DeepAoA+: Online Cross-domain Vehicular Relative Direction Estimation via Deep Learning

Facheng Hu, , Yunxiang Cai, Hongzi Zhu, Shan Chang, Xudong Wang, Minyi Guo

to appear in IEEE Transactions on Vehicular Technology (TVT), 2024

Relative direction estimation among neighboring vehicles in urban environments is essential to a wide variety of driving safety applications. To obtain accurate direction information solely from vehicle-to-vehicle (V2V) communications is desirable but very challenging due to enormous multipath effects. In this paper, we propose an online cross-domain vehicular relative direction estimation method, called DeepAoA+, based on a domain adaptive deep learning method. More specifically, the channel state information (CSI) is estimated from a set of synchronized receiving radios at a receiver vehicle. By taking the CSI phase difference between a pair of such radios, CSI phase errors in the baseband can be effectively eliminated, which makes a compelling feature to represent the direction of incident radio frequency (RF) signals and the dynamic channel characteristics. Moreover, to conquer the non-i.i.d (independent and identically distributed) problem caused by dynamic environments, DeepAoA+ discovers latent domains in the CSI phase difference dataset. For each identified domain, a domain specific model is trained to estimate the Angle-of-Arrival (AoA) of incoming signals. To this end, a framework based on an expectation-maximization (EM) algorithm is proposed to obtain domain partitions considering downstream AoA estimation tasks. Furthermore, a pre-training technique is used to enhance the robustness of AoA estimation with misclassified test samples. We implement a prototype of DeepAoA+, using four synchronized Universal Software Radio Peripherals (USRPs) from various scenarios, and conduct extensive real-world experiments. The results demonstrate that DeepAoA+ can achieve the best AoA estimation with low latency.

PDF

Page View: 138