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Secure Voice Interactions with Smart Devices
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Abstract—Voice interaction, as an emerging human-computer interaction method, has gained great popularity, especially on smart
devices. However, due to the open nature of voice signals, voice interaction may cause privacy leakage. In this paper, we propose a
novel scheme, called SeVI, to protect voice interaction from being deliberately or unintentionally eavesdropped. SeVI actively
generates jamming noise of superior characteristics, while a user is performing voice interaction with his/her device, so that attackers
cannot obtain the voice contents of the user. Meanwhile, the device leverages the prior knowledge of the generated noise to adaptively
cancel received noise, even when the device usage environment is changing due to movement, so that the user voice interactions are
unaffected. SeVI relies on only normal microphone and speakers and can be implemented as light-weight software. We have
implemented SeVI on a commercial off-the-shelf (COTS) smartphone and conducted extensive real-world experiments. The results
demonstrate that SeVI can defend both online eavesdropping attacks and offline digital signal processing (DSP) analysis attacks.

Index Terms—acoustic jamming; self cancellation; secure voice interaction; wideband acoustic beamforming; smart devices
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1 INTRODUCTION

With the rapid spread of mobile devices, the way of human-
computer interaction is also evolving. Voice interaction as an
emerging interaction method is becoming more and more
mature and popular, including voice input methods like
iFLYTEK[1] and voice assistants like Google Assistant[2],
Siri[3], and Cortana[4]. However, due to the open nature
of voice signals, these interactions may face great secu-
rity threats, where attackers can obtain private information
through eavesdropping or recording. With the widespread
use of voice technology, the security issues have become
more and more crucial. Therefore, providing strong protec-
tion for voice interactions is of great importance.

To provide secure voice interaction on smart devices, a
practical scheme should meet the following four require-
ments: 1) strong security: a scheme should be able to defend
eavesdropping attack with human hearing and digital sig-
nal processing (DSP) analysis attacks. 2) high transparency:
the scheme should have negligible side effects on existing
voice interaction applications. 3) good usability: the scheme
should not rely on extra hardware and can be implemented
on commercial off-the-shelf (COTS) devices as software. In
addition, the scheme should also be able to use during the
movement of users. 4) low power consumption: as most smart
devices are battery powered, it is essential for such a scheme
to be light-weight and to have a low power consumption.
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Fig. 1. The basic idea of SeVI, where user voice is deliberately jammed
by the user’s smartphone.

In the literature, there are some existing schemes tar-
geting on similar problems. A category of schemes utilize
the characteristics of hardware. For example, Backdoor [5]
and Dolphinattack [6] leverage the nonlinearity of micro-
phones to perform hidden interference or communication
using ultrasonic signal. However, these methods will also
affect the normal use of voice interaction applications and
cannot protect the user voice from human hearing. Another
category of schemes use noises to protect acoustic signals[7]
[8]. However, these schemes are designed for data commu-
nication and acoustic signals used are quite different from
human voice. Recently, convert communication is achieved
with encoded audio signals [9], where the multipath ef-
fect and multiple speakers are explored to cancel noises
at certain spots. Besides multiple speakers are required, it
fits in static environments. Another interesting scheme [10]
filters out sensitive voice contents from continuous acoustic
sensing devices using an extra hardware. As a result, there
exists no successful solution, to the best of our knowledge,
to providing secure voice interactions on smart devices.

In this paper, we propose a novel scheme, called SeVI,
to tackle the secure voice interaction problem. As illustrated
in Figure 1, the core idea of SeVI is for a smart device to
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actively generate jamming noise to cover the voice of a user
so that attackers cannot obtain the voice contents of the user.
Meanwhile, the device leverages the prior knowledge of the
generated noise to adaptively cancel received noise so that
the user voice interactions are unaffected.

There are three main challenges in SeVI design. First,
attackers can be very powerful and can conduct complex
signal processing, which may separate user voice and noise.
Meanwhile, human hearing is quite intelligent and hard
to jam. To cope with the first challenge, we design a jam-
ming noise generation scheme by taking advantage of the
masking effect. The closer the frequency and the louder the
masking sound, the stronger the masking effect. Inspired
by this phenomenon, to obtain superior masking effect, we
randomly select a number of pre-recorded speech records of
users to generate a jamming noise. Such a jamming noise has
two unique features as follows. First, it has a very similar
frequency spectrum as an input voice, which makes it hard
to filter out the jamming noise from the perceived sound,
combined by the jamming noise and the input voice. Second,
it adds an extra semantic difficulty for an eavesdropper to
understand the meaning of the combined sound.

Second, jamming noise would also interfere with user
voice. Though the generated jamming noise is known to the
device, the timing and the contents of user voices and the
time-varying channel between speakers and the microphone
are unknown, making jamming noise self-cancellation very
challenging. To deal with this challenge, the prior knowl-
edge of the generated jamming signal is first used to detect
user voice segments within the interfered sound. Then the
time-varying channel can be constantly estimated by com-
paring non-user-voice segments in the generated jamming
signal and the interfered sound. Finally, with estimated
channel response, the recorded jamming noise can be es-
timated and removed from the combined sound.

Third, speakers on some mobile devices may have very
limited power and cannot generate noise with enough
magnitude. Moreover, in some circumstances, playing gen-
erated noise is disturbing to the environment. To solve
this challenge, we leverage multiple speaker on a device
and beamforming technique to concentrate the energy of
jamming noise towards an attacker and to suppress the
noise in other directions at the same time.

We implemented a prototype system on Google Pixel3
smart phone as an app. We have conducted intensive ex-
periments under different conditions to evaluate the perfor-
mance of SeVI. The results show that the proposed noise
generation scheme can indeed secure user voice interaction.
When the device is 1.5m away from attackers, neither hu-
man nor machine can distinguish user voice content from
the jamming noise. Moreover, the derived voice after the
noise self-cancellation can achieve a recognition rate of 85%
on average for voice interactive software and full compre-
hension for human.

2 RELATED WORK

Our work is related to the following three categories of tech-
niques, i.e., secure voice interaction, secure communication,

and Source Separation.

2.1 Secure Voice Interaction

Sound maskers have been used for protecting private con-
versation by playing a background white noise to reduce
the intelligibility of speech [11–13]. These techniques are
designed specifically for human conversation without noise
cancellation, which affects the interaction between users and
their smart devices. Sound field reproduction schemes [14–
18] can also be used for secure voice interactions. The the
goal of such schemes is to reproduce different sound streams
in a few predefined zones in a room while minimizing the
sound level at other zones. Multi-zone reproduction systems
were first studied in [19] where the authors also use noise
to mask message signals to reduce intelligibility. However,
such mechanism requires the deployment of an array of
speakers.

As for protecting user voice on smart devices, Islam et al.
propose SoundSifter [10] to tackle the overhearing problem
of continuous acoustic sensing devices. An independent
embedded system is built to cover the device thus filtering
out signals from unwanted sources. This work requires extra
hardware and it is targeting on the untrusted interactive
device itself, so that it cannot protect against eavesdropping
by surrounding malicious attackers, while in our system
we assume the interactive device is trustworthy. Roy et al.
proposed Backdoor[5], which exploiting the non-linearity
of microphone to conduct covert communication and jam
spy microphones. Two different ultrasonic sounds will cre-
ate an audible frequency range sound in the microphone
after passing through the microphone’s non-linear diagram
which can be used to jam unknown spy microphones . How-
ever, this technique also needs extra ultrasonic transmitters.
More importantly, it cannot defend human eavesdropping
attack.

2.2 Secure Communication

In recent research, Chaman et al.[9] encode audio signals
with noises to achieve secure communication. It exploits
the multi-path effect and transmits signals with multiple
speakers so that noises can cancel each other out only at
certain spots. The limitation of this work lies in the require-
ment of multi-speaker encoding of existing audios which
certainly cannot be achieved by human voice. In addition,
this method requires sophisticated modeling of current en-
vironment and cannot be used in dynamic scenarios.

Nandakumar et al. propose Dhwani [7], which uses
the jamming-based method to conduct secure acoustic near
filed communication. It emits a jamming signal to provide
protection and uses a self-interference cancellation method
to decode the acoustic signal. The main difference is that
Dhwani is for data communication between devices so that
the acoustic content does not need to be interpretable by
human, but our system is target on human voice interaction,
which is harder to effectively interference due to human
auditory intelligence and rises higher requirement to the
jamming noise self-cancellation. There are other researches
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on acoustic security using some encoding or encryption
method, but they are all limited to devices and cannot be
applied to actual voice interaction[8].

Beside acoustic signals, secure wireless communication
can also be achieved by jamming eavesdroppers with ar-
tificial noises[20, 21]. The theoretical foundation was laid
by Shannon[22] and later extended by[23, 24] who showed
the feasibility of secrecy if the communication channel of an
eavesdropper is degraded. However, these methods cannot
be directly applied to the voice signal. The intelligence of
human auditory and the reverberant environment make
both the effective jamming and effective self-cancellation
harder. Prior works have also looked at a related problem
of eavesdropper detection[25].

2.3 Source Separation

The most promising source separation technique is blind
source separation (BSS). One well-known method is the
Independent Component Analysis (ICA) [26], where statis-
tical independence of sources is exploited to estimate the
sources. Although efficient implementations exist [27, 28],
these algorithms have certain fundamental limitations, e.g.,
they support at most one Gaussian source, and do not
exploit signal properties such as non-negativity or sparsity.
Another famous algorithm is DUET [29], which relies on the
W-disjoint orthogonal of mixtures, that is, the windowed
Fourier transform of the signals in the mixture are dis-
joint, to partition the time-frequency representations of the
mixtures. As the time-frequency representation of speech
is usually sparse which leads to W-disjoint orthogonality,
this method can be well applied to speech mixtures. In this
paper, we conduct DSP attacks using both ICA and DUET
algorithms.

3 MODELS AND DESIGN GOALS

3.1 System and Attack Models

We consider to protect private voice interactions in public
environments, e.g., in a cafe or an elevator, on a bus or a
subway train, where people are allowed to talk and they
are surrounded by untrusted individuals. There are three
entities considered in the system as follows:

• Users. A user is an authorized person, who can
operate and interact with a smart device via voice,
and expects that his/her private voice messages or
instructions would not be eavesdropped by uninten-
tional strangers and deliberate attackers.

• Smart devices. A smart device is capable of detecting
and recording a user’s voice. In addition, the device
has one or more speakers and moderate computation
and storage capabilities.

• Attackers. An attacker tries to eavesdrop the voice
contents of a user by human hearing or by offline
digital signal processing (DSP) analysis on recorded
sounds. We consider that attackers use COTS mo-
bile devices to conduct stereo recording with two
separated microphones. Moreover, he/she can can
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Fig. 2. System architecture of SeVI, consisting of two main parts, i.e.,
obscuring voice jamming (the upper half), and jamming noise self-
cancellation (the lower half).

change his/her position in the scene to approach the
user or to find a better place for eavesdropping.

3.2 Design Goals

A practical voice interaction protection scheme should meet
the following goals:

• Strong security. The scheme should protect private
voice contents of users from being obtained by unin-
tentional strangers and deliberate attackers with high
probability.

• High transparency. The scheme should have negligi-
ble side effects on existing voice interaction applica-
tions.

• Good usability. The scheme should not rely on extra
hardware and can be implemented on COTS devices
as software. Moreover, users should have little inter-
vention in using the scheme.

• Low power consumption. The scheme should power
efficient since it may run on mobile devices, powered
by batteries.

4 OVERVIEW OF SEVI
The system architecture of SeVi, as illustrated in Fig. 2,
consists of two main technical components as follows:

Obscuring Voice Jamming (OVJ). Human hearing is
very sensitive and hard to be jammed. OVJ takes a two-fold
strategy: first, users’ own distorted speech records are col-
lected (Speech Record Collection), restored (Device Distortion
Compensation) and used to generate jamming noises with
a very similar frequency spectrum as user voices; second,
multiple speech records are randomly selected and mixed
(Random Voice Mixing) to further confuse the semantic mean-
ings of user voices. To provide better jamming effects and
mitigate the side-effect of environmental pollution, Wide-
band Acoustic Beamforming can be conducted on devices with
multiple speaker.

Jamming Noise Self-cancellation (JNS). Jamming noise
not only confuses attackers but also interferes with user
voices. Though the generated jamming noise is known to the
device, the timing and the contents of user voices and the
time-varying channel between speakers and the microphone
are unknown, making jamming noise self-cancellation very
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Fig. 3. User voice distorted by device frequency responses.

challenging. To tackle this challenge, JNS first conducts
cross-correlation to align the generated jamming noise with
the recorded sound (Jamming Signal Alignment). It then
uses the beginning two-second window as a preamble to
roughly estimate the speaker-to-microphone channel (Coarse
Channel Estimation) and obtains the durations of user voices
in the recorded sound (User Voice Segmentation). Given the
separated noise segments, Adaptive Channel Estimation is
conducted on each segment to continuously track the time-
varying channel. With most up-to-date channel estimate,
jamming noise is eliminated from user voice segments (Jam-
ming Noise Filtering). Finally, JNS conducts Residual Noise
Attenuation to further remove residual noise due to channel
estimate errors.

SeVI only requires a microphone and speakers on smart
devices. It can be implemented as a building block of
voice interaction applications or as a middleware providing
general voice protection APIs for upper-layer applications.

5 OBSCURING VOICE JAMMING

The phenomenon that human ear’s perception threshold of
one sound is increased because of the presence of other
sounds, which is referred to as the auditory masking effect
[30] [31]. In particular, a sound of closer frequency and higher
intensity has a stronger masking effect. Inspired by this phe-
nomenon, to obtain superior masking effect, we randomly
select a number of pre-recorded speech records of users
to generate a jamming noise. Such a jamming noise has
two unique features as follows. First, it has a very similar
frequency spectrum as an input voice, which makes it hard
to filter out the jamming noise from the perceived sound,
combined by the jamming noise and the input voice. Second,
it adds an extra semantic difficulty for an eavesdropper to
understand the meaning of the combined sound.

5.1 Speech Record Collection

SeVI needs to collect a library of user speech records before
providing protection for voice interactions. In specific, a
set of sentences can be randomly picked up from pre-
loaded digital books and webpages. After each sentence
is displayed on the screen of a target device, the user is
required to keep the device close to his/her mouth and read
the sentence, which is recorded to construct the library. We
do not record user conversations or voice instructions for
this purpose because such voices might still contain private
information even though they were recorded in the past.

5.2 Jamming Voice Generation

5.2.1 Device Distortion Compensation
It is desirable that a jamming voice sounds exactly like an
input voice of the user. However, if a speech record is di-

rectly played back, it sounds very different from the original
voice of the user. As illustrated in Figure 3, the reason is
that the original voice is first distorted by the microphone
and then by the speaker of the device. In frequency domain,
we have Y = X × Hm × Hs

1, where Y and X are the
played sound and the original voice, respectively, and Hm

and Hs are the finite frequency responses of the microphone
and the speaker of the device. Such distortion can severely
weaken the masking effect of a jamming voice. Therefore,
it is necessary to compensate this distortion by eliminating
the impact of device frequency responses.

X 

H’m

X’
1 2

Helper

User deviceUser

Fig. 4. Device frequency response measurement model.

It is non-trivial to acquire the frequency responses of the
microphone and the speaker of the device. SeVI needs to
use another device once to help measure Hm × Hs as a
whole. Specifically, as illustrated in Figure 4, the user first
speaks a sentence X , which is recorded by a helper device
and the user device at the same time. The recorded sounds
at the helper and the device are Yu = X ×H ′m, where H ′m
is the frequency response of the helper’s microphone, and
X ′ = X × Hm, respectively. Then, the device plays back
the recorded X ′, which is recorded by the helper as Yd =
X ′ ×Hs ×H ′m. Divide Yd by Yu, we get

Yd
Yu

=
X ′ ×Hs ×H ′m

X×H ′m
=
X ×Hm ×Hs

X
= Hm ×Hs. (1)

In above measurement, we only consider air propagation
channels dominated by strong direct paths. Such a channel
has equivalent attenuations among frequency components.
As human ear is not sensitive to phase, therefore, Hm ×Hs

can be represented as αYd/Yu, where α is a constant due
to channel attenuations. Note that, for a particular device,
the measurement on its Hm×Hs should only be conducted
once. It would be more convenient if device manufacturers
could provide such parameters for the same batch of prod-
ucts.

With measured Hm ×Hs, device distortion can be com-
pensated by dividing those speech records in the user voice
library by Hm × Hs before they are played. For example,
Figure 5 depicts Yd before and after distortion compensa-
tion, and Yu of a user speech record, respectively. It can be
seen that the envelope of the signal after compensation is
much more similar with that of Yu.

1. Comparing with device distortions, the distortion caused by the
air channel between the mouth of the user and the microphone is
negligible, especially when they are very close. For simplicity, we ignore
the impact of channel frequency response of air channels dominated by
strong direct path.
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Fig. 5. An example of eliminating device distortion, where a speech
record after compensation sounds more like the original user voice.

5.2.2 Random Voice Mixing
Every time a user conducts a voice interaction with a device,
SeVI randomly selects a few speech records from the library
and mix them up to form a jamming noise. Specifically, as
pauses exist in speeches, speech records are cut into small
segments of 100ms. If the average power of a segment is
higher than a threshold, this segment is considered as a voice
segment; otherwise, it is considered as a null segment. The
goal of the random voice mixing algorithm is to guarantee
that the number of overlapping voice segments at any point
of time is no less than two. This can be done by adding new
records to the jamming voice from the current point of time
if the condition is not satisfied. This process repeats until the
user finishes the interaction.

5.3 Acoustic Beamforming

In addition to generating jamming noise of similar fre-
quencies, it is core to generate a jamming noise of suffi-
cient intensity. Nevertheless, a loud jamming noise would
not only interfere the attacker but also pollute the envi-
ronment. Nowadays, smart devices with voice interaction
functions are generally equipped with multiple speakers,
ranging from two to seven. It is feasible to perform acoustic
beamforming on such devices to concentrate the power of
jamming noise along the direction of an attack and suppress
the noise in other directions at the same time.

x(t)

x0(t)

x1(t)

xM-1(t)

θ τ1

τM-1

w0
*

w1
*

wM-1
*

d

Fig. 6. Acoustic beamforming with linear speaker array.

For a linear array of M speakers of inner spacing d
as shown in Figure 6, to align an acoustic signal ejωt in
direction θ, the spatial response of the system at frequency
ω and angle θ, denoted by S(ω, θ), is

S(ω, θ) =
M−1∑
m=0

e−j·ωτmw∗m =
M−1∑
m=0

e−j·2π·mdω sin θ/cw∗m (2)

where c is speed of light and w∗m, m ∈ [0,M − 1], is a
complex conjugate weight for speakerm. To generate a main
lobe at the direction θ, the optimal set of w∗m, m ∈ [0,M −
1] can be obtained by solving argmax[w∗

0 ,w
∗
1 ,...,w

∗
M−1]

S(ω, θ)

[32] [33].
For wide-band acoustic signals, tapped delay lines (TDL)

structure is used to generate a set of frequency dependent
weights[34]. In the frequency domain, a wide-band signal
is treated as a combination of multiple sub-bands and an
individual set of parameters are applied to each sub-band.

6 JAMMING NOISE SELF-CANCELLATION

Superior jamming noises can defend eavesdropping attacks
but they also interfere with user input voices. As illustrated
in Figure 7, the sound being recorded by the user device,
denoted as signal d(t), is a combination of user voice, de-
noted as x(t), generated jamming noise, denoted as njam(t),
and environmental noise, denoted as nenv(t). Specifically,
we have

d(t) = njam(t) ∗ hs,m(t) + x(t) + nenv(t) (3)

where hs,m(t) denotes the impulse response of the channel
between the speaker and the microphone. As the device may
be in motion, hs,m(t) varies over time. Because the device
cannot know hs,m(t) in advance, given d(t) and njam(t), it
is hard to eliminate njam(t)∗hs,m(t) from d(t). Furthermore,
as the device does not know x(t) and nenv(t) either, it is also
hard to accurately estimate hs,m(t). As a result, it is of great
challenge to cancel the generated jamming noise.

In SeVI, we decouple this problem in three steps. First,
the prior knowledge of njam(t) is used to detect user voice
segments within the combined sound. Second, hs,m(t) can
be constantly estimated to track the change of the chan-
nel, using non-user-voice segments. Finally, with estimated
hs,m(t), the recorded jamming noise can be estimated and
removed from the combined sound.

6.1 User Voice Detection

With the jamming scheme devised in SeVI, user voice is usu-
ally overwhelmed by jamming noise of similar frequency
characteristics. Traditional double talk detection techniques
[35] [36] cannot be used in this setting. In SeVI, we require
that the user does not talk for a few seconds after the device
plays a jamming noise.

x
n

env

n
jam

Fig. 7. A combination of user voice, generated jamming noise and
environmental noise are recorded while the device might be in motion.
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Fig. 8. The user voice can be roughly detected by subtracting the
coarsely estimated jamming noise from the recorded sound.

6.1.1 Jamming Signal Alignment
Due to uncertain system delay, the jamming noise being
played and the recorded sound are not aligned. To align
both signals, we use the beginning two seconds of the
jamming noise signal as a preamble and conduct cross-
correlation on the sound being recorded. Ideally, the cross-
correlation reaches the maximum when both signals are
aligned. In practice, as the received signal varies from its
original form, we consider that both signals are aligned if a
correlation peak larger than a threshold. In our implemen-
tation, we set the threshold as the 85% of the maximum
correlation value.

6.1.2 Coarse Channel Estimation
Figure 8 illustrates a jamming noise signal njam(t) in sub-
plot (a) and the aligned recorded sound y(t) in subplot
(b). With no user voice at the beginning of the recorded
sound, we can use the preamble in njam(t) and received
preamble in y(t) to estimate a coarse channel response,
denoted as ĥs,m(0). We then use ĥs,m(0) to roughly estimate
the received jamming noise, i.e., ĥs,m(0)∗njam(t). Although
the estimated jamming noise is not accurate, it contains
most energy of the received jamming noise. By subtracting
the estimated jamming noise from the recorded sound, the
residual power, as depicted in subplot (c) of Figure 8, mainly
comes from the user voice and ambient noise.

6.1.3 User Voice Segmentation
Given the residual power signal, denoted as r(t) = y(t) −
ĥs,m(0) ∗ njam(t), we use a sliding window of l samples
to calculate the power of the window starting from the ith
sample as

p(i) =
1

l

i+l−1∑
k=i

|r(i)|2 . (4)

We detect user voice by checking whether p(·) is larger
than a threshold and divide r(t) and the corresponding
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Fig. 9. Jamming noise self-cancellation using adaptive channel estima-
tion and coarse channel estimation, respectively.

y(t) into user voice segments and non-voice segments. In
our implementation, we set l = 256 at a sampling rate of
16KHz and set the threshold to the 40% of the maximum
p(·) throughout r(t).

6.2 Adaptive Jamming Noise Cancellation

With coarse channel estimation, we can detect user voice
segments from the combined recored sound but the detected
voice segments contain a lot of unpleasant noise. The reason
is mainly because hs,m(t) varies over time and the initial
estimate ĥs,m(0) is out-of-date.

We use non-voice segments in the recorded sound y(t)
to keep the track of hs,m(t), adopting a frequency domain
adaptive filter (FDAF) algorithm [37] for its good conver-
gence performance and fast computation speed. Specifically,
for a window of size Q, sliding Fast Fourier Transformation
(FFT) with 50% overlapping is conducted on non-voice
segments in the recorded sound y(t) and the correspond-
ing jamming noise signal njam(t), respectively. Let Y (i)
and N jam(i) denote the Fourier transformation of the ith
segment of y(t) and njam(t), respectively and let Ĥs,m(i)
denote the channel frequency response for the ith segment.

The estimated jamming signal for the ith segment, there-
fore, is N jam(i)× Ĥs,m(i) and the estimated error, denoted
as E(i), is E(i) = Y (i) − N jam(i) × Ĥs,m(i). We define
the mean square error of E(i) as the cost function and try
to minimize the cost function by updating the estimated
Ĥs,m(i) along the negative gradient direction iteratively util
convergence is gradually reached.

More specifically, we first take FFT of ĥs,m(0), i.e., re-
sulting Ĥs,m(0), as the initial channel frequency response.
We then take partial derivative about Ĥs,m(i) on the cost
function and we can get the update formula of the filter
represented as

Ĥs,m(i+ 1) = Ĥs,m(i) + µN jam(i)∗E(i), (5)

where µ is the step size in gradient descent. To optimize the
convergence rate and obtain a more stable performance, we
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Fig. 10. Residual noise can be effectively attenuated through the spec-
trum subtraction algorithm.

normalize the step size of each frequency bin according to
the signal power, i.e.,

Ĥs,m(i+ 1) = Ĥs,m(i) + µN jam(i)∗E(i)/P (i), (6)

where P (i) = [P0(i), ..., PQ−1(i)] and for a forgetting factor
λ and k ∈ [0, Q−1], Pk(i) = λPk(i−1)+(1−λ)

∣∣N jam
k(i)

∣∣2.
Consequently, the received jamming noise contained in

a voice segment in y(t) can be estimated using the most up-
to-date channel frequency response estimate and removed
from y(t). Figure 9 shows an example of using coarse
channel response estimation and adaptive channel response
estimation to conduct self-cancellation on a jamming noise.
It can be seen that the main energy of the recorded jamming
noise is eliminated and using adaptive channel estimation
can achieve 5dB more attenuation than using coarse channel
estimation.

6.3 Residual Noise Attenuation

In real environment, ambient noise makes adaptive channel
estimation hard to converge, which decreases the perfor-
mance of adaptive jamming noise cancellation. As a result,
there can still be some residual noise after cancellation.

We adopt the spectrum subtraction algorithm [38] to
further mitigate residual noise. Specifically, for non-voice
segments, the residual signal obtained after adaptive jam-
ming noise cancellation has a similar energy spectrum dis-
tribution. We sample the spectrum of such residual signal
and learn the noise threshold on each frequency component.
Then, for user voice segments, we compare the spectrum
of E(i) with those thresholds. If the amplitude of certain
frequency is lower than the corresponding threshold, this
frequency component is regarded as noise and would be
attenuated in proportion. Figure 10 shows the residual noise
after adaptive jamming noise cancellation in Figure 9 is
largely eliminated after this process. The overall attenuation
of noise reaches 30dB.

7 SECURITY ANALYSIS

We analyze the possibility that an attacker can successfully
eavesdrop the voice contents of a user by offline DSP at-
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Fig. 11. Recognition rate in different jamming noise conditions.

tacks. As stated in Subsection 3.1, we consider attackers can
conduct stereo recording using COTS mobile devices, e.g.,
smartphones, tablets and laptops.

To obtain the voice contents of a user, an attacker needs
to separate the user’s voice, denoted as s1, and the jamming
voice, denoted as s2, played by the protected smart device of
the user, which is analogous to the cocktail party problem and
can be solved by independent components analysis (ICA)
based algorithms. Assume that the attacker can record t
linear mixtures x1, x2, . . . , xt of two voice sources su and
sj

xi = ai1s1 + ai2s2, for all i. (7)

Without loss of generality, we assume that the attacker can
have one than one recording devices, i.e., t ≥ 2. Let us
denote by x the vector whose elements are the mixtures
x1, . . . , xt, and likewise by s the vector with elements s1
and s2. Let us denote by A the channel parameter matrix
with elements ai1 and ai2. The ICA can be modelled as

x = As. (8)

If the matrix A can be estimated, then we can compute
its inverse, say W , and obtain the voice source vector s
simply by

s = Wx. (9)

In order for ICA to work, s1 and s2 have to be indepen-
dent and non-gaussian. In addition, square matrix A should
be invertible. As the user’s voice and the jamming voice can
be easily proved to be independent and non-gaussian, the
only way that SeVI can defend an ICA-based DSP attack
is to make A not invertible. One method is to use more
speakers to play distinct jamming voices. If the number of
speakers is larger than the number of microphones than the
attacker, it is theoretically safe as A is not square and not
invertible. However, it is infeasible in practice for a user
to carry a large number of speakers around. In SeVI, we
adopt another simple yet effective method, in which the
user puts her/his mouth as close as possible to the protected
device while speaking. As a result, no matter how many
microphones are used by the attacker in the DSP attack, s1
and s2 can be considered to come from one single source,
i.e., ai1 ≈ ai2 for all i, which makes A not full rank and
therefore not invertible.

We assume that the attacker can obtain the library of
speech records of the user. After ICA fails to separate s1 and
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s2, the attacker can still try brute force to guess s2 and obtain
s1 by subtracting the guessed s2 from one mixture xi. As
stated in Subsection 5.2.2, a speech records consists of voice
segments of 100ms. Without loss the generality of analysis,
we assume that each speech record has the same length of
k voice segments and the number of speech records in the
library is N . If SeVI generates at least T slots of mixed voice
segments, the number of possible mixed voice segments for
each slot is C1

Nk + C2
Nk + · · · + CNkNk. The total number

of possible generated jamming voice of T slots is therefore
(C1

Nk + C2
Nk + · · ·+ CNkNk)

T
, which is O(2NkT ). In practice,

it is sufficiently secure for a user to take ten speech records of
ten seconds (i.e., N = 10, k = 100) and for SeVI to generate
a jamming voice of ten seconds (i.e., T = 100), which leads
to 2100,000 possible jamming voices and infeasible for brute
force attacks.

We further conduct real-world experiments to demon-
strate the efficacy of SeVI in defending online human eaves-
dropping attacks and offline DSP attacks in the following
section.

8 PERFORMANCE EVALUATION

8.1 Methodology

Devices. We implement SeVI as an app on a google Pixel
3 XL smartphone, which runs Android 9 Pie and has 4GB
memory and a Qualcomm snapdragon 845 processor. We
use the phone as the device and jamming noises are played
via the main speaker of the phone. In addition, we also build
a FPGA-based acoustic MIMO platform to evaluate the
wide-band acoustic beamforming performance. The model
of FPGA is ZYNQ-7000, attached with a DAC8554 digital
analog converter, four LM386 power amplifier and four 8Ω
1W micro speakers.

Users. In order to ensure the repeatability of experiments
and obtain accurate user voice signals for comparison, we
use another Pixel 3 XL to play the role of users. Specifically,
we recruit two male and two female volunteers, let each
volunteer read one hundred randomly selected sentences,
record with the phone, and get four speech data sets, de-
noted as U1, U2, U3, and U4, respectively. We then use the
first fifty speech records in each speed data set to construct
a speech record library for each user and use the rest speech
records for testing. We use a laptop as the helper to learn
the device response and compensate the device distortion
for all speech record library.

Attackers. We recruit another twelve volunteers as on-
site attackers, five females and seven males, aged from 21
to 43, including four undergraduate students, five graduate
students, and three faculty members. In addition, we use
two different devices, i.e., a ASUS T305C tablet and a Pixel 3
smartphone as stereo eavesdropping equipments. The tablet
and the phone have dual stereo microphones separated at a
distance of 5cm and 15cm, respectively. Attackers can con-
duct on-site eavesdropping attacks and offline DSP attacks
with stereo records. Particularly, we consider two offline
blind source separation (BSS) algorithms, i.e., FastICA [39],
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Fig. 12. Recognition rate in two attack distances and two user-to-device
spacing configurations.

an ICA based algorithm, and DUET [40], a binary time-
frequency masking algorithm.

We consider the following three metrics to evaluate the
performance of SeVI:

• Recognition rate: refers to the ratio of the number of
words correctly recognized by human hearing to the
total number of words in a sentence.

• MFCC similarity: is the similarity between the Mel-
scale Frequency Cepstral Coefficient (MFCC) [41] of
acoustic signals. MFCC is a feature representation
method based on human auditory characteristics.

• Short-Time Objective Intelligibility (STOI): is a
metric used to measure the intelligibility of speech
signals. STOI algorithm [42] takes the original speech
signal and the processed signal as input, and will
give a value in the range from 0 to 1. A high STOI
value means high intelligibility of processed signal.

8.2 Effect of Different Types of Jamming Noises

We first investigate the effectiveness of different types of
jamming noises. We conduct the experiment in a meeting
room about 36 square meters, where attackers are 1m away
from the user and the distance between the device and the
user is 20cm. We generate jamming noises using user speech
records and vary the signal-to-noise ratio (SNR) from -1dB
to -5dB with an interval of 1dB. Besides user speech records,
we consider to generate jamming noise using random noise
and three categories of music. For each attacker and each
type of jamming noise, we randomly select ten sentences
from the testing set of each user, and ask each attacker to
recognize the user voice in the presence of jamming noise
on site. In addition, attackers can listen to recorded contents
as many times as they want.

Figure 11 plots the average recognition rate over all
attackers for each jamming noise type. It can be seen that
different types of jamming noise have distinct jamming
effects and using user voice records to generate jamming
noise can achieve superior jamming effects. Decreasing SNR
will decrease the recognition rate but it would also bring
difficulty for noise self-cancellation. It can be seen that SNR
of -3dB, i.e., the volume of user voice is one half of the
volume of jamming noise, is a good tradeoff.
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Fig. 13. Recognition rate after conducting BSS algorithms on recorded
signal at attackers.

8.3 Impact of Attacker Positions

As an attacker deliberately approaches a victim, the proba-
bility for the attacker to perceive the content of the user’s
voice is increased. Similarly, as the separated distance be-
tween the user and the device increases, such probability
also increases. We take the same setting as in the above
experiment except that we use two attack distances, i.e.,
0.5m and 1.5m, and two spacing distance between the user
and the device two audio sources, i.e., 20cm and 50cm.

Figure 12 plots the average recognition rate in different
attack distances with two user-to-device spacing configu-
rations. It can be seen that when the spacing between the
user and device is 20cm and attack distance is beyond 1.5m,
the recognition rate drops to zero. Normally, 20cm is a
comfortable spacing when people talk to a phone and it is
easy to keep a distance of 1.5m away from other people.

8.4 Impact of DSP Attacks

In this experiment, we take the same setting as in the above
experiment. Especially, we conduct the FastICA and DUET
algorithms to separate the jamming noise and user voice and
then ask attacker to recognize the output of both algorithms.
Since the resolution of the phone recording is better, only the
experimental results of phone recording are shown here.

Figure 13 plots the average recognition rate after con-
ducting two BSS algorithms on recorded signal at attacker.
Comparing with Figure 12, it can be seen that BSS al-
gorithms has little effect in improving the capability of
attackers. For FastICA algorithm, it can achieve a good
separation effect for linearly combined and independent
signals. However, in real environments, because of the
spatial frequency response generated by reverberation en-
vironment, the signals of each source are no longer simply
linear superposition, but convolved with the frequency re-
sponse of the environment. DUET algorithm also fails in
separating signals effectively. According to the principle of
the algorithm, there may be two reasons. One is that in our
scenario, the spatial positions of two signal sources are very
close, resulting in very similar channel conditions between
them. Second, and more importantly, different from sparse
normal speech, in order to ensure the effectiveness of the
masking, the jamming noise we played is dense and has
similar frequency distribution. However, the effectiveness
of the DUET algorithm is based on signal sparsity which
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Fig. 14. MFCC similarity comparison.
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Fig. 15. STOI comparison.

means at any time and any frequency, there is one signal,
only in this way can we get the correct information of the
difference between the amplitude and phase of two channels
corresponding to a certain signal.

8.5 Effectiveness of Jamming Noise Self-cancellation

In this experiment, the attack distance and the user-to-
device spacing are set to 1.5m and 20cm, respectively. We
consider three common voice interaction scenarios, corre-
sponding to different noise levels and channel complexity,
including a meeting room (MT), in a corridor (CO) and
on a public street (ST). The meeting room has the lowest
noise level but the most complex multipath environment.
The noise level in the corridor is moderate and the echo
environment is also complex. The street has the loudest
ambient noise but a better echo condition than the former
two.

To verify the performance of the self-cancellation algo-
rithm, we compare the MFCC similarity and STOI between
the original voice records and the derived results after self-
cancellation. We also compare MFCC similarity and STOI
between the original voice records and the results of Fas-
tICA and DUET.

Figure 14 plots the MFCC similarity results. As can be
seen from the figure, the MFCC similarity between our
self-elimination algorithm’s results and original signals is
generally above 0.8, which is on average 0.2 higher than the
results of FastICA and DUET. The reason why the results
of the attack algorithm also have relatively high similarity
is that our jamming noise is composed of the voices of the
same person, and the characteristics of the same person’s
speech signals are very similar to each other. Figure 15 plots
the STOI results. It can be seen from the figure that the
intelligibility of self-cancellation results is generally between
0.8 and 0.9, while the average intelligibility of FastICA and
DUET results is below 0.3.
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Fig. 16. Recognition rate by Google Assistant on Pixel 3 using self-
cancellation results.

We further play the results to Google Assistant on a Pixel
3 smartphone. The recognition rate by Google Assistant
using self-cancellation results is shown in Figure 16. It can
be seen that the average recognition rate is around 85%.
While for FastICA and DUET results, the software cannot
recognize the content at all. Moreover, we let all attackers to
listen to self-cancellation results. All testing samples can be
fully recognized in all three scenarios.

8.6 Effectiveness of Acoustic Beamforming

We verify the feasibility of conduct acoustic beamforming
on smart devices using our FPGA platform with an array of
two and a linear array of four speakers, respectively. The
speakers are all set to 5 centimeters apart. We use chirp
signal ranging from 300Hz to 8kHz in 1 second as our test
sample. We take a test every 5 degrees and each test result
is an average value of 30 measurements.

For each case, we first measure its the original beam
pattern which can also be seen as the case when θ = 0.
Fig. 17 shows the measured beam pattern at several example
frequencies. As we can see, even without modulation, the
speaker array can achieve a natural beam pattern. Roughly
estimate by the beam pattern, for two speakers, there will be
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Fig. 17. Beampatterns with two and four speakers.

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Angle

0

20

40

60

P
o

w
e

r 
g

a
in

(d
B

)

(a) Two speakers.

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Angle

0

20

40

60

P
o

w
e

r 
g

a
in

(d
B

)

(b) Four speakers.

Fig. 18. Power gains with two and four speakers.

a 10dB gain within the [-60,60] angle range. For four speak-
ers, it can achieve a 15dB gain within the range of [-40,40]
degrees and there are two side lobes at -50 and 50 degrees.
The experiments also shows that different frequencies have
different beam patterns, the higher the frequency, the higher
the spatial resolution.

Then we modulate the beam direction along with dif-
ferent angles and measure the corresponding direction’s
power to see how much power gain at a certain direction
can be obtained by beamforming compared with the non-
beamforming result above. Fig. 18 shows the boxplot of the
power gain within the main human voice frequency range
of [300Hz,2kHz]. The results show that multiple speakers
beamforming can indeed achieve the effect of energy con-
centration in the target direction.

We then examine the effectiveness of acoustic beam-
forming in defending DSP attacks. In this experiment, we
set the attack distance and the spacing distance between
the user and the device at 0.5m and 50cm, respectively, in
the meeting room, as an attacker can achieve the highest
recognition rate in this setting from the results of Subsection
8.3 and Subsection 8.4. We let each attacker to recognize the
voice of each user on site and allow attackers to repeatedly
listen to recorded contents as described in Subsection 8.5,
except that different number of speakers are applied in
beamforming.

Figure 19 plots the average recognition rate of attackers
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Fig. 19. Recognition rate when different number of speakers are applied
in beamforming.
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Fig. 20. MFCC similarity comparison with beamforming.

when different number of speakers are applied in beam-
forming for each user. It can be seen that when only
one speaker is used to play jamming noise, the average
recognition rate varies from about 40% to about 60% for
different users. When two speakers are used to form a
beam towards an attacker, the average recognition rate
dramatically drops. This trend can be continuously seen
when four speakers are applied. These results demonstrates
the efficacy of beamforming in defending eavesdropping
attacks. As most modern smart devices, e.g., smartphones,
tablets, and laptops, are equipped with stereo speakers, two
or more speakers are becoming prevalent, which makes
acoustic beamforming feasible.

We further examine whether using more speakers to play
jamming noise has a negative impact on the self-cancellation
algorithm. We compare the MFCC similarity and STOI be-
tween the original voice records and the derived results after
self-cancellation, FastICA and DUET, respectively. Figure 20
and Figure 21 plot the average MFCC similarity and the
average STOI for each user in the settings of one speaker
(1S), two speakers (2S) and four speakers (4S), respectively.
It can be seen that, in general, as the number of speakers
increases, the MFCC similarity decreases. Specifically, the
average MFCC similarity between the original voice records
and the results after self-cancellation over all users s is 0.828,
0.756, and 0.680 for 1S, 2S and 4S, respectively. Similarly, the
STOI decreases with the number of speakers. The average
STOI between the original voice records and the results
after self-cancellation over all users is 0.844, 0.721, and 0.567
for 1S, 2S and 4S, respectively. The reason is because when
more more speakers are involved in beamforming, the SNR
drops, which makes user voice segmentation inaccurate,
affecting the performance of the FDAF algorithm. Moreover,
the residual noise after the FDAF algorithm also increases,
leading to more signal distortion after residual noise atten-
uation. Nevertheless, it can also be seen that the average
MFCC similarity and the average STOI between the original
voice records and the results of FastICA and DUET also
drop more when more speakers are used.

8.7 Response Time of SeVI

Our experimental smarphone has a 2.8GHz 8-core CPU. We
measure the running time of each major component of SeVI
on one CPU core. We run jamming noise self-cancellation
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Fig. 21. STOI comparison with beamforming.

with 500 ten-second speech records sampled at 16kHz. On
average, the running time of user voice detection, adaptive
jamming noise cancellation, and residual noise attenuation
is 0.12s, 0.06s, and 0.05s. The response time is moderate for
most voice interaction applications. It is possible to consider
optimization technique to further reduce the response time
in our future work.

9 CONCLUSION

In this paper, we have proposed a voice interaction protec-
tion scheme, called SeVI, for smart devices. SeVI innova-
tively use the users own speech voice to generate jamming
noises and can effectively conduct self-cancellation under
time-varying channels. The advantage of SeVI is that it can
be realized on COTS devices as a software component. We
have implemented SeVI on a Pixel 3 XL smartphone. Our
experience illustrates that SeVI is light-weight and easy
to implement and use. We have conducted extensive real-
world experiments and the results demonstrate that SeVI
can provide superior protection for mobile voice interac-
tions against online eavesdropping attacks and offline DSP
attacks.

SeVI also has some limitations. First, jamming noise can
pollute environment, especially for silent indoor scenarios.
Second, since the spectrum of residue noise is also similar to
that of the real interaction voice, when eliminating residual
noises according to its spectrum sample, part of the spec-
trum of real speech is also been attenuated.
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