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Abstract—Acquiring the geographical distribution of neigh-
bors can support more adaptive media access control (MAC)
protocols and other safety applications in Vehicular ad hoc
network (VANETs). However, it is very challenging for each
vehicle to estimate its own neighbor distribution in a fully
distributed setting. In this paper, we propose an online distributed
neighbor distribution estimation scheme, called PeerProbe, in
which vehicles collaborate with each other to probe their own
neighborhood via simultaneous symbol-level wireless communi-
cation. An adaptive compressive sensing algorithm is developed
to recover a neighbor distribution based on a small number of
random probes with non-negligible noise. Moreover, the needed
number of probes adapts to the sparseness of the distribution.
We conduct extensive simulations and the results demonstrate
that PeerProbe is lightweight and can accurately recover highly
dynamic neighbor distributions in critical channel conditions.

Index Terms—neighbor distribution estimation; adaptive com-
pressive sensing; vehicular ad hoc network; OFDM; Bloom filter

I. INTRODUCTION

Vehicular ad hoc networks (VANETs) are emerging as a

new landscape of mobile ad hoc networks, aiming to pro-

vide a wide spectrum of safety and comfort applications to

drivers and passengers. In VANETs, vehicles equipped with

wireless communication devices can exchange data with each

other (vehicle-to-vehicle communications). It is essential for

a vehicle to acquire the context information of the network,

especially, the geographical distribution of its neighbors. We

refer to the neighbor distribution estimation problem as the

problem that a vehicle can actively estimate the respective

number of neighboring vehicles within a large set of differ-

ent communication ranges. Figure 1 illustrates the neighbor

distribution of a vehicle within three communication ranges.

Such neighbor distribution information can be utilized to

design efficient media access control (MAC) protocols. For

instance, a vehicle can choose proper communication ranges

and broadcasting periodicities for various safety applications.

Moreover, given the number of neighbors within a chosen

communication range, adaptive channel allocation schemes

can be achieved.

A feasible scheme for the neighbor distribution estimation

problem in VANETs, however, has to meet three rigid require-

ments as follows: 1) due to the fast movement of vehicles,

such a scheme should be fast and efficient in terms of both
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Fig. 1. Illustration of the neighbor distribution of a red vehicle, e.g., the
number of neighbors is 2, 2, and 6, respectively, within three consecutive
communication ranges

communication and computation costs; 2) it is often the case

that there is no roadside unit available, which means that such

a scheme should reliably work without any centralized unit

in the network; 3) such a scheme should achieve very high

accuracy as the derived information could be utilized in critical

driving safety applications.

In the literature, existing vehicle density estimation schemes

and vehicle mobility modeling methods can be explored to

derive neighbor distribution information. Infrastructure-based

density estimation schemes need certain infrastructure support

such as video monitoring and surveillance system [1]–[3], base

stations [4], roadside units (RSUs) [5], or other fixed traffic

detectors [6] [7] [8] [9]. Other infrastructure-free methods

either require the prior knowledge about the distribution of

vehicles [10] or need massive communication among vehicles

[11]. Mobility modeling schemes [1] [12] [13] [14] usually

take a centralized methodology to study vehicle mobility

models and distributions and cannot be directly utilized to

estimate the neighbor distribution for each individual vehicle.

In this paper, we propose a fully distributed neighbor distri-

bution estimation scheme, called PeerProbe, in which vehicles

in vicinity collaborate with each other to probe the neigh-

borhood via symbol-level wireless communication. Instead of

letting each vehicle measure the number of neighbors within

all communication ranges to get the neighbor distribution,

inspired by the insight that the geographical distribution of

vehicles normally could be sparse, the core idea of PeerProbe

is for each vehicle to utilize compressive sensing to recover

its neighbor distribution by randomly measuring the number

of neighboring vehicles only within a few randomly selected

communication ranges.

Three main challenges are encountered. First, it is non-



trivial to count the number of neighbors of each vehicle within

a specific communication range, especially when there is no

central unit available to coordinate data transmission and to

collect information sent from individual vehicles. To address

this challenge, a Bloom filter is constructed for each vehicle in

a distributed fashion by all neighbors within the communica-

tion range. More specifically, with common half-duplex radios,

each vehicle randomly chooses to be a transmitter or a receiver.

When a vehicle acts as a transmitter, it broadcasts an individual
bitmap generated by making a hash of its own identity. When

the vehicle act as a receiver, it decodes superposed signals

to collect bitmaps from transmitter neighbors. This procedure

repeats until each vehicle has collected enough bitmaps from

most of its neighbors with high probability.
Second, it is challenging to efficiently and reliably exchange

individual bitmaps among vehicles. It would be infeasible

if each vehicle broadcasts individual bitmaps by packets in

turn. To tackle this challenge, we use On-OFF Keying (OOK)

mapping to embed the individual bitmap of a vehicle into Or-

thogonal Frequency Division Multiplexing (OFDM) symbols,

letting each subcarrier of an OFDM symbol carry one bit.

Furthermore, all transmitter neighbors simultaneously transmit

their OFDM symbols while a receiver can successfully decode

these superposed OFDM symbols by an effective de-mapping

scheme, deriving a combined bitmap which is the logical OR

result of all transmitted individual bitmaps.
Third, the geographical distribution of vehicles varies,

which could be neither even (e.g., due to traffic lights) nor

sparse (e.g., due to traffic jams) on a road, which makes

it difficult to recover the neighbor distribution with normal

compressive sensing methods. To deal with this challenge, we

propose an adaptive compressive sensing scheme, in which the

number of measures needed for a vehicle to recover its neigh-

bor distribution adapts to the sparseness of its neighborhood.

Moreover, probabilistic measurement noise is first filtered out

via Total Variation (TV) regularization before being applied to

compressive sensing to recover the final neighbor distribution.
PeerProbe is a fully distributed scheme and requires no

special hardware. Extensive simulations are conducted and the

results demonstrate that the estimation errors of the number

of neighbors in one measure can reach up to 10% due to

demodulation errors and the probabilistic noise. Neverthe-

less, the adaptive compressive sensing scheme is resilient to

measurement noise and outperforms traditional compressive

sensing schemes at low measurement costs.
We highlight the main contributions made in this work as

follows:

• An efficient number-of-neighbors estimation scheme is

proposed using symbol-level wireless communication

with half-duplex radios.

• An adaptive compressive sensing scheme is developed to

estimate neighbor distributions, which can handle massive

measurement noise and adapt to varying densities of

vehicles.

• Extensive simulations are conducted to demonstrate the

efficiency of PeerProbe in achieving high accuracy neigh-

bor distribution estimation under different channel con-

ditions and node distributions.

II. SYSTEM MODEL AND DESIGN GOALS

A. System Model

In the neighbor distribution estimation problem, we consider

that there is no centralized unit in the network and vehicles

are peers with equal capabilities as follows:

• Communication: vehicles can communicate with each

other via Dedicated Short Range Communications

(DSRC), which adopts OFDM modulation and can ac-

tively control transmission power to change the commu-

nication range. Given the analysis based on real-world

DSRC trace [15], we consider symmetric channels, i.e.,

a vehicle x is in the communication range of vehicle y if

and only if y is in the communication range of x when

they use the same transmission power to communicate. In

addition, we consider the disk model where the commu-

nication range controlled by certain transmission power

is a disk.

• Computation: vehicles can perform basic operations

such as random number generation, hash operation, and

common matrix algebra operations.

• Synchronization: vehicles are equipped with global po-

sitioning system (GPS) receivers, which are used as the

time reference to synchronize vehicles. GPS can provide

1 pulse per second (PPS) signal with an accuracy of

less than 100ns even for low-end GPS receivers [16].

Note that we do not directly use GPS for positioning as

the reported location is quite inaccurate in urban settings

[17].

B. Design Goals

We consider the following goals in designing our distributed

neighbor distribution estimation scheme:

• High Accuracy. The estimated neighbor distribution in-

formation could be used for driving safety applications

or for MAC protocol design. These applications have the

urge for high accuracy of the estimated distribution with

a fine spacial granularity (e.g., at meter level).

• Cost Efficiency. The communication cost for neighbor

distribution estimation should be extremely low to re-

serve most channel resource for data communication.

Moreover, the computation complexity of the algorithms

should be low to achieve fast response time.

• Good Reliability. The scheme should reliably work under

highly dynamic vehicular environments, for example,

uneven vehicle distributions due to various traffic con-

ditions.

• Easy Deployment. The scheme should have a mini-

mal hardware requirement, consisting of only widely-

available cheap sensors and commercial off-the-shelf

(COTS) vehicle-to-vehicle communication radio devices,

which makes it easy to deploy.
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Fig. 2. The system architecture of PeerProbe

III. DESIGN OF PEERPROBE

A. Overview

To facilitate individual vehicles to efficiently estimate their

neighborhood, PeerProbe integrates three techniques as fol-

lows. First, a vehicle only needs to randomly measure the

number of neighbors in a few communication ranges, lever-

aging the insight that vehicle distribution could be sparse

and the power of the compressive sensing theory. Moreover,

the number of measures required for a vehicle adapts to

the sparseness of its neighborhood. Second, a vehicle counts

the number of neighbors within a communication range with

a Bloom filter, which is neatly constructed in a distributed

fashion by its neighbors. Third, OFDM symbols are designed

so that superposed OFDM symbols simultaneously transmitted

by multiple vehicles can be successfully demodulated, which

significantly increases the utility of channel resources.

The system architecture as depicted in Figure 2 consists of

four major components:

Probabilistic Power and Role Selection. A vehicle ran-

domly chooses a transmission power level Pi according to

the network time. As vehicles are synchronized, it means

that all vehicles would randomly select the same transmission

power at a time. Given the transmission power level Pi, the

vehicle chooses to be a transmitter (or a receiver) with the

probability of p (or 1 − p). The probabilistic role selection

repeats until a receiver has collected sufficient information

from the transmitter neighbors within the communication

range controlled by the transmission power level Pi.

Role of Transmitter. If the vehicle selects to be a transmit-

ter, it first constructs an individual bitmap, which consists of

a hashed identity (e.g., using the MAC address of the vehicle)

and an indication bit field and then embeds the bitmap into

OFDM symbols using OOK mapping with each subcarrier

conveying one bit. Finally, the vehicle transmits these OFDM

symbols with the transmission power level of Pi.

Role of Receiver. If the vehicle selects to be a receiver,

it demodulates received OFDM symbols, which are the su-

perposition of those OFDM symbols sent from transmitter

neighbors, and derives a combined bitmap. As one combined

bitmap only contains the ID information of partial neighbors,

the vehicle keeps collecting more combined bitmaps when

it selects to be a receiver again. Finally, by aggregating all

combined bitmaps, the vehicle can obtain a full bitmap of

a Bloom filter, with which the number of neighbors within

the communication range controlled by Pi, can be estimated,

denoted by N̂(Pi).

Adaptive Neighbor Distribution Estimation. Each time

when a new N(Pi) is estimated, the vehicle tries to recover

the whole neighbor distribution using compressive sensing and

compares the new result with previous result. If the difference

is smaller than a given threshold, the neighbor estimation

process converges and ends; otherwise, the vehicle chooses the

next random transmission power level Pj and starts to estimate

N(Pj). Moreover, the vehicle also informs its neighbor in the

communication range controlled by Pj of the new measure

demand by setting the indication bit field in its individual

bitmap.

B. Probabilistic Power and Role Selection

Let {R0, R1, · · · , Rn−1} denote the set of communication

ranges of interest in the neighbor geographical distribution

estimation problem and let {P0, P1, · · · , Pn−1} denote the

corresponding transmission power levels1. To randomly select

a transmission power level Pi from {P0, P2, · · · , Pn−1}, a

vehicle uses the synchronized network time as the seed of a

random number generator and i = rand()%n.

As there is no centralized unit in the network, in order

for each vehicle to collect information from neighbors within

communication range Ri, we propose a probabilistic scheme,

in which a vehicle v selects to be a transmitter with a

probability of p and selects to a receiver with a probability

of 1 − p. When v is a transmitter, v broadcasts its own

information with power Pi, and when v is a receiver, v can

receive information from all transmitter neighbors within Ri.

We have the following theorems:

Theorem 1: If each receiver vehicle expects to collect
information from a proportion of λ of all its neighbors within
Ri, then the probabilistic role selection procedure should be
repeated at each vehicle for at least 1

(1−p) · log(1−p)(1 − λ)
times.

Proof: We assume that the probabilistic role selection

procedure should be repeated at least for x times and the

number of neighbors is N(Pi). Then, the expected number for

a vehicle v to be a receiver is x(1− p). When v is a receiver

for the first time, the expected number of neighbors that v can

receive information from is N(Pi)p. When v is a receiver for

the second time, the expected number of new neighbors that

v can receive information from is N(Pi)(1 − p)p. Similarly,

when v is a receiver for the i-th time, the expected number

of new neighbors that v can receive information from is

N(Pi)(1 − p)i−1p.Therefore, the total expected number of

neighbors that v can receive information from is N(Pi)(1 −
1The specific propagation model about a transmission power level and

the corresponding communication range is not the concern of this work.
We hereafter use the transmission power level to refer to the corresponding
communication range without the loss of generality.
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Fig. 3. An individual bitmap of a vehicle, consisting of an m-bit Bloom filter
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p)0p+N(Pi)(1−p)1p+ · · ·+N(Pi)(1−p)x(1−p)−1p, which

is no less than λN(Pi). We have

x ≥ 1

(1− p)
· log(1−p)(1− λ), (1)

which concludes the proof.

Given the above theorem, x reaches the minimum when

p = 1− 1
e .

Theorem 2: If each transmitter vehicle expects to inform
a proportion of γ of all its neighbors within Ri, then the
probabilistic role selection procedure should be repeated at
each vehicle for at least 1

p · logp(1− γ) times.
The proof is similar as that of Theorem 1 and is omitted

due to the page limitation. Given the above theorem, x reaches

the minimum when p = 1
e . Considering both Theorem 1 and

Theorem 2, we set p = 0.5. As a result, if we expect each

receiver vehicle to collect information from λ = 95% of its

neighbors and each transmitter vehicle to inform γ = 95% of

its neighbors within the communication range Ri, each vehicle

needs to repeat the probabilistic role selection procedure for

nine times.

C. Role of Transmitter

When a vehicle selects to be a transmitter, it helps other

receiver neighbors to construct the bitmap of a Bloom filter

by broadcasting its own individual bitmap through OFDM

symbols with the transmission power level Pi.
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1) Individual Bitmap Construction: As depicted in Figure

3, an individual bitmap consists of two bit fields, i.e., an m-bit

Bloom filter field and an l-bit indication field. A transmitter

vehicle sets up the m-bit Bloom filter field according to the

results of a group of k hash functions, calculated with its MAC

address. The vehicle sets the indication bits to inform other

vehicles that it also expects to collect information from other

neighbors in this communication range. Note that l bits are set

at the same time to mitigate the impact of demodulation error

(see more details in Subsubsection III-D1 and Subsubsection

III-E4).

2) OFDM Symbol Generation: We adopt OOK mapping to

embed each bit in an individual bitmap into one corresponding

subcarrier of an OFDM symbol. Specifically, bit 1 and bit 0

are mapped to the symbol (1, 0) and (0, 0) in the constellation

diagram, respectively. As depicted in Figure 4(a), the signal

processing of a transmitter is compatible with IEEE 802.11p

radios. Specifically, 48 subcarriers with index [-26:-22, -20:-8,

-6:-1, 1:6, 8:20, 22:26] are used for bitmap transmission and

the rest 16 subcarriers, including four pilot subcarriers, eleven

null subcarriers and the DC subcarrier, always transmit bit 0,

i.e., symbol (0, 0), for channel estimation. Consequently, when

the length of an individual bitmap is larger than 48, the bitmap

is divided into multiple OFDM symbols. With the generated

OFDM symbols, a transmitter vehicle broadcasts each OFDM

symbol with the chosen transmission power level Pi according

to the synchronized network time.

D. Role of Receiver

When a vehicle v selects to be a receiver, it collects

combined individual bitmaps from transmitter neighbors and

estimates the number of neighbors when enough combined

bitmaps are collected.

1) Demodulating Superposed OFDM Symbols: Given the

number of neighbors N(Pi), there are on average pN(Pi)
transmitter neighbors, simultaneously broadcasting their in-

dividual bitmaps via OFDM symbols. These OFDM symbol

signals are superposed before they hit the antenna of v. Figure

4(b) plots the signal processing of a receiver. To demodulate

superposed OFDM symbols, after FFT, a complex number

zi = Ii+jQi can be obtained from subcarrier i. We introduce a
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simple yet effective OOK de-mapping algorithm. Specifically,

the Euclidean norm of the complex on each channel estimation

subcarrier is calculated, and the maximal norm is used as the

threshold to determine bit 1 or bit 0 on other data subcarriers.

For example, Figure 5 plots the constellation diagram for

one superposed OFDM symbol through channel. The dark

circle in the figure indicates the calculated threshold. It can be

seen that most bits can be correctly demodulated except that

there are three bits being wrong. As a result, the demodulated

bitmap is actually the result of logical OR operation of those

individual bitmaps. Moreover, bit errors would happen in

the combined bitmap due to channel impairments. Figure 7

illustrates an example of an extracted combined bitmap from

superposed individual bitmaps.

2) Probabilistic Neighbor Estimation: Each time vehicle

v selects to be a receiver, it can get a combined bitmap.

According to Theorem 1, after v repeats probabilistic role

selection procedure for 1
(1−p) · log(1−p)(1 − λ) times, it can

collect information from a proportion of λ of all its neighbors

within Ri. After that, v can get a full bitmap of a Bloom filter

[18] by performing the logical OR operation on all combined

bitmaps. Such a full bitmap can be used to estimate N(Pi) as

N̂(Pi) = −mln(1−
c(Z)
m )

k
(2)

where m is the length of the full bitmap; k is the number

of hash functions and the function c(·) counts the number of

ones within the full bitmap.
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Fig. 7. An example of derived combined bitmap, which is actually the logical
OR result of three individual bitmaps

E. Adaptive Neighbor Distribution Estimation

As for the geographical distribution of vehicles, we have

the following observation.

Observation 1: The geographical distribution of vehicles
on a surface road could be sparse and the sparseness of the
distribution varies over space and time.

Recent advances in the field of compressive sensing have

developed reliable recovery algorithms for inferring sparse

representations if one can randomly measure arbitrary linear

combinations of the signal, then the signal could be reliably

reconstructed through solving an optimization problem. Given

the above observation, we leverage compressive sensing theory

to recover the neighbor distribution of individual vehicles at

the cost of a small number of random measures. Moreover,

the number of measures needed for a vehicle adapts to the

sparseness changes of its neighbor distribution.

1) Determining the Representation Basis: We define the

geographical neighbor distribution of a vehicle v as a sequence

of two-tuples {(P0, N(P0)), (P1, N(P1)), (P2, N(P2)), · · · ,
(Pn−1, N(Pn−1))}, where P0 < P1 < · · · < Pn−1. It is

clear that N(P0) ≤ N(P1) ≤ · · · ≤ N(Pn−1) and the vector

N = (N(P0), N(P1), · · · , N(Pn−1)) is not sparse. However,

as depicted in Figure 6, N could be transformed to a sparse

vector S, i.e., S = ΨN and N = Ψ−1S, where Ψ is an n×n
differential basis and Ψ−1 is a lower triangular matrix,

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠
, (3)

Ψ−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎠
. (4)

For instance, N = (2, 2, 6) and S = (2, 0, 4) in the example

of Figure 1.



2) Constructing the Measurement Matrix: The measure-

ment matrix Φ is an m × n matrix, where m equals to the

number of measures and each row corresponds to the transmit

power levels from P0 to Pn−1. As described in Subsection

III-B, each vehicle randomly chooses a transmission power

level Pi ∈ {P0, P1, · · · , Pn−1} according to the network

time for m times and estimates the corresponding number of

neighbors N̂(Pi). As shown in Figure 6, if Pj is chosen in

the i-th measure, then Φij is set to 1. Let Y denote the vector

of the m measures. Since each measure N̂(Pi) has errors, Y
can be represented as follows:

Y = ΦN + η = ΦΨ−1S + η, (5)

where η denotes the vector of estimation errors.

3) Recovering the Neighbor Distribution Signal: Accord-

ing to (5), to recover N in the sparse domain is to solve the

following l0 optimization problem:

Ŝ = argmin
S

‖S‖0 s.t. Y = AS (6)

where Y and A = ΦΨ−1 are known. The above minimization

problem can be resolved with orthogonal matching pursuit

(OMP) algorithms [19] [20] [21]. We adopt the CoSaMP

algorithm [22] as it can identify many components during each

iteration, which allows the algorithm to run faster for many

types of signals.

According to the compressive sampling theory, a K-sparse

signal can be reconstructed from m measurements, if m satis-

fies m ≥ b ·μ2(Φ,Ψ) ·K · logn where b is a positive constant,

and μ(Φ,Ψ) is the coherence between measurement matrix

Φ and representation basis Ψ [23]. The coherence metric

measures the largest correlation between any two element of

Φ and Ψ, defined as: μ(Φ,Ψ) =
√
n ·max1≤i,j≤n |〈φi, ψj〉|.

We can see that the smaller the coherence between Φ and Ψ
is, the less measurements are needed to reconstruct the signal.

Because Φ is randomly generated, Φ is largely incoherent with

any fixed representation basis Ψ. m = 3K to 4K is usually

sufficient to perfectly recover the signal.

4) Adapting to Varying Sparseness: Different vehicles

have distinct neighbor distributions, i.e., sparseness of N
varies among vehicles, which means each vehicle needs to

conduct different number of measures. To this end, an adap-

tive neighbor distribution estimation algorithm is proposed.

Specifically, after z (z ≥ 1) measures have been conducted, a

vehicle v ranks the z measures according to the corresponding

transmission power levels and gets measurement vector M =
{N̂(Pi0), N̂(Pi1), · · · , N̂(Piz)}, Pi0 < Pi1 < · · · < Piz . As

the probabilistic neighbor estimation would introduce non-

negligible measurement noise, M is first de-noised using the

TV regularization [24]. Then, the de-noised z measures are

used to recover the neighbor distribution, denoted as N̂v,z .

Similarly, when vehicle v continues to perform the (z + 1)-
th measure and it can get an updated recovered neighbor

distribution N̂v,z+1. Vehicle v calculates an indicator as

indicator =
‖N̂v,z+1 − N̂v,z‖2

‖N̂v,z‖2
(7)

If the indicator is smaller than a threshold ε, the neighbor

distribution estimation process ends. In this case, vehicle v
clears the l-bit indication field in its individual bitmap in all

future broadcastings, but still needs to repeat the probabilistic

role selection procedure as described in Subsection III-B until

the indication fields in all received combined bitmaps are

cleared2 (i.e., the neighbor estimation process ends for all its

neighbors).

IV. PERFORMANCE EVALUATION

A. Methodology

We conduct extensive simulations using the VENUS simula-

tor (http://lion.sjtu.edu.cn/project/projectDetail?id=17) to eval-

uate the performance of PeerProbe with respect to various

vehicle distributions and critical channel conditions. Specifi-

cally, we randomly generate a neighbor distribution, following

three types of vehicle distributions, i.e., uniform distribution,

Gaussian distribution, and Poisson distribution. For each distri-

bution type, we vary the total number of vehicles, ranging from

20 to 100. We consider a set of distinct BERs to reflect the

impact of particular channel models. We define two accuracy

metrics as follows:

• Neighbor Estimation Error Ratio (NEER): refers to

the ratio of the absolute error of the estimated number

of neighbors with certain transmission power level Pi to

the ground truth, calculated as
|N̂(Pi)−N(Pi)|

N(Pi)
.

• Neighbor Distribution Estimation Error (NDEE): we

measure the difference between the estimated neighbor

distribution of a vehicle v and the ground truth using

RMS error, calculated as

√∑n
i=1(N̂

v
i −Nv

i )2

n .

We compare our scheme with two typical compressive

sensing methods, i.e., CS-OMP [21] and CS-CoSaMP [22]

and the following two interpolation methods:

• Intp-NN: The nearest neighbor interpolation algorithm

selects the value of the nearest point, yielding a

piecewise-constant interpolant.

• Intp-Linear: The linear interpolation algorithm uses lin-

ear polynomials to construct new data points within the

range of a discrete set of known data points.

B. Accuracy of Estimating the Number of Neighbors

1) Effect of Individual Bitmap Length: We randomly

generate uniform neighbor distributions with the number of

neighbors varying from 20 to 100 with an interval of 20. We

set the repeating times of the probabilistic role selection to nine

and use two hash functions. We vary the length of individual

bitmaps, ranging from using one OFDM symbol (i.e., 48 bits)

up to using four OFDM symbols (i.e., 192 bits) and study the

2To mitigate the impact of demodulation errors, the indication field of a
combined bitmap is considered clear if there are more than l

2
bits are zero.
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Fig. 8. Neighbor estimation error ratio using different bitmap lengths under different BERs
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Fig. 9. Neighbor estimation error ratio using different number of hash functions under different BERs

NEER under six BERs, i.e., 0.1%, 0.25%, 0.5%, 1%, 2.5%
and 5%. For each setting, we run the experiment for 500 times.

Figure 8 plots the NEER as the function of individual

bitmap length. It is clear to see that the NEER decreases as

the bitmap length increases. Moreover, it can also be seen that

a long bitmap can deal with large BERs and a dense neighbor

distribution. In practice, low response time is essential for

vehicular applications, which limits the maximal length of

individual bitmaps. Therefore, the strategy is to choose the

longest bitmap as long as the Quality of Service (QoS) of

application scenarios can be guaranteed.

2) Effect of the Number of Hash Functions: The settings

of this experiment are similar to the above experiment except

that we fix the length of individual bitmaps using two OFDM

symbols. We vary the number of hash functions, ranging from

one to seven with an interval of two and study the NEER under

the same six BERs. For each setting, we run the experiment

for 500 times.

Figure 9 plots the NEER as the function of the number of

hash functions. It can be seen that, on one hand, according

to (2) the estimated N̂(Pi) is inversely proportional to the

number of hash functions, which can tolerate more bit errors
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Fig. 10. Impact of the neighbor density under different BERs

when more hash functions are involved (e.g., when BER is

large, the NEER first drops as the number of hash functions

increases); on the other hand, more hash functions will saturate

the bitmap, which decreases the estimation accuracy of a

Bloom filter (e.g., when BER is large, the NEER increases as

the number of hash functions is larger than three as shown in

Figure 9). Given the length of individual bitmaps, the optimal

number of hash functions can be determined.

C. Accuracy of Estimating Neighbor Distribution

1) Impact of Neighbor Density: Based on previous exper-

iments, the bitmap length is fixed using two OFDM symbols

(i.e., 96-bit long) and three hash functions are used. The

number of repeating times of probabilistic role selection is set

to nine. We refer to the number of controllable transmission

power levels as the dimension of neighbor distributions and

set the dimension of neighbor distributions to 100. ε takes an

empirical threshold of 0.03. We randomly generate uniform

neighbor distributions with the number of neighbors varying

form 20 to 100 with an interval of 20 and study the NDEE

under six BERs, i.e., 0.1%, 0.25%, 0.5%, 1%, 2.5% and 5%.

For each setting, we run the experiment for 500 times.

Figure 10 plots the NDEE of five candidate estimation meth-

ods as the function of neighbor density. It can be seen that, in

general, all methods can achieve stable performance when the

neighbor density changes. BER has significant influence on

the ultimate neighbor distribution estimation accuracy. NDEE

increases as the neighbor density and BER increase. PeerProbe

outwits other methods.

2) Impact of Vehicle Distribution Types: The setting of

this experiment is similar with the above experiment, except

that we generate three typical types of geographical distri-

butions of vehicles, i.e, uniform distributions, Gaussian dis-

tributions, and Poisson distributions. More specifically, 2000

vehicles are generated on a 4-lane road of 10km at a gran-

ularity of one meter according to different distribution types.

For uniform distributions, vehicles are uniformly distributed.

For Gaussian distributions, the distribution parameter μ and σ
are set to 5, 000meters and 2, 500meters, respectively. For

Poisson distributions, the distribution parameter λ is set to

0.2. Given a generated vehicle distribution, we estimate the

neighbor distribution of each vehicle, using PeerProbe. The

same measures used for PeerProbe is also applied to other

four candidate methods for comparison.

Figure 11(a)-(c) plot the CDFs of NDEE for all vehicles of

all distribution types. Figure 12 plots the cumulative density

function (CDF) of the number of measures needed by each

vehicle. It can be seen that more than 90 percent of vehicles

requires less than 40 measures to recover a 100-dimension

neighbor distribution. It can be seen that PeerProbe can always

achieve higher estimation accuracy.

D. Communication and Computation Costs

The communication delay equals to the needed number of

OFDM symbols per bitmap × repeating times of role selection
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Fig. 11. Impact of distinct vehicle distribution types, i.e., uniform distributions, Gaussian distributions, and Poisson distributions

× the needed number of measures × the duration of an OFDM

symbol. For instance, for 2-symbol bitmaps, nine repeating

times, 40 measures and 8μs OFDM symbol duration, the

communication delay for estimating one neighbor distribution

is about 5.7ms. The main computational cost stems from the

CoSaMP algorithm which has a computational complexity of

O(K ·m2 · n) where K, m and n are the sparseness of the

signal, the number of measures and the dimension of the

signal. For example, the average running time of CoSaMP

algorithm on a laptop with a 4-core 1.4GHz Intel Core i5

CPU and a 16GB memory is about 9ms in the experiment

described Subsubsection IV-C2.

V. RELATED WORK

Two categories of existing work are relevant to our work.

Vehicle density estimation. Infrastructure-base vehicle den-

sity estimation methods require extra devices to be installed as

infrastructure. Computer vision techniques are used to estimate

vehicle density with video monitoring and surveillance system

[1]–[3]. Such schemes are severely affected by the weather and

light conditions. Some other studies utilize base stations [4],

RSUs [5], or other fixed traffic detectors such as dual loop

detectors [6], wireless vehicle sensor [7], roadside-installed

microphone [8], and highway toll stations [9]. These methods

suffer from low reliability and limited coverage as well as

high deployment and maintenance costs. Infrastructure-free

vehicle density estimation methods either require the prior

knowledge about the distribution of vehicles such as lognormal

or exponential inter-vehicle spacing distribution [10], or need
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Fig. 12. CDF of the number of needed measures

massive communication among vehicles such as clustering or

grouping methods [11].
Vehicle mobility modeling. Infrastructure such as surveil-

lance cameras [1], cellular towers [12] are used for vehicle

distribution modeling. The relationship between vehicle move-

ment and wireless signals is also studied [13], [25], [26].

Smartphones [27] [28] are used to track vehicles in real time.

Yang et al [14] proposed a method to get the distribution

and trace in real-time by using Electric Toll Collection data.

These schemes take a centralized methodology to study vehicle

mobility models and distributions and cannot be directly uti-

lized to estimate the neighbor distribution for each individual

vehicle.
The most relevant work to our scheme is CoReCast [29]

where a bloom filter constructed at packet level is used

to count the number of neighbors of a vehicle within the

communication range under duplex system. CoReCast needs

reliable packet communication and does not study the neighbor

distribution. In contrast, PeerProbe is a distributed neighbor

distribution estimation scheme without packet communication

or any other prior assumption.

VI. CONCLUSION

In this work, a distributed neighbor distribution estimation

scheme PeerProbe has been developed in VANETs. In Peer-

Probe, vehicles can efficiently exchange hashed ID informa-

tion through superposed OFDM symbols. With a few rough

measures on the number of neighbors in randomly selected

communication range, a vehicle can accurately recover the

neighbor geographical distribution, leveraging the power of

the combination of TV de-noising technique and the com-

pressive sensing theory. PeerProbe needs no centralized unit

or any prior knowledge about vehicle distributions. Moreover,

PeerProbe is lightweight and easy to deploy with a minimal

requirement on hardware. We have conducted extensive sim-

ulations. The results demonstrate the efficacy of PeerProbe.
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