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Abstract—Voice interaction, as an emerging human-computer
interaction method, has gained great popularity, especially on
smart devices. However, due to the open nature of voice signals,
voice interaction may cause privacy leakage. In this paper, we
propose a novel scheme, called SeVI, to protect voice interaction
from being deliberately or unintentionally eavesdropped. SeVI
actively generates jamming noise of superior characteristics,
while a user is performing voice interaction with his/her device, so
that attackers cannot obtain the voice contents of the user. Mean-
while, the device leverages the prior knowledge of the generated
noise to adaptively cancel received noise, even when the device
usage environment is changing due to movement, so that the
user voice interactions are unaffected. SeVI relies on only normal
microphone and speakers and can be implemented as light-weight
software. We have implemented SeVI on a commercial off-the-
shelf (COTS) smartphone and conducted extensive real-world
experiments. The results demonstrate that SeVI can defend both
online eavesdropping attacks and offline digital signal processing
(DSP) analysis attacks.

Index Terms—jamming noise, voice interaction, smart device,

I. INTRODUCTION

With the rapid spread of mobile devices, the way of human-
computer interaction is also evolving. Voice interaction as an
emerging interaction method is becoming more and more ma-
ture and popular, including voice input methods like iFLYTEK
[1] and voice assistants like Google Assistant [2], Siri [3], and
Cortana [4]. However, due to the open nature of voice signals,
these interactions may face great security threats, where at-
tackers can obtain private information through eavesdropping
or recording. With the widespread use of voice technology, the
security issues have become more and more crucial. Therefore,
providing strong protection for voice interactions is of great
importance.

To provide secure voice interaction on smart devices, a
practical scheme should meet the following four requirements:
1) strong security: a scheme should be able to defend eaves-
dropping attack with human hearing and digital signal process-
ing (DSP) analysis attacks. 2) high transparency: the scheme
should have negligible side effects on existing voice interaction
applications. 3) good usability: the scheme should not rely on
extra hardware and can be implemented on commercial off-
the-shelf (COTS) devices as software. In addition, the scheme
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Fig. 1. The basic idea of SeVI, where user voice is deliberately jammed by
the user’s smartphone.

should also be able to use during the movement of users. 4)
low power consumption: as most smart devices are battery
powered, it is essential for such a scheme to be light-weight
and to have a low power consumption.

In the literature, there are some existing schemes targeting
on similar problems. A category of schemes utilize the charac-
teristics of hardware. For example, Backdoor [5] and Dolphi-
nattack [6] leverage the nonlinearity of microphones to per-
form hidden interference or communication using ultrasonic
signal. However, these methods will also affect the normal
use of voice interaction applications and cannot protect the
user voice from human hearing. Another category of schemes
use noises to protect acoustic signals [7] [8]. However, these
schemes are designed for data communication and acoustic
signals used are quite different from human voice. Recently,
convert communication is achieved with encoded audio signals
[9], where the multipath effect and multiple speakers are
explored to cancel noises at certain spots. Besides multiple
speakers are required, it fits in static environments. Another
interesting scheme [10] filters out sensitive voice contents from
continuous acoustic sensing devices using an extra hardware.
As a result, there exists no successful solution, to the best of
our knowledge, to providing secure voice interactions on smart
devices.

In this paper, we propose a novel scheme, called SeVI,
to tackle the secure voice interaction problem. As illustrated
in Figure 1, the core idea of SeVI is for a smart device to
actively generate jamming noise to cover the voice of a user



so that attackers cannot obtain the voice contents of the user.
Meanwhile, the device leverages the prior knowledge of the
generated noise to adaptively cancel received noise so that the
user voice interactions are unaffected.

There are two main challenges in SeVI design. First,
attackers can be very powerful and can conduct complex
signal processing, which may separate user voice and noise.
Meanwhile, human hearing is quite intelligent and hard to jam.
To cope with the first challenge, we design a jamming noise
generation scheme by taking advantage of the masking effect.
The closer the frequency and the louder the masking sound, the
stronger the masking effect. Inspired by this phenomenon, to
obtain superior masking effect, we randomly select a number
of pre-recorded speech records of users to generate a jamming
noise. Such a jamming noise has two unique features as
follows. First, it has a very similar frequency spectrum as an
input voice, which makes it hard to filter out the jamming
noice from the perceived sound, combined by the jamming
noise and the input voice. Second, it adds an extra semantic
difficulty for an eavesdropper to understand the meaning of
the combined sound.

Second, jamming noise would also interfere with user
voice. Though the generated jamming noise is known to the
device, the timing and the contents of user voices and the
time-varying channel between speakers and the microphone
are unknown, making jamming noise self-cancellation very
challenging. To deal with this challenge, the prior knowledge
of the generated jamming signal is first used to detect user
voice segments within the interfered sound. Then the time-
varying channel can be constantly estimated by comparing
non-user-voice segments in the generated jamming signal and
the interfered sound. Finally, with estimated channel response,
the recorded jamming noise can be estimated and removed
from the combined sound.

We implemented a prototype system on Google Pixel3 smart
phone as an app. We have conducted intensive experiments
under different conditions to evaluate the performance of SeVI.
The results show that the proposed noise generation scheme
can indeed secure user voice interaction. When the device
is 1.5m away from attackers, neither human nor machine
can distinguish user voice content from the jamming noise.
Moreover, the derived voice after the noise self-cancellation
can achieve a recognition rate of 85% on average for voice
interactive software and full comprehension for human.

II. RELATED WORK

Islam et al. proposed SoundSifter to tackle the overhearing
problem of continuous acoustic sensing devices [10]. They
built an independent embedded system to cover the device thus
filtering out signals from unwanted sources. This work requires
extra hardware and it is targeting on the untrusted interactive
device itself, so that it cannot protect against eavesdropping

by surrounding malicious attackers, while in our system we
assume the interactive device is trustworthy.

Nowadays, there have been many active noise-canceling
headphones in the market which use microphones to record
ambient noise and play an inverted signal to compensate it.
Thus, the most ideal case is letting smart devices cancel out
user’s voice in real time. However, this technique only works
well on low frequency and stable sounds, plus the effect of
process delay, making it unrealistic to compensate user’s voice.

Roy et al. proposed Backdoor [5], which exploiting the non-
linearity of microphone to conduct covert communication and
jam spy microphones. Two different ultrasonic sounds will cre-
ate an audible frequency range sound in the microphone after
passing through the microphone’s non-linear diagram which
can be used to jam unknown spy microphones . However, this
technique also needs extra ultrasonic transmitters. And more
importantly, it cannot defend human eavesdropping attack.

In recent research, Chaman et al. [9] encoded audio signals
with noises to achieve convert communication. It exploits the
multi-path effect and transmits signals with multiple speakers
so that noises can cancel each other out only at certain spots.
The limitation of this work lies in the requirement of multi-
speaker encoding of existing audios which certainly cannot be
achieved by human voice. In addition, this method requires
sophisticated modeling of current environment and cannot be
used in dynamic scenarios.

Dhwani proposed by Nandakumar et al. also uses the
jamming-based method to conduct secure acoustic near filed
communication [7]. It emits a jamming signal to provide
protection and uses a self-interference cancellation method
to decode the acoustic signal. The main difference is that
Dhwani is for data communication between devices so that the
acoustic content does not need to be interpretable by human,
but our system is target on human voice interaction, which
is harder to effectively interference due to human auditory
intelligence and rises higher requirement to the jamming
noise self-cancellation. There are other researches on acoustic
security using some encoding or encryption method, but they
are all limited to devices and cannot be applied to actual voice
interaction [8].

III. SYSTEM MODEL AND DESIGN GOALS

A. System and Attack Models

We consider to protect private voice interactions in public
environments, e.g., in a cafe or an elevator, on a bus or a
subway train, where people are allowed to talk and they are
surrounded by untrusted individuals. There are three entities
considered in the system as follows:
• Users. A user is an authorized person, who can operate

and interact with a smart device via voice, and expects
that his/her private voice messages or instructions would
not be eavesdropped by unintentional strangers and de-
liberate attackers.
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Fig. 2. System architecture of SeVI, consisting of two main parts, i.e.,
obscuring voice jamming (the upper half), and jamming noise self-cancellation
(the lower half).

• Smart devices. A smart device is capable of detecting
and recording a user’s voice. In addition, the device has
one or more speakers and moderate computation and
storage capabilities.

• Attackers. An attacker tries to eavesdrop the voice con-
tents of a user by human hearing or by offline digital
signal processing (DSP) analysis on recorded sounds. We
consider attackers use COTS mobile devices that can con-
duct stereo recording with two separated microphones.
Moreover, he/she can can change his/her position in the
scene to approach the user or to find a better place for
eavesdropping.

B. Design Goals

A practical voice interaction protection scheme should meet
the following goals:

• Strong security. The scheme should protect private voice
contents of users from being obtained by unintentional
strangers and deliberate attackers with high probability.

• High transparency. The scheme should have negligible
side effects on existing voice interaction applications.

• Good usability. The scheme should not rely on extra
hardware and can be implemented on COTS devices as
software. Moreover, users should have little intervention
in using the scheme.

• Low power consumption. The scheme should power
efficient since it may run on mobile devices, powered
by batteries.

IV. OVERVIEW OF SEVI

The system architecture of SeVi, as illustrated in Fig. 2,
consists of two main technical components as follows:

Obscuring Voice Jamming (OVJ). Human hearing is
very sensitive and hard to be jammed. OVJ takes a two-fold
strategy: first, users’ own distorted speech records are collected
(Speech Record Collection), restored (Device Distortion Com-
pensation) and used to generate jamming noises with a very
similar frequency spectrum as user voices; second, multiple
speech records are randomly selected and mixed (Random

Voice Mixing) to further confuse the semantic meanings of
user voices.

Jamming Noise Self-cancellation (JNS). Jamming noise
not only confuses attackers but also interferes with user voices.
Though the generated jamming noise is known to the device,
the timing and the contents of user voices and the time-varying
channel between speakers and the microphone are unknown,
making jamming noise self-cancellation very challenging. To
tackle this challenge, JNS first conducts cross-correlation to
align the generated jamming noise with the recorded sound
(Jamming Signal Alignment). It then uses the beginning
two-second window as a preamble to roughly estimate the
speaker-to-microphone channel (Coarse Channel Estimation)
and obtains the durations of user voices in the recorded
sound (User Voice Segmentation). Given the separated noise
segments, Adaptive Channel Estimation is conducted on each
segment to continuously track the time-varying channel. With
most up-to-date channel estimate, jamming noise is eliminated
from user voice segments (Jamming Noise Filtering). Finally,
JNS conducts Residual Noise Attenuation to further remove
residual noise due to channel estimate errors.

SeVI only requires a microphone and speakers on smart
devices. It can be implemented as a building block of voice
interaction applications or as a middleware providing general
voice protection APIs for upper-layer applications.

V. OBSCURING VOICE JAMMING

The phenomenon that human ear’s perception threshold
of one sound is increased because of the presence of other
sounds, which is referred to as the auditory masking effect
[11] [12]. In particular, a sound of closer frequency and
higher intensity has a stronger masking effect. Inspired by this
phenomenon, to obtain superior masking effect, we randomly
select a number of pre-recorded speech records of users to
generate a jamming noise. Such a jamming noise has two
unique features as follows. First, it has a very similar frequency
spectrum as an input voice, which makes it hard to filter out
the jamming noice from the perceived sound, combined by
the jamming noise and the input voice. Second, it adds an
extra semantic difficulty for an eavesdropper to understand
the meaning of the combined sound.

A. Speech Record Collection

SeVI needs to collect a library of user speech records before
providing protection for voice interactions. In specific, a set of
sentences can be randomly picked up from pre-loaded digital
books and webpages. After each sentence is displayed on the
screen of a target device, the user is required to keep the
device close to his/her mouth and read the sentence, which
is recorded to construct the library. We do not record user
conversations or voice instructions for this purpose because
such voices might still contain private information even though
they were recorded in the past.
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Fig. 3. User voice distorted by device frequency responses.

B. Jamming Voice Generation

1) Device Distortion Compensation: It is desirable that a
jamming voice sounds exactly like an input voice of the user.
However, if a speech record is directly played back, it sounds
very different from the original voice of the user. As illustrated
in Figure 3, the reason is that the original voice is first distorted
by the microphone and then by the speaker of the device. In
frequency domain, we have Y = X×Hm×Hs

1, where Y and
X are the played sound and the original voice, respectively,
and Hm and Hs are the finite frequency responses of the
microphone and the speaker of the device. Such distortion
can severely weaken the masking effect of a jamming voice.
Therefore, it is necessary to compensate this distortion by
eliminating the impact of device frequency responses.
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Fig. 4. Device frequency response measurement model.

It is non-trivial to acquire the frequency responses of the
microphone and the speaker of the device. SeVI needs to use
another device once to help measure Hm × Hs as a whole.
Specifically, as illustrated in Figure 4, the user first speaks
a sentence X , which is recorded by a helper device and the
user device at the same time. The recorded sounds at the helper
and the device are Yu = X×H ′m, where H ′m is the frequency
response of the helper’s microphone, and X ′ = X × Hm,
respectively. Then, the device plays back the recorded X ′,
which is recorded by the helper as Yd = X ′ × Hs × H ′m.
Divide Yd by Yu, we get

Yd
Yu

=
X ′ ×Hs ×H ′m

X×H ′m
=
X ×Hm ×Hs

X
= Hm ×Hs. (1)

In above measurement, we only consider air propagation
channels dominated by strong direct paths. Such a channel
has equivalent attenuations among frequency components. As
human ear is not sensitive to phase, therefore, Hm × Hs

can be represented as αYd/Yu, where α is a constant due

1Comparing with device distortions, the distortion caused by the air channel
between the mouth of the user and the microphone is negligible, especially
when they are very close. For simplicity, we ignore the impact of channel
frequency response of air channels dominated by strong direct path.
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Fig. 6. A combination of user voice, generated jamming noise and environ-
mental noise are recorded while the device might be in motion.

to channel attenuations. Note that, for a particular device, the
measurement on its Hm×Hs should only be conducted once.
It would be more convenient if device manufacturers could
provide such parameters for the same batch of products.

With measured Hm × Hs, device distortion can be com-
pensated by dividing those speech records in the user voice
library by Hm × Hs before they are played. For example,
Figure 5 depicts Yd before and after distortion compensation,
and Yu of a user speech record, respectively. It can be seen
that the envelope of the signal after compensation is much
more similar with that of Yu.

2) Random Voice Mixing: Every time a user conducts a
voice interaction with a device, SeVI randomly selects a few
speech records from the library and mix them up to form
a jamming noise. Specifically, as pauses exist in speeches,
speech records are cut into small segments of 100ms. If
the average power of a segment is higher than a threshold,
this segment is considered as a voice segment; otherwise,
it is considered as a null segment. The goal of the random
voice mixing algorithm is to guarantee that the number of
overlapping voice segments at any point of time is no less
than two. This can be done by adding new records to the
jamming voice from the current point of time if the condition
is not satisfied. This process repeats until the user finishes the
interaction.

VI. JAMMING NOISE SELF-CANCELLATION

Superior jamming noises can defend eavesdropping attacks
but they also interfere with user input voices. As illustrated
in Figure 6, the sound being recorded by the user device,
denoted as signal d(t), is a combination of user voice, denoted



as x(t), generated jamming noise, denoted as njam(t), and
environmental noise, denoted as nenv(t). Specifically, we have

d(t) = njam(t) ∗ hs,m(t) + x(t) + nenv(t) (2)

where hs,m(t) denotes the impulse response of the channel
between the speaker and the microphone. As the device may
be in motion, hs,m(t) varies over time. Because the device
cannot know hs,m(t) in advance, given d(t) and njam(t), it
is hard to eliminate njam(t)∗hs,m(t) from d(t). Furthermore,
as the device does not know x(t) and nenv(t) either, it is also
hard to accurately estimate hs,m(t). As a result, it is of great
challenge to cancel the generated jamming noise.

In SeVI, we decouple this problem in three steps. First,
the prior knowledge of njam(t) is used to detect user voice
segments within the combined sound. Second, hs,m(t) can be
constantly estimated to track the change of the channel, using
non-user-voice segments. Finally, with estimated hs,m(t), the
recorded jamming noise can be estimated and removed from
the combined sound.

A. User Voice Detection

With the jamming scheme devised in SeVI, user voice is
usually overwhelmed by jamming noise of similar frequency
characteristics. Traditional double talk detection techniques
[16] [17] cannot be used in this setting. In SeVI, we require
that the user does not talk for a few seconds after the device
plays a jamming noise.

1) Jamming Signal Alignment: Due to uncertain system
delay, the jamming noise being played and the recorded
sound are not aligned. To align both signals, we use the
beginning two seconds of the jamming noise signal as a
preamble and conduct cross-correlation on the sound being
recorded. Ideally, the cross-correlation reaches the maximum
when both signals are aligned. In practice, as the received
signal varies from its original form, we consider that both
signals are aligned if a correlation peak larger than a threshold.
In our implementation, we set the threshold as the 85% of the
maximum correlation value.

2) Coarse Channel Estimation: Figure 7 illustrates a jam-
ming noise signal njam(t) in subplot (a) and the aligned
recorded sound y(t) in subplot (b). With no user voice at the
beginning of the recorded sound, we can use the preamble
in njam(t) and received preamble in y(t) to estimate a
coarse channel response, denoted as ĥs,m(0). We then use
ĥs,m(0) to roughly estimate the received jamming noise, i.e.,
ĥs,m(0) ∗ njam(t). Although the estimated jamming noise is
not accurate, it contains most energy of the received jamming
noise. By subtracting the estimated jamming noise from the
recorded sound, the residual power, as depicted in subplot (c)
of Figure 7, mainly comes from the user voice and ambient
noise.

3) User Voice Segmentation: Given the residual power
signal, denoted as r(t) = y(t) − ĥs,m(0) ∗ njam(t), we use
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Fig. 7. The user voice can be roughly detected by subtracting the coarsely
estimated jamming noise from the recorded sound.

a sliding window of l samples to calculate the power of the
window starting from the ith sample as

p(i) =
1

l

i+l−1∑
k=i

|r(i)|2 . (3)

We detect user voice by checking whether p(·) is larger than a
threshold and divide r(t) and the corresponding y(t) into user
voice segments and non-voice segments. In our implementa-
tion, we set l = 256 at a sampling rate of 16KHz and set the
threshold to the 40% of the maximum p(·) throughout r(t).

B. Adaptive Jamming Noise Cancellation

With coarse channel estimation, we can detect user voice
segments from the combined recored sound but the detected
voice segments contain a lot of unpleasant noise. The reason
is mainly because hs,m(t) varies over time and the initial
estimate ĥs,m(0) is out-of-date.

We use non-voice segments in the recorded sound y(t)

to keep the track of hs,m(t), adopting a frequency domain
adaptive filter (FDAF) algorithm [18] for its good convergence
performance and fast computation speed. Specifically, for a
window of size Q, sliding Fast Fourier Transformation (FFT)
with 50% overlapping is conducted on non-voice segments in
the recorded sound y(t) and the corresponding jamming noise
signal njam(t), respectively. Let Y (i) and N jam(i) denote the
Fourier transformation of the ith segment of y(t) and njam(t),
respectively and let Ĥs,m(i) denote the channel frequency
response for the ith segment.

The estimated jamming signal for the ith segment, therefore,
is N jam(i)×Ĥs,m(i) and the estimated error, denoted as E(i),
is E(i) = Y (i) − N jam(i) × Ĥs,m(i). We define the mean
square error of E(i) as the cost function and try to minimize
the cost function by updating the estimated Ĥs,m(i) along
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Fig. 8. Jamming noise self-cancellation using adaptive channel estimation
and coarse channel estimation, respectively.

the negative gradient direction iteratively util convergence is
gradually reached.

More specifically, we first take FFT of ĥs,m(0), i.e., result-
ing Ĥs,m(0), as the initial channel frequency response. We
then take partial derivative about Ĥs,m(i) on the cost function
and we can get the update formula of the filter represented as

Ĥs,m(i+ 1) = Ĥs,m(i) + µN jam(i)∗E(i), (4)

where µ is the step size in gradient descent. To optimize the
convergence rate and obtain a more stable performance, we
normalize the step size of each frequency bin according to the
signal power, i.e.,

Ĥs,m(i+ 1) = Ĥs,m(i) + µN jam(i)∗E(i)/P (i), (5)

where P (i) = [P0(i), ..., PQ−1(i)] and for a forgetting factor λ
and k ∈ [0, Q−1], Pk(i) = λPk(i−1)+(1−λ)

∣∣N jam
k(i)

∣∣2.
Consequently, the received jamming noise contained in a

voice segment in y(t) can be estimated using the most up-to-
date channel frequency response estimate and removed from
y(t). Figure 8 shows an example of using coarse channel
response estimation and adaptive channel response estimation
to conduct self-cancellation on a jamming noise. It can be
seen that the main energy of the recorded jamming noise is
eliminated and using adaptive channel estimation can achieve
5dB more attenuation than using coarse channel estimation.

C. Residual Noise Attenuation

In real environment, ambient noise makes adaptive channel
estimation hard to converge, which decreases the performance
of adaptive jamming noise cancellation. As a result, there can
still be some residual noise after cancellation.

We adopt the spectrum subtraction algorithm [19] to further
mitigate residual noise. Specifically, for non-voice segments,
the residual signal obtained after adaptive jamming noise
cancellation has a similar energy spectrum distribution. We
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Fig. 9. Residual noise can be effectively attenuated through the spectrum
subtraction algorithm.

sample the spectrum of such residual signal and learn the
noise threshold on each frequency component. Then, for user
voice segments, we compare the spectrum of E(i) with those
thresholds. If the amplitude of certain frequency is lower
than the corresponding threshold, this frequency component
is regarded as noise and would be attenuated in proportion.
Figure 9 shows the residual noise after adaptive jamming noise
cancellation in Figure 8 is largely eliminated after this process.
The overall attenuation of noise reaches 30dB.

VII. PERFORMANCE EVALUATION

A. Methodology

Devices. We implement SeVI as an app on a google Pixel
3 XL smartphone, which runs Android 9 Pie and has 4GB
memory and a Qualcomm snapdragon 845 processor. We use
the phone as the device and jamming noises are played via
the main speaker of the phone.

Users. In order to ensure the repeatability of experiments
and obtain accurate user voice signals for comparison, we use
another Pixel 3 XL to play the role of users. Specifically, we
recruit two male and two female volunteers, let each volunteer
read one hundred randomly selected sentences, record with the
phone, and get four speech data sets, denoted as U1, U2, U3,
and U4, respectively. We then use the first fifty speech records
in each speed data set to construct a speech record library
for each user and use the rest speech records for testing. We
use a laptop as the helper to learn the device response and
compensate the device distortion for all speech record library.

Attackers. We recruit another twelve volunteers as on-
site attackers, five females and seven males, aged from 21
to 43, including four undergraduate students, five graduate
students, and three faculty members. In addition, we use two
different devices, i.e., a ASUS T305C tablet and a Pixel 3
smartphone as stereo eavesdropping equipments. The tablet
and the phone have dual stereo microphones separated at a
distance of 5cm and 15cm, respectively. Attackers can conduct
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on-site eavesdropping attacks and offline DSP attacks with
stereo records. Particularly, we consider two offline blind
source separation (BSS) algorithms, i.e., FastICA [20], an
independent components analysis (ICA) based algorithm, and
DUET [21], a binary time-frequency masking algorithm.

We consider the following three metrics to evaluate the
performance of SeVI:
• Recognition rate: refers to the ratio of the number of

words correctly recognized by human hearing to the total
number of words in a sentence.

• MFCC similarity: is the similarity between the Mel-
scale Frequency Cepstral Coefficient (MFCC) [22] of
acoustic signals. MFCC is a feature representation
method based on human auditory characteristics.

• Short-Time Objective Intelligibility (STOI): is a metric
used to measure the intelligibility of speech signals. STOI
algorithm [23] takes the original speech signal and the
processed signal as input, and will give a value in the
range from 0 to 1. A high STOI value means high
intelligibility of processed signal.

B. Effect of Different Types of Jamming Noises

We first investigate the effectiveness of different types of
jamming noises. We conduct the experiment in a meeting
room about 36 square meters, where attackers are 1m away
from the user and the distance between the device and the
user is 20cm. We generate jamming noises using user speech
records and vary the signal-to-noise ratio (SNR) from -1dB to
-5dB with an interval of 1dB. Besides user speech records, we
consider to generate jamming noise using random noise and
three categories of music. For each attacker and each type of
jamming noise, we randomly select ten sentences from the
testing set of each user, and ask the attacker to recognize
the user voice in the presence of jamming noise on site. In
addition, attackers can listen to recorded contents as many
times as they want.

Figure 10 plots the average recognition rate over all at-
tackers for each jamming noise type. It can be seen that
different types of jamming noise have distinct jamming effects
and using user voice records to generate jamming noise
can achieve superior jamming effects. Decreasing SNR will
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Fig. 11. Recognition rate in two attack distances and two user-to-device
spacing configurations.
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Fig. 12. Recognition rate after conducting BSS algorithms on recorded signal
at attackers.

decrease the recognition rate but it would also bring difficulty
for noise self-cancellation. It can be seen that SNR of -3dB,
i.e., the volume of user voice is one half of the volume of
jamming noise, is a good tradeoff.

C. Impact of Attacker Positions

As an attacker deliberately approaches a victim, the proba-
bility for the attacker to perceive the content of the user’s voice
is increased. Similarly, as the separated distance between the
user and the device increases, such probability also increases.
We take the same setting as in the above experiment except
that we use two attack distances, i.e., 0.5m and 1.5m, and two
spacing distance between the user and the device two audio
sources, i.e., 20cm and 50cm.

Figure 11 plots average recognition rate in different attack
distances with two user-to-device spacing configurations. It
can be seen that when the spacing between the user and device
is 20cm and attack distance is beyond 1.5m, the recognition
rate drops to zero. Normally, 20cm is a comfortable spacing
when people talk to a phone and it is easy to keep a distance
of 1.5m away from other people.

D. Impact of DSP Attacks

In this experiment, we take the same setting as in the above
experiment. Especially, we conduct the FastICA and DUET
algorithms to separate the jamming noise and user voice and
then ask attacker to recognize the output of both algorithms.
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Fig. 13. MFCC similarity comparison.
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Fig. 14. STOI comparison.

Since the resolution of the phone recording is better, only the
experimental results of phone recording are shown here.

Figure 12 plots the average recognition rate after conducting
two BSS algorithms on recorded signal at attacker. Comparing
with Figure 11, it can be seen that BSS algorithms has little
effect in improving the capability of attackers. For FastICA
algorithm, it can achieve a good separation effect for linearly
combined and independent signals.However, in real environ-
ments, because of the spatial frequency response generated
by reverberation environment, the signals of each source are
no longer simply linear superposition, but convolved with
the frequency response of the environment. DUET algorithm
also fails in separating signals effectively. According to the
principle of the algorithm, there may be two reasons. One is
that in our scenario, the spatial positions of two signal sources
are very close, resulting in very similar channel conditions
between them. Second, and more importantly, different from
sparse normal speech, in order to ensure the effectiveness
of the masking, the jamming noise we played is dense and
has similar frequency distribution. However, the effectiveness
of the DUET algorithm is based on signal sparsity which
means at any time and any frequency, there is one signal,
only in this way can we get the correct information of the
difference between the amplitude and phase of two channels
corresponding to a certain signal.

E. Effectiveness of Jamming Noise Self-cancellation

In this experiment, the attack distance and the user-to-device
spacing are set to 1.5m and 20cm, respectively. We consider
three common voice interaction scenarios, corresponding to
different noise levels and channel complexity, including a
meeting room (MT), in a corridor (CO) and on a public street
(ST). The meeting room has the lowest noise level but the most
complex multipath environment. The noise level in the corridor
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Fig. 15. Recognition rate by Google Assistant on Pixel 3 using self-
cancellation results.

is moderate and the echo environment is also complex. The
street has the loudest ambient noise but a better echo condition
than the former two.

To verify the performance of the self-cancellation algorithm,
we compare the MFCC similarity and STOI between the origi-
nal voice records and the derived results after self-cancellation.
We also compare MFCC similarity and STOI between the
original voice records and the results of FastICA and DUET.

Figure 13 plots the MFCC similarity results. As can be
seen from the figure, the MFCC similarity between our self-
elimination algorithm’s results and original signals is generally
above 0.8, which is on average 0.2 higher than the results
of FastICA and DUET. The reason why the results of the
attack algorithm also have relatively high similarity is that our
jamming noise is composed of the voices of the same person,
and the characteristics of the same person’s speech signals are
very similar to each other. Figure 14 plots the STOI results.
It can be seen from the figure that the intelligibility of self-
cancellation results is generally between 0.8 and 0.9, while the
average intelligibility of FastICA and DUET results is below
0.3.

We further play the results to Google Assistant on a Pixel
3 smartphone. The recognition rate by Google Assistant using
self-cancellation results is shown in Figure 15. It can be seen
that the average recognition rate is around 85%. While for
FastICA and DUET results, the software cannot recognize
the content at all. Moreover, we let all attackers to listen
to self-cancellation results. All testing samples can be fully
recognized in all three scenarios.

F. Response Time of SeVI

The device has a 2.8GHz 8-core CPU. We measure the
running time of each major component of SeVI on one CPU
core. We run jamming noise self-cancellation with 500 ten-
second speech records sampled at 16kHz. On average, the
running time of user voice detection, adaptive jamming noise
cancellation, and residual noise attenuation is 0.12s, 0.06s,
and 0.05s. The response time is moderate for most voice
interaction applications. It is possible to consider optimization
technique to further reduce the response time in our future
work.



VIII. CONCLUSION

In this paper, we have proposed a voice interaction protec-
tion scheme, called SeVI, for smart devices. SeVI innovatively
use the users own speech voice to generate jamming noises and
can effectively conduct self-cancellation under time-varying
channels. The advantage of SeVI is that it can be realized on
COTS devices as a software component. We have implemented
SeVI on a Pixel 3 XL smartphone. Our experience illustrates
that SeVI is light-weight and easy to implement and use.
We have conducted extensive real-world experiments and the
results demonstrate that SeVI can provide superior protection
for mobile voice interactions against online eavesdropping
attacks and offline DSP attacks.

SeVI also has some limitations. First, jamming noise can
pollute environment, especially for silent indoor scenarios.
Second, since the spectrum of residue noise is also similar
to that of the real interaction voice, when eliminating residual
noises according to its spectrum sample, part of the spectrum
of real speech is also been attenuated.
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