure the depth of each target for twenty times.

Figure 11 plots the average estimation errors as a function of � .
It can be seen that in general, HyperSight can achieve stable and
low depth estimation error, i.e., < 4%, under di�erent � values. In
addition, as � increases (i.e., the corresponding required sliding
distance decreases according to B / Z/� fx ), the estimation error
�rst declines because the accumulative transformation estimation
error gets negligible, and then rises because the baseline extension is
also reduced. As a result, the estimation error reaches the minimum
at � = 2%.

Then, we �x � = 2% and vary � from 100 points to 1000 points
with an increment of 100 points. We repeat the experiment. Figure
12 plots the mean estimation error as a function of � . Similar results
are observed as � increases and the minimal average (i.e., 2.2%) is
achieved when � = 700. The reason is that, as � increases, sub-
transformations can be better estimated but the number of sub-
transformations also increases. The result is highly consistent with
the analysis of Observation 2 and 3.

In practice, the optimal con�guration of � and � is device de-
pendent and can be easily learned by measuring a known object
through cross search.

5.3 Impact of Nearby Objects
In this experiment, we study how the types and distances of nearby
objects a�ect the performance of HyperSight. We compare two
groups of nearby objects, i.e., a pile of books and a sets of bottles
and packing boxes. We then measure the depth of a printer as the
reference object in our laboratory, where the printer is set �ve
meters away from the phone operator and we vary the distance of
each set of nearby objects from one meter to three meters. Then
we set � = 2% and � = 700 and let each operator run HyperSight
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Figure 15: Impact of target objects.

and the laser range �nder to measure the depth of the printer for
twenty times, respectively. The average required sliding distance is
22.3cm.

Figure 13 plots the average depth estimation error as a function
of nearby object types and distances. It can be seen that, given the
same distance, the depth estimation error is slightly smaller when
using the set of books as the nearby objects because more keypoints
can be found with books. Moreover, in this setting, it is clear that
the estimation errors reaches the minima when the nearby objects
are located at a distance of two meters. The reason is two-fold. On
one hand, when nearby objects are very close, HyperSight breaks
a slide into more segments in order to satisfy the requirement of
� , which leads to larger accumulative transformation estimation
error due to the residual camera calibration error. On the other,
when nearby objects are relative further, though the accumulative
transformation estimation error is reduced, the estimation accu-
racy of each sub-transformation also drops due to inaccurate 3D
coordinate estimation with the native dual cameras (see §3.4.2).

We further examine the impact of availability of nearby objects
(or nearby keypoints) to the system performance. Speci�cally, we
use the same con�guration of � and � . We use the pile of books set
at a distance of 2 meters from operators as nearby objects, and use
the printer as target object set at �ve and seven meters away from
operators, respectively. Similarly, we let operators to measure the
depth of the printer except that we randomly select the number of
available nearby keypoints used in the algorithm, ranging from 50
to 700 with an increment of 50.

Figure 14 plots the the mean depth estimation errors and the cor-
responding 90% con�dence intervals as a function of the number of
available nearby keypoints. It is clear to see that obtaining su�cient
nearby keypoints are key to the performance of HyperSight. When
there are insu�cient or even no nearby keypoints, HyperSight can-
not perceive the phone transformation accurately in terms of the
mean and the variance of depth estimation errors and therefore
could fail in distant 3D vision in such circumstances. For example,
when there are only about 50 common nearby keypoints available
for sub-transformation estimation, the mean depth estimation error
reaches 4.8% and 16.8% for objects at 5m and 7m away, respectively.

5.4 Impact of Far Objects
In this experiment, we study how di�erent target objects a�ect the
performance of HyperSight. We consider two target objects, i.e., a
planar poster and a cubic printer. We put a pile of books 2m away
from the operator as nearby objects and vary the distance of each
target object from 5m to 7m with an interval of 1m. Then we set

Figure 16: Real-world test venues: a co�ee shop (left) and a
supermarket (right).

� = 2% and � = 700 and let each operator run HyperSight and the
laser range �nder to measure the depth of both objects for twenty
times, respectively.

Figure 15 plots the average depth estimation error as a function
of target types and distances. It can be seen that the estimation
error rises as the distance of target objects increases. This is because
a far target object needs a long sliding distance. Given the same
nearby objects and � , the number of sub-transformations to be
aggregated increases, leading to larger phone transformation and
depth estimation errors. We can observe that the performance
of HyperSight is similar for di�erent target objects. In principle,
HyperSight only depends on the image quality and the number of
keypoints in the view �elds of the dual cameras and has nothing to
do with other factors of environments.

5.5 Real-world Experiments
We compared HyperSight with candidate schemes in two real-world
test venues, i.e., a campus co�ee shop and a supermarket as illus-
trated in Figure 10(b), where nearby objects can be easily found.
To be fair, we lower the image resolution of our prototype to be
the same as that of the native stereo vision system (i.e., 1280⇥720
pixels). In each environment, we randomly select a target object
and, for each operator, we change the facing direction from the
operator to the object for ten times. In each direction, we vary the
distance between the operator and the target object from 5m to
7m and let the operator run HyperSight and SSV, respectively, to
measure the depth of the target for �ve times. We repeat the pro-
cess to measure ten targets. For LSV, we change the baseline of the
dual camera module and recalibrate the camera before we conduct
similar measurements in each venue. For Measure app, we measure
a tape of di�erent lengths (i.e., 3m, 4m and 5m) on the ground with
rich wood texture for �fty times in each venue. For ORB-SLAM2, we
use the same sequences of dual images as input as HyperSight does
except that images are pre-recti�ed as required for ORB-SLAM2.
We derive the camera trajectory using both schemes and calculate
the depth of the same target keypoints for comparison.

Figure 17 depicts the CDFs of depth estimation errors using
HyperSight and the SSV for target objects in di�erent ranges. It is
evident that HyperSight dramatically improves the ability of short-
baseline dual camera device to range distant objects, achieving very
low errors of 2.4%, 4.2%, and 7.7% with a precision of 90% at the
distance of 5m, 6m, and 7m, respectively, which is up to 10⇥, 7⇥, and
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Figure 17: CDFof ranging errors using
HyperSight and SSV.
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Figure 18: CDFof ranging errors using
HyperSight and LSV.
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Figure 19: CDFof ranging errors using
HyperSight and Measure app.
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Figure 20: CDF of ranging errors using HyperSight
and ORB-SLAM2.

5⇥ better than SSV, respectively. Figure 18 plots the CDFs of depth
estimation errors using HyperSight and the LSV. It can be seen that,
compared with the LSV which has a similar baseline of most COTS
stereo cameras, HyperSight can achieve similar accuracy. It should
also be noted that the performance of HyperSight drops faster than
that of the LSV as the depth of targets increases. This demonstrates
the limitation of HyperSight (see §6). Figure 19 depicts the CDF of
measuring errors using HyperSight and the ARKit Measure app. It
can be seen that Measure, which uses one single camera and motion
sensors, cannot achieve accurate depth measurement. In contrast,
HyperSight utilizes a binocular system and demonstrates its e�cacy
in ranging far objects and achieves a maximum 18⇥ performance
gain at a distance of �ve meters, compared with Measure. Figure 20
depicts the CDF of measuring errors using HyperSight and ORB-
SLAM2. It can be seen that HyperSight outperforms ORB-SLAM2
which also uses stereo images. It can also be seen that ORB-SLAM2
also takes stereo images as input and can achieve better depth
estimation accuracy than Measure. The results demonstrate the
e�cacy of using nearby objects to help distant 3D vision on mobile
devices with a dual camera.

5.6 Computational Overhead
The main computational overhead of HyperSight steps from identi-
fying keypoints using the SIFT algorithm. In our implementation,

an image is processed on a single CPU core using the openCV li-
brary which provides heavily optimized image processing routines.
We process eight images simultaneously on the 8-core CPU and
therefore the runtime for each image is equivalently divided by
eight. We measure the total execution time for extracting keypoints
and their descriptors over 500 images of 1280⇥720 pixels, taken
from all three environments. The mean number of identi�ed key-
points on an image is over 980. The mean runtime for identifying
keypoints on an image using one core is 2.826 seconds and the
mean runtime for one phone transformation estimation is 0.488
second. In the prototype, the dual cameras take video recording
at 5fps (i.e., ten images with at most six of them required) and a
user should slide the phone slowly to guarantee the requirement of
� . In the future, we will consider to implement feature detection
algorithms on mobile GPUs [12] to speed up HyperSight and to
reduce the power consumption. It is also preferable to move such
computation intensive tasks to edge servers if available.

6 LIMITATIONS
In this work, we introduce how to utilize HyperSight to obtain the
depth information of objects. Indeed, HyperSight can resolve the
3D coordinates of far keypoints in the reference camera coordinate
system, which can be a building block for many appealing appli-
cations such as creating 3D object and room models, and phone
posture estimation.

Nevertheless, HyperSight also have the following four main lim-
itations. First, HyperSight needs to see nearby objects in order to
track the movement of the phone. This limits the usage scenarios of
HyperSight, e.g., in the center of an empty hall. Second, HyperSight
can be considered as an asynchronous camera array, and therefore
it �ts best in static scenarios where the target and most objects
are not moving. Third, due to the residual camera calibration er-
ror, the transformation of a slide operation cannot be accurately
estimated when the sliding distance is too long, which restricts
the maximal operational distance of HyperSight. Last but not least,
HyperSight requires both nearby objects and far objects to have
su�cient identi�ed keypoints, which further limits the usage of
HyperSight in the scenarios with plain colors and textures. These
limitations also direct our future work. As for the �rst limitation, in
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case there is no enough nearby objects, helping objects like people
can be temporally used.

7 RELATEDWORK
7.1 Development of stereo vision system
In [3], a classical stereo vision system is introduced. In that system,
extrinsic and intrinsic parameters of the two cameras are estimated
through calibration o�ine. Then after recti�cation and stereo cor-
respondence, depth information can be extracted from a pair of
images taken by the two cameras. The classical stereo vision system
is not applicable on smartphones because it requires a relatively
long baseline to guarantee accuracy. Okutomi et al [23] study the
e�ect of the length of baseline, and �nd a tradeo� between the
precision of distance estimation and the accuracy of stereo match-
ing. Based on their observation, they propose an algorithm that
combines multiple baseline stereo pairs to overcome the tradeo�
between accuracy and precision. However, the stereo pairs used
in their algorithm are taken by a camera moving laterally, and a
smartphone in hand is not able to get such pairs. Kawanishi et
al [11] develop a panoramic stereo system using six cameras and
a hexagonal pyramidal mirror. The key idea of their system is to
specially arrange the cameras and the mirror so that the cameras
have a �xed viewpoint virtually. Their system is hard to deploy on
COTS devices.

7.2 Methods of 3D reconstruction
A category of schemes use RDB-D cameras to get 3D structures of
objects or environments directly and reconstruct 3D scenes. Cui
et al [4] propose a method for object scanning using depth maps
taken from around an object with a time-of-�ight camera. The
key part of their work is to combine di�erent 3D super-resolution
techniques and take noise characteristics of the sensor into account.
For an antique head, the model reconstructed by their method
achieves a mean error of less than 1cm. Izadi et al [9] reconstruct 3D
scenes of indoor environments using Kinect, a structure-light based
camera. Their system utilizes depth information obtained from
Kinect to estimate the pose of the sensor and build 3D models of the
surrounding scene. Kerl et al [13] utilize dense depth information
to estimate the pose of the sensor and achieve a mean absolute
trajectory error of 3.4cm. These systems all require RGB-D sensors,
which haven’t been deployed on most of the COTS smartphones.

Another category of schemes attempt to reconstruct 3D scenes
with a single camera. MonoSLAM [5] builds probabilistic 3D map
with keypoints and utilizes Extended Kalman Filter (EKF) to update
system states including camera motion parameters and location
of keypoints. Their system uses only one single freely moving
camera as the input source and achieves real-time SLAM. Klein et
al [14] presents a method of camera pose tracking and mapping
in small AR workspaces. Compared to other SLAM systems, their
system uses denser but low-quality keypoints. ORB-SLAM [19]
uses Oriented FAST and Rotated BRIEF (ORB) detector to detect
keypoints and eliminates cumulative error by loop closing and re-
localization. Maps built with only one single camera are in relative
scale. Actually, one camera cannot get 3D information in absolute
scale without the help of other sensors.

8 CONCLUSION
In this paper, we have proposed HyperSight, an depth estimation
system on dual-camera smartphones. HyperSight overcomes the
low accuracy issue of using the native short-baseline dual cameras
to range a distant object, and hits an order of magnitude perfor-
mance gain comparing with the state-of-the-art single camera sys-
tem. HyperSight is implemented as software on COTS dual-camera
devices and requires no other specialized sensors.We believe Hyper-
Sight’s salient advantages will enable a wide range of 3D modeling
and AR applications on mobile devices.
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APPENDICES
A BRIEF INTRODUCTION TO EPNP

ALGORITHM
Given a set of n input points and their 3D coordinates in the world
coordinate system {Pwi }i=1, ...,n , choose four control points with
world coordinates {Cwj }j=1, ...,4 to express them

Pwi =
4X

j=1
�i jC

w
j (9)

where
P4
j=1 �i j = 1.

The relation also holds in the camera coordinate system, so the
camera coordinates of these points can be expressed as

Pci =
4X

j=1
�i jC

c
j (10)

where superscript c represents the camera coordinate system.
According to the camera model, we have

wi

2666664
ui
�i
1

3777775
=

2666664
fu 0 uc
0 f� �c
0 0 1

3777775
4X

j=1
�ij

26666664
xcj
�cj
zcj

37777775
(11)

wherewi is a scalar parameter, [xcj ,�
c
j , z

c
j ]
T are the 3D coordinates

of control points in the camera coordinate system and [ui ,�i ]T are
2D projections of the input points. fu , f� are focal length coe�-
cients and (uc ,�c ) is the principal point of the camera, and they
can be obtained by camera calibration.

From the last row of (11) we have

wi =
4X

j=1
�i jz

c
j (12)

Then from the �rst two row of (11) we have
4X

j=1
�i j fux

c
j + �i j (uc � ui )zcj = 0 (13)
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4X

j=1
�i j f��

c
j + �i j (�c ��i )zcj = 0 (14)

Let x = [Cc1
T ,Cc2

T ,Cc3
T ,Cc4

T ]T , and then we have

Mx = 0 (15)

where the elements of M come from the coe�cients of (13) and (14).
The solution therefore belongs to the null space of matrixM and

can be expressed as

x =
NX

i=1
�i�i (16)

where �i are the columes of the right-singular vectors ofM corre-
sponding to the N null singular values.

The next step is to choose the right linear combination of the
vectors in the null space, i.e., to �nd the right �i . Depending on
the amount of noise, N can be 1, 2, 3 or 4. EPnP doesn’t pick a
value among 1,2,3 and 4. Instead, EPnP computes the solutions in
all the four cases and then choose the one that leads to the smallest
reprojection error,

res =
X

i
dist2 (K[R |t]

"
Pwi
1

#
,ui ) (17)

where dist (m,n) denotes the 2D distance betweenm and n, and K
is the intrinsic matrix of the camera.

(1) Case N = 1: In this case, x = �� . Let �[i] be the sub-vector
that corresponds to the coordinates of the control point Cci ,
then for all i and j we have the distance constraints

k��[i] � ��[j]k2 = kCwi �Cwj k
2 (18)

Thus � can be computed by

� =

P
{i, j }2[1,4] k�[i] ��[j]k · kCwi �Cwj k
P
{i, j }2[1,4] k�[i] ��[j]k2

(19)

(2) Case N = 2: In this case, x = �1�1 + �2�2, and for all i and j

k (�1�[i]1 + �2�
[i]
2 ) � (�1�

[j]
1 + �2�

[j]
2 )k2 = kCwi �Cwj k

2 (20)

�1and�2 can be computed by solving a linear system L� = �,
where L is a 6⇥ 3 matrix formed with the elements of�1 and
�2, � is a 6-vector with kCwi �Cwj k

2. � = [�11, �12, �22]T is
the unknown vector, where �11 = �21 , �12 = �1�2, �22 = �22 .

(3) Case N = 3: Similar to the case N = 2, x can be computed
by solving L� = �, where

� = [�11, �12, �13, �21, �22, �33]T . (21)

(4) Case N = 4: In this case, there are 6 constraints but 10
unknowns in the linear system L� = �, so we have to add
extra constraints

�ab�cd = �a0b0�c 0d 0 (22)

where {a0,b 0, c 0,d 0} represents any permutation of {a,b, c,d }.
With Cwi and their coordinates in the camera coordinate system

Cci , the translation t and rotation R of the camera coordinate system
with respect to the world coordinate system can be solved.
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